Dynamixel servo controller. This program consists of 2 parts: "dynamixel_servo_controller.cpp/.h" and "main.cpp"( demo program ).
Fork of dynamixel_servo_controller by
dynamixel_servo_controller.cpp
- Committer:
- PicYusuke
- Date:
- 2018-06-13
- Revision:
- 4:ce4fef97e7e5
- Parent:
- 3:51f72ee2d5c2
- Child:
- 5:4474c07c6274
File content as of revision 4:ce4fef97e7e5:
/* * Copyright (c) 2018 Yusuke Okino * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "dynamixel_servo_controller.h" #ifndef MBED_ENVIRONMENT #include <iostream> #include <cstdint> #endif /** * @brief Dynamixel サーボコントローラ protocol v2 * */ namespace dynamixel_servo_v2 { namespace { // チェックサム計算クラス( 今後実装 ) #if 0 class CRC16 { private: public: /** * @brief Construct a new CRC16 object * * @param polynomial */ CRC16(const uint16_t polynomial) { /******************** CRC16 用テーブル生成 *********************/ /**************************************************************/ } }; #endif }; #ifdef MBED_ENVIRONMENT /** * @brief UART 受信割り込み関数 * */ void XM430::UART_Rx_Callback() { } #endif /** * @brief Construct a new XM430 object * */ #ifdef MBED_ENVIRONMENT XM430::XM430(PinName tx_pin, PinName rx_pin) : uart(tx_pin, rx_pin) { uart.baud(57600); uart.format(8, Serial::None, 1); // UART受信割り込み uart.attach(callback(this, &XM430::UART_Rx_Callback), Serial::RxIrq); #else XM430::XM430(PinName tx_pin, PinName rx_pin) { #endif /******************** CRC16 用テーブル生成 *********************/ uint16_t temp = 0; for(uint32_t i = 0; i < 256; i ++) { temp = (uint16_t)(i << 8); for(uint32_t j = 0; j < 8; j ++) { // tempの最上位ビットが0: ビットシフト // tempの最上位ビットが1: ビットシフト+XOR if((temp & 0x8000) == 0) { temp = (temp << 1); } else { temp = (temp << 1) ^ CRC16_POLY; } } crc_tbl[i] = temp; } /**************************************************************/ #if 0 for(uint32_t i = 0; i < 256; i ++) { std::cout << std::hex << crc_tbl[i] << std::endl; } #endif // Header tx_buf[0] = 0xFF; tx_buf[1] = 0xFF; tx_buf[2] = 0xFD; // Reserved tx_buf[3] = 0x00; } /** * @brief チェックサム計算( crc16 ) * * @param crc_init_val crc 初期値 * @param data 検査対象のデータ列 * @param data_length * @return uint16_t チェックサム計算結果 */ uint16_t XM430::CRC16(const uint16_t crc_init_val, uint8_t *data, const uint32_t data_length) { uint32_t index; uint16_t temp = crc_init_val; for(uint32_t i = 0; i < data_length; i++) { index = ((uint16_t)(temp >> 8) ^ data[i]) & 0xFF; temp = (temp << 8) ^ crc_tbl[index]; } return temp; } /** * @brief パケット生成 * * @param servo_id * @param length * @param instruction * @param ctrl_reg control レジスタ * @param data 送信データ */ void XM430::Create_Packet(uint8_t servo_id, uint16_t length, const uint8_t instruction, const uint16_t ctrl_reg, uint8_t *data) { uint16_t checksum; // ID tx_buf[4] = servo_id; // Length tx_buf[5] = (uint8_t)(length & 0xFF); tx_buf[6] = (uint8_t)(length >> 8); // Instruction tx_buf[7] = instruction; // control register tx_buf[8] = (uint8_t)(ctrl_reg & 0xFF); tx_buf[9] = (uint8_t)(ctrl_reg >> 8); // Data for(uint32_t i = 0; i < ( length-5 ); i ++) { tx_buf[ i+10 ] = data[i]; } // Checksum checksum = CRC16(0, tx_buf, ( length+5 )); tx_buf[ length+5 ] = (uint8_t)(checksum & 0xFF); tx_buf[ length+6 ] = (uint8_t)(checksum >> 8); } /** * @brief シリアルバルク送信 * * @param buf 送信バッファ * @param buf_length バッファ長 * @return true 正常に通信が終了 * @return false 通信が不正に終了 */ bool XM430::Send_Bulk_Char(uint8_t *buf, const uint32_t buf_length) { for(uint32_t i = 0; i < buf_length; i ++) { #ifdef MBED_ENVIRONMENT // ユーザ処理 uart.putc(buf[i]); #else std::cout << std::hex << std::showbase << std::uppercase << (uint32_t)tx_buf[i] << std::endl; #endif } return true; } /** * @brief サーボのトルクをONにする * * @param id サーボID * @return true 通信が正常に終了 * @return false 通信が不正に終了 */ bool XM430::Torque_ON(uint8_t id) { uint16_t length = 6; uint8_t data[1]; // トルクON/OFF bool ret_val; data[0] = 1; // トルクON Create_Packet(id, length, WRITE, TORQUE_ENABLE, data); ret_val = Send_Bulk_Char(tx_buf, 13); return ret_val; } /** * @brief サーボのトルクをOFFにする * * @param id サーボID * @return true 通信が正常に終了 * @return false 通信が不正に終了 */ bool XM430::Torque_OFF(uint8_t id) { uint16_t length = 6; uint8_t data[1]; // トルクON/OFF bool ret_val; data[0] = 0; // トルクOFF Create_Packet(id, length, WRITE, TORQUE_ENABLE, data); ret_val = Send_Bulk_Char(tx_buf, 13); return ret_val; } /** * @brief サーボホーン位置を設定 * * @param id サーボID * @param pos 目標回転位置 * @return true 通信が正常に終了 * @return false 通信が不正に終了 */ bool XM430::Set_Pos(uint8_t id, uint32_t pos) { uint16_t length = 9; uint8_t data[4]; // 位置データ bool ret_val; // Data data[0] = (uint8_t)(pos & 0xFF); data[1] = (uint8_t)((pos >> 8) & 0xFF); data[2] = (uint8_t)((pos >> 16) & 0xFF); data[3] = (uint8_t)((pos >> 24) & 0xFF); Create_Packet(id, length, WRITE, GOAL_POSITION, data); ret_val = Send_Bulk_Char(tx_buf, 16); return ret_val; } };