Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: MODSERIAL biquadFilter mbed
Fork of Kinematics by
main.cpp
- Committer:
- Ramonwaninge
- Date:
- 2018-10-31
- Revision:
- 13:f77c5f196161
- Parent:
- 12:8d3bc1fa2321
- Child:
- 14:e3fe54f0a4b4
File content as of revision 13:f77c5f196161:
//Libraries
#include "mbed.h"
#include <math.h>
#include <cmath>
#include "MODSERIAL.h"
#include "BiQuad.h"
#include <algorithm>
#define PI 3.14159265
MODSERIAL pc(USBTX, USBRX); // connecting to pc
// nog te verwijderen/ aan te passen, zijn dubbel gedefinieerd
double omega1;
double omega4;
//Joe dit zijn de inputsignalen (en tussenvariabelen)
//vorige theta
double theta1 = PI*0.49; // huidige/nieuwe theta
double theta4 = PI*0.49;
bool emg1;
bool emg2;
bool emg3;
double thetaflip = 0;
double prefx;
double prefy;
double deltat = 0.01; //tijdstap(moet nog aangepast worden)
//Joe dit zijn de constantes
double ll = 200.0;
double lu = 170.0;
double lb = 10.0;
double le = 79.0;
double xbase = 340;
//forward kinematics, Check mathematica! Omdat mbed in paniek raakt met meerdere wortels, hebben we de vergelijking opgedeeld in 3 stukken
//check void forward voor de berekeningen
//First define the position equation of x
double xendsum;
double xendsqrt1;
double xendsqrt2;
double xend;
double jacobiana;
double jacobianc;
//Now define the position equation of y
double yendsum;
double yendsqrt1;
double yendsqrt2;
double yend;
double jacobianb;
double jacobiand;
//Timers and Tickers
Ticker kin; //Timer for calculating x,y,theta1,theta4
Ticker simulateval; //Timer that prints the values for x,y, and angles
Ticker rekenen; //Not used right now
Ticker ReadUseEMG0_timer; //Timer to read, filter and use the EMG
Ticker EMGCalibration0_timer; //Timer for the calibration of the EMG
Ticker FindMax0_timer; //Timer for finding the max muscle
Ticker ReadUseEMG1_timer; //Timer to read, filter and use the EMG
Ticker EMGCalibration1_timer; //Timer for the calibration of the EMG
Ticker FindMax1_timer; //Timer for finding the max muscle
Ticker SwitchState_timer; //Timer to switch from the Calibration to the working mode
//dit wordt aangeroepen in de tickerfunctie
void inverse(double prex, double prey){
/*
qn = qn-1 + (jacobian^-1)*dPref/dt *deltaT
ofwel
thetai+1 = thetai +(jacobian)^-1*vector(deltaX, DeltaY)
waar Pref = emg signaal
*/ //achtergrondinfo hierboven...
//
theta1 += (prefx*jacobiana+jacobianb*prey)*deltat; //theta 1 is zichzelf plus wat hier staat (is kinematics)
theta4 += (prefx*jacobianc+jacobiand*prey)*deltat;//" "
//Hier worden xend en yend doorgerekend, die formules kan je overslaan
xendsum = lb + xbase +ll*(cos(theta1) - cos(theta4));
xendsqrt1 = 2*sqrt(-xbase*xbase/4 + lu*lu + ll*(xbase*(cos(theta1)+cos(theta4))/2) -ll*(1+ cos(theta1+theta4)))*(-sin(theta1)+sin(theta4));
xendsqrt2 = sqrt(pow((-xbase/ll+cos(theta1)+cos(theta4)),2)+ pow(sin(theta1) - sin(theta4),2));
xend = (xendsum + xendsqrt1/xendsqrt2)/2;
//hieronder rekenen we yendeffector door;
yendsum = -le + ll/2*(sin(theta1)+sin(theta4));
yendsqrt1 = (-xbase/ll + cos(theta1)+cos(theta4))*sqrt(-xbase*xbase/4 + lu*lu + ll/2*(xbase*(cos(theta1)+cos(theta4))- ll*(1+cos(theta1+theta4))));
yendsqrt2 = sqrt(pow((-xbase/ll + cos(theta1)+ cos(theta4)),2)+ pow((sin(theta1)-sin(theta4)),2));
yend = (yendsum + yendsqrt1/yendsqrt2);
}
//deze onderstaande tickerfunctie wordt aangeroepen
void kinematics()
{
//Hieronder rekenen we eerst de aparte dingen van de jacobiaan uit. (sla maar over)
jacobiana = (500*(-(ll*(sin(theta1) - sin(0.001 - theta4)))/2. - ((-(xbase/ll) + cos(theta1) + cos(0.001 - theta4))*
sqrt(pow(lu,2) - (pow(ll,2)*(pow(-(xbase/ll) + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2)))/4.))/
sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2)) +
((-xbase + ll*(cos(theta1) + cos(0.001 + theta4)))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(0.001 + theta4)) - ll*(1 + cos(0.001 + theta1 + theta4))))/2.))/
(ll*sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.001 + theta4),2) + pow(sin(theta1) - sin(0.001 + theta4),2))) + (ll*(sin(theta1) + sin(0.001 + theta4)))/2.))/
(250000*((lb + xbase + ll*(cos(0.001 + theta1) - cos(theta4)) + (2*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(0.001 + theta1) + cos(theta4)) - ll*(1 + cos(0.001 + theta1 + theta4))))/2.)*(-sin(0.001 + theta1) + sin(theta4)))/
sqrt(pow(-(xbase/ll) + cos(0.001 + theta1) + cos(theta4),2) + pow(sin(0.001 + theta1) - sin(theta4),2)))/2. +
(-lb - xbase - ll*(cos(0.001 - theta1) - cos(theta4)) - (2*(sin(0.001 - theta1) + sin(theta4))*
sqrt(pow(lu,2) - (pow(ll,2)*(pow(-(xbase/ll) + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2)))/4.))/
sqrt(pow(-(xbase/ll) + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2)))/2.)*
(-(ll*(sin(theta1) - sin(0.001 - theta4)))/2. - ((-(xbase/ll) + cos(theta1) + cos(0.001 - theta4))*
sqrt(pow(lu,2) - (pow(ll,2)*(pow(-(xbase/ll) + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2)))/4.))/
sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2)) +
((-xbase + ll*(cos(theta1) + cos(0.001 + theta4)))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(0.001 + theta4)) - ll*(1 + cos(0.001 + theta1 + theta4))))/2.))/
(ll*sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.001 + theta4),2) + pow(sin(theta1) - sin(0.001 + theta4),2))) + (ll*(sin(theta1) + sin(0.001 + theta4)))/2.) -
250000*(((-xbase + ll*(cos(0.001 + theta1) + cos(theta4)))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(0.001 + theta1) + cos(theta4)) - ll*(1 + cos(0.001 + theta1 + theta4))))/2.))/
(ll*sqrt(pow(-(xbase/ll) + cos(0.001 + theta1) + cos(theta4),2) + pow(sin(0.001 + theta1) - sin(theta4),2))) - (ll*(-sin(0.001 - theta1) + sin(theta4)))/2. + (ll*(sin(0.001 + theta1) + sin(theta4)))/2. -
((-xbase + ll*(cos(0.001 - theta1) + cos(theta4)))*sqrt(pow(lu,2) - (pow(ll,2)*(pow(-(xbase/ll) + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2)))/4.))/
(ll*sqrt(pow(-(xbase/ll) + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2))))*
((-lb - xbase - ll*(cos(theta1) - cos(0.001 - theta4)) + (2*(sin(theta1) + sin(0.001 - theta4))*
sqrt(pow(lu,2) - (pow(ll,2)*(pow(-(xbase/ll) + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2)))/4.))/
sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2)))/2. +
(lb + xbase + ll*(cos(theta1) - cos(0.001 + theta4)) + (2*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(0.001 + theta4)) - ll*(1 + cos(0.001 + theta1 + theta4))))/2.)*(-sin(theta1) + sin(0.001 + theta4)))/
sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.001 + theta4),2) + pow(sin(theta1) - sin(0.001 + theta4),2)))/2.));
jacobianb = (-500*((-lb - xbase - ll*(cos(theta1) - cos(0.001 - theta4)) + (2*(sin(theta1) + sin(0.001 - theta4))*
sqrt(pow(lu,2) - (pow(ll,2)*(pow(-(xbase/ll) + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2)))/4.))/
sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2)))/2. +
(lb + xbase + ll*(cos(theta1) - cos(0.001 + theta4)) + (2*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(0.001 + theta4)) - ll*(1 + cos(0.001 + theta1 + theta4))))/2.)*(-sin(theta1) + sin(0.001 + theta4)))/
sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.001 + theta4),2) + pow(sin(theta1) - sin(0.001 + theta4),2)))/2.))/
(250000*((lb + xbase + ll*(cos(0.001 + theta1) - cos(theta4)) + (2*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(0.001 + theta1) + cos(theta4)) - ll*(1 + cos(0.001 + theta1 + theta4))))/2.)*
