Olaf Sikorski
/
motor-mining
This is probably never gonna get done
main.cpp
- Committer:
- tanyuzhuo
- Date:
- 2019-03-12
- Revision:
- 16:10d53b056b17
- Parent:
- 15:f43d1d4e4260
- Child:
- 17:ff5300ba5442
File content as of revision 16:10d53b056b17:
#include "mbed.h" #include "Crypto.h" //Photointerrupter input pins #define I1pin D3 #define I2pin D6 #define I3pin D5 //Incremental encoder input pins #define CHApin D12 #define CHBpin D11 //Motor Drive output pins //Mask in output byte #define L1Lpin D1 //0x01 #define L1Hpin A3 //0x02 #define L2Lpin D0 //0x04 #define L2Hpin A6 //0x08 #define L3Lpin D10 //0x10 #define L3Hpin D2 //0x20 #define PWMpin D9 //Motor current sense #define MCSPpin A1 #define MCSNpin A0 //Mapping from sequential drive states to motor phase outputs /* State L1 L2 L3 0 H - L 1 - H L 2 L H - 3 L - H 4 - L H 5 H L - 6 - - - 7 - - - */ //Drive state to output table const int8_t driveTable[] = {0x12,0x18,0x09,0x21,0x24,0x06,0x00,0x00}; //Mapping from interrupter inputs to sequential rotor states. 0x00 and 0x07 are not valid const int8_t stateMap[] = {0x07,0x05,0x03,0x04,0x01,0x00,0x02,0x07}; //const int8_t stateMap[] = {0x07,0x01,0x03,0x02,0x05,0x00,0x04,0x07}; //Alternative if phase order of input or drive is reversed //Phase lead to make motor spin const int8_t lead = 2; //2 for forwards, -2 for backwards //Status LED DigitalOut led1(LED1); //Photointerrupter inputs InterruptIn I1(I1pin); InterruptIn I2(I2pin); InterruptIn I3(I3pin); //Motor Drive outputs DigitalOut L1L(L1Lpin); DigitalOut L1H(L1Hpin); DigitalOut L2L(L2Lpin); DigitalOut L2H(L2Hpin); DigitalOut L3L(L3Lpin); DigitalOut L3H(L3Hpin); int8_t orState = 0; int8_t intState = 0; int8_t intStateOld = 0; typedef struct { uint64_t nonce; } mail_t; Mail<mail_t, 16> mail_box; Thread commandProcessorthread; Thread bitcointhread; RawSerial pc(SERIAL_TX, SERIAL_RX); Queue<void, 8> inCharQ; Mutex newKey_mutex; uint64_t newKey = 0; void putMessage(uint64_t *nonce){ mail_t *mail = mail_box.alloc(); mail->nonce = *nonce; mail_box.put(mail); } void serialISR() { uint8_t newChar = pc.getc(); inCharQ.put((void*) newChar); } void commandProcessor() { pc.attach(&serialISR); char command[18]; //char k; uint64_t receivedKey; uint8_t index = 0; while(1) { osEvent newEvent = inCharQ.get(); uint8_t newChar = (uint8_t) newEvent.value.p; command[index] = newChar; index++; if (newChar == '\r') { command[17] = '\0'; receivedKey = strtoull(command, NULL, 16); //receivedKey = 2147483648; //sscanