Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: FastPWM mbed QEI biquadFilter HIDScope MODSERIAL
main.cpp
- Committer:
- efvanmarrewijk
- Date:
- 2018-10-29
- Revision:
- 24:d255752065d1
- Parent:
- 21:363271dcfe1f
- Child:
- 25:76e9e5597416
File content as of revision 24:d255752065d1:
// Inclusion of libraries #include "mbed.h" #include "FastPWM.h" #include "QEI.h" // Includes library for encoder #include "MODSERIAL.h" #include "HIDScope.h" #include "BiQuad.h" // Input AnalogIn pot1(A1); AnalogIn pot2(A2); InterruptIn button1(D0); InterruptIn button2(D1); InterruptIn emergencybutton(SW2); /* This is not yet implemented! The button SW2 on the K64F is the emergency button: if you press this, everything will abort as soon as possible */ DigitalIn pin8(D8); // Encoder 1 B DigitalIn pin9(D9); // Encoder 1 A DigitalIn pin10(D10); // Encoder 2 B DigitalIn pin11(D11); // Encoder 2 A DigitalIn pin12(D12); // Encoder 3 B DigitalIn pin13(D13); // Encoder 3 A // Output DigitalOut pin2(D2); // Motor 3 direction FastPWM pin3(D3); // Motor 3 pwm DigitalOut pin4(D4); // Motor 2 direction FastPWM pin5(D5); // Motor 2 pwm FastPWM pin6(D6); // Motor 1 pwm DigitalOut pin7(D7); // Motor 1 direction //float u1 = pot1; // Utilisation of libraries MODSERIAL pc(USBTX, USBRX); QEI Encoder1(D11,D10,NC,4200); // Counterclockwise motor rotation is the positive direction QEI Encoder2(D9,D8,NC,4200); // Counterclockwise motor rotation is the positive direction QEI Encoder3(D13,D12,NC,4200); // Counterclockwise motor rotation is the positive direction Ticker motor; Ticker encoders; // Global variables const float pi = 3.14159265358979; float u3 = 0.0; // Normalised variable for the movement of motor 3 const float fCountsRad = 4200.0; // Functions float AngleCalc(float counts) { float angle = ((float)counts*2.0*pi)/fCountsRad; while (angle > 2.0*pi) { angle = angle - 2.0*pi; } while (angle < -2.0*pi) { angle = angle + 2.0*pi; } return angle; } void Encoderinput() { int counts1; int counts2; int counts3; float angle1; float angle2; float angle3; counts1 = Encoder1.getPulses(); counts2 = Encoder2.getPulses(); counts3 = Encoder3.getPulses(); angle1 = AngleCalc(counts1); angle2 = AngleCalc(counts2); angle3 = AngleCalc(counts3); pc.printf("Counts1,2,3: %i %i %i Angle1,2,3: %f %f %f\r\n",counts1,counts2,counts3,angle1,angle2,angle3); } void draaibuttons() { /* Pressing button 2 concludes in a change of speed. While button 1 is pressed, the direction of change of speed is reversed. So pressing button 1 and 2 simultaneously results for the turning speed of motor 3 in a slower movement, and eventually the motor will turn the other way around. */ if (button1 == 1 && button2 == 1) { u3 = u3 + 0.1f; //In stapjes van 0.1 if (u3>1.0f) { u3 = 1.0f; } } else if (button1 == 0 && button2 == 1) { u3 = u3 - 0.1f; if (u3>1.0f) { u3 = 1.0f; } } } void draai() /* Function for the movement of all motors, using the potmeters for the moving direction and speed of motor 1 and 2, and using button 1 and 2 on the biorobotics shield for the moving direction and speed of motor 3. */ { float u1 = 2.0*(pot1 - 0.5); // Normalised variable for the movement of motor 1 if (u1>0) { pin4 = true; } else if(u1<0) { pin4 = false; } pin5 = fabs(u1); float u2 = 2.0*(pot2 - 0.5); // Normalised variable for the movement of motor 2 if (u2<0) { pin7 = true; } else if(u2>0) { pin7 = false; } pin6 = fabs(u2); if (u3>0) { pin2 = true; } else if(u3<0) { pin2 = false; } else { pin3 = 0; } pin3 = fabs(u3); } // Main program int main() { pc.baud(115200); pin5.period(1.0/10000); button1.rise(&draaibuttons); button2.rise(&draaibuttons); pin3.period(0.2); pin5.period(0.2); pin6.period(0.2); motor.attach(draai, 0.001); while (true) { Encoderinput(); } }