(-sin(0.001 + theta1) + sin(theta4)))/sqrt(pow(-(xbase/ll) + cos(0.001 + theta1) + cos(theta4),2) + pow(sin(0.001 + theta1) - sin(theta4),2)))/2. +
(-lb - xbase - ll*(cos(0.001 - theta1) - cos(theta4)) - (2*(sin(0.001 - theta1) + sin(theta4))*
sqrt(pow(lu,2) - (pow(ll,2)*(pow(-(xbase/ll) + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2)))/4.))/
sqrt(pow(-(xbase/ll) + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2)))/2.)*
(-(ll*(sin(theta1) - sin(0.001 - theta4)))/2. - ((-(xbase/ll) + cos(theta1) + cos(0.001 - theta4))*
sqrt(pow(lu,2) - (pow(ll,2)*(pow(-(xbase/ll) + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2)))/4.))/
sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2)) +
((-xbase + ll*(cos(theta1) + cos(0.001 + theta4)))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(0.001 + theta4)) - ll*(1 + cos(0.001 + theta1 + theta4))))/2.))/
(ll*sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.001 + theta4),2) + pow(sin(theta1) - sin(0.001 + theta4),2))) + (ll*(sin(theta1) + sin(0.001 + theta4)))/2.) -
250000*(((-xbase + ll*(cos(0.001 + theta1) + cos(theta4)))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(0.001 + theta1) + cos(theta4)) - ll*(1 + cos(0.001 + theta1 + theta4))))/2.))/
(ll*sqrt(pow(-(xbase/ll) + cos(0.001 + theta1) + cos(theta4),2) + pow(sin(0.001 + theta1) - sin(theta4),2))) - (ll*(-sin(0.001 - theta1) + sin(theta4)))/2. + (ll*(sin(0.001 + theta1) + sin(theta4)))/2. -
((-xbase + ll*(cos(0.001 - theta1) + cos(theta4)))*sqrt(pow(lu,2) - (pow(ll,2)*(pow(-(xbase/ll) + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2)))/4.))/
(ll*sqrt(pow(-(xbase/ll) + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2))))*
((-lb - xbase - ll*(cos(theta1) - cos(0.001 - theta4)) + (2*(sin(theta1) + sin(0.001 - theta4))*
sqrt(pow(lu,2) - (pow(ll,2)*(pow(-(xbase/ll) + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2)))/4.))/
sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2)))/2. +
(lb + xbase + ll*(cos(theta1) - cos(0.001 + theta4)) + (2*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(0.001 + theta4)) - ll*(1 + cos(0.001 + theta1 + theta4))))/2.)*(-sin(theta1) + sin(0.001 + theta4)))/
sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.001 + theta4),2) + pow(sin(theta1) - sin(0.001 + theta4),2)))/2.));
jacobianc = (-500*(((-xbase + ll*(cos(0.001 + theta1) + cos(theta4)))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(0.001 + theta1) + cos(theta4)) - ll*(1 + cos(0.001 + theta1 + theta4))))/2.))/
(ll*sqrt(pow(-(xbase/ll) + cos(0.001 + theta1) + cos(theta4),2) + pow(sin(0.001 + theta1) - sin(theta4),2))) - (ll*(-sin(0.001 - theta1) + sin(theta4)))/2. + (ll*(sin(0.001 + theta1) + sin(theta4)))/2. -
((-xbase + ll*(cos(0.001 - theta1) + cos(theta4)))*sqrt(pow(lu,2) - (pow(ll,2)*(pow(-(xbase/ll) + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2)))/4.))/
(ll*sqrt(pow(-(xbase/ll) + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2)))))/
(250000*((lb + xbase + ll*(cos(0.001 + theta1) - cos(theta4)) + (2*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(0.001 + theta1) + cos(theta4)) - ll*(1 + cos(0.001 + theta1 + theta4))))/2.)*
(-sin(0.001 + theta1) + sin(theta4)))/sqrt(pow(-(xbase/ll) + cos(0.001 + theta1) + cos(theta4),2) + pow(sin(0.001 + theta1) - sin(theta4),2)))/2. +
(-lb - xbase - ll*(cos(0.001 - theta1) - cos(theta4)) - (2*(sin(0.001 - theta1) + sin(theta4))*
sqrt(pow(lu,2) - (pow(ll,2)*(pow(-(xbase/ll) + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2)))/4.))/
sqrt(pow(-(xbase/ll) + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2)))/2.)*
(-(ll*(sin(theta1) - sin(0.001 - theta4)))/2. - ((-(xbase/ll) + cos(theta1) + cos(0.001 - theta4))*
sqrt(pow(lu,2) - (pow(ll,2)*(pow(-(xbase/ll) + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2)))/4.))/
sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2)) +
((-xbase + ll*(cos(theta1) + cos(0.001 + theta4)))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(0.001 + theta4)) - ll*(1 + cos(0.001 + theta1 + theta4))))/2.))/
(ll*sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.001 + theta4),2) + pow(sin(theta1) - sin(0.001 + theta4),2))) + (ll*(sin(theta1) + sin(0.001 + theta4)))/2.) -
250000*(((-xbase + ll*(cos(0.001 + theta1) + cos(theta4)))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(0.001 + theta1) + cos(theta4)) - ll*(1 + cos(0.001 + theta1 + theta4))))/2.))/
(ll*sqrt(pow(-(xbase/ll) + cos(0.001 + theta1) + cos(theta4),2) + pow(sin(0.001 + theta1) - sin(theta4),2))) - (ll*(-sin(0.001 - theta1) + sin(theta4)))/2. + (ll*(sin(0.001 + theta1) + sin(theta4)))/2. -
((-xbase + ll*(cos(0.001 - theta1) + cos(theta4)))*sqrt(pow(lu,2) - (pow(ll,2)*(pow(-(xbase/ll) + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2)))/4.))/
(ll*sqrt(pow(-(xbase/ll) + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2))))*
((-lb - xbase - ll*(cos(theta1) - cos(0.001 - theta4)) + (2*(sin(theta1) + sin(0.001 - theta4))*
sqrt(pow(lu,2) - (pow(ll,2)*(pow(-(xbase/ll) + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2)))/4.))/
sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2)))/2. +
(lb + xbase + ll*(cos(theta1) - cos(0.001 + theta4)) + (2*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(0.001 + theta4)) - ll*(1 + cos(0.001 + theta1 + theta4))))/2.)*(-sin(theta1) + sin(0.001 + theta4)))/
sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.001 + theta4),2) + pow(sin(theta1) - sin(0.001 + theta4),2)))/2.));
jacobiand = (500*((lb + xbase + ll*(cos(0.001 + theta1) - cos(theta4)) + (2*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(0.001 + theta1) + cos(theta4)) - ll*(1 + cos(0.001 + theta1 + theta4))))/2.)*(-sin(0.001 + theta1) + sin(theta4)))/
sqrt(pow(-(xbase/ll) + cos(0.001 + theta1) + cos(theta4),2) + pow(sin(0.001 + theta1) - sin(theta4),2)))/2. +
(-lb - xbase - ll*(cos(0.001 - theta1) - cos(theta4)) - (2*(sin(0.001 - theta1) + sin(theta4))*
sqrt(pow(lu,2) - (pow(ll,2)*(pow(-(xbase/ll) + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2)))/4.))/
sqrt(pow(-(xbase/ll) + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2)))/2.))/
(250000*((lb + xbase + ll*(cos(0.001 + theta1) - cos(theta4)) + (2*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(0.001 + theta1) + cos(theta4)) - ll*(1 + cos(0.001 + theta1 + theta4))))/2.)*
(-sin(0.001 + theta1) + sin(theta4)))/sqrt(pow(-(xbase/ll) + cos(0.001 + theta1) + cos(theta4),2) + pow(sin(0.001 + theta1) - sin(theta4),2)))/2. +
(-lb - xbase - ll*(cos(0.001 - theta1) - cos(theta4)) - (2*(sin(0.001 - theta1) + sin(theta4))*
sqrt(pow(lu,2) - (pow(ll,2)*(pow(-(xbase/ll) + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2)))/4.))/
sqrt(pow(-(xbase/ll) + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2)))/2.)*
(-(ll*(sin(theta1) - sin(0.001 - theta4)))/2. - ((-(xbase/ll) + cos(theta1) + cos(0.001 - theta4))*
sqrt(pow(lu,2) - (pow(ll,2)*(pow(-(xbase/ll) + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2)))/4.))/
sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2)) +
((-xbase + ll*(cos(theta1) + cos(0.001 + theta4)))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(0.001 + theta4)) - ll*(1 + cos(0.001 + theta1 + theta4))))/2.))/
(ll*sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.001 + theta4),2) + pow(sin(theta1) - sin(0.001 + theta4),2))) + (ll*(sin(theta1) + sin(0.001 + theta4)))/2.) -
250000*(((-xbase + ll*(cos(0.001 + theta1) + cos(theta4)))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(0.001 + theta1) + cos(theta4)) - ll*(1 + cos(0.001 + theta1 + theta4))))/2.))/
(ll*sqrt(pow(-(xbase/ll) + cos(0.001 + theta1) + cos(theta4),2) + pow(sin(0.001 + theta1) - sin(theta4),2))) - (ll*(-sin(0.001 - theta1) + sin(theta4)))/2. + (ll*(sin(0.001 + theta1) + sin(theta4)))/2. -
((-xbase + ll*(cos(0.001 - theta1) + cos(theta4)))*sqrt(pow(lu,2) - (pow(ll,2)*(pow(-(xbase/ll) + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2)))/4.))/
(ll*sqrt(pow(-(xbase/ll) + cos(0.001 - theta1) + cos(theta4),2) + pow(sin(0.001 - theta1) + sin(theta4),2))))*
((-lb - xbase - ll*(cos(theta1) - cos(0.001 - theta4)) + (2*(sin(theta1) + sin(0.001 - theta4))*
sqrt(pow(lu,2) - (pow(ll,2)*(pow(-(xbase/ll) + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2)))/4.))/
sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.001 - theta4),2) + pow(sin(theta1) + sin(0.001 - theta4),2)))/2. +
(lb + xbase + ll*(cos(theta1) - cos(0.001 + theta4)) + (2*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(0.001 + theta4)) - ll*(1 + cos(0.001 + theta1 + theta4))))/2.)*(-sin(theta1) + sin(0.001 + theta4)))/
sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.001 + theta4),2) + pow(sin(theta1) - sin(0.001 + theta4),2)))/2.));
//vanaf hier weer door met lezen!
prefx = 1*(!button1); //sw3, dit is belangrijk! prefx staat voor P_(reference) en het is de snelheid van de endeffector als
// de button ingedrukt wordt (als emg = boven treshold) is de prefx 1 (da's de rode 1)
prefy = 1*(!button2); //sw2,
inverse(prefx, prefy);
}
/*In de nieuwe versie hieronder is forward overbodig geworden, sla maar over
Joe, hieronder staan de functies die door de tickers aangeroepen worden
void forward(){ dit is de ticker die zegt, als button=0, theta 1 wordt groter. dan worden x en y doorgerekend
hieronder moet veranderd worden naar if button1 == 0, x = x+eenbeetje
maar daar moet eerst inverse kinematics voor gebeuren.
if (button1 == 0){ als emg1==voorbij treshold, komt waarschijnlijk in de inverse functie
theta1 = PI*(theta1/PI + 0.1);
hij is geblokt omdat ik de knop nodig heb
default = als x = xbase/2... break, okee dit moet hier niet, maar weet niet waar wel...
}
else {theta1 = theta1;}
hieronder komen de doorrekeningen van de hoeken naar de coordinaten, check de mathematicafile voor de afleiding*/
/*void demomode(){} //Komt nog...
als emg2 == voorbij treshold,
double theta1 -> plus counts (emg*richting)
double theta4 -> plus counts (emg*richting)
reken y door
void flip(){
if(button2==0){thetaflip = PI*(thetaflip/PI+0.5);} // button2==0 moet veranderd naar emg3>= treshold
}suppressed omdat ik button 2 nodig heb...*/
// de beweging voor de xcoordinaat!
//tot aan hier overslaan
void printvalue(){
pc.printf("\n\r %f %f \n\r %f %f", theta4,theta1, xend, yend); // in teraterm zijn de bovenste twee waardes hoeken, de onderste twee zijn de x en y coordinaat
}
int main()
{
//Initial conditions
theta1 = PI*0.49;
theta4 = PI*0.49;
pc.baud(115200);
//default = theta1 = theta4 = pi/2,
kin.attach(kinematics, 0.01); // roep de ticker aan (
simulateval.attach(printvalue, 1);
greenled = 1; //First turn the LEDs off
blueled = 1;
redled = 1;
filter0.add(&Notch50_0).add(&High0); //Make filter chain for the first EMG
filter1.add(&Notch50_1).add(&High1); //Make filter chain for the second EMG
button.rise(StopProgram); //If the button is pressed, stop program
pc.printf("%f", theta1);
while(true) {
StateMachine(); //Start the state machine
}
}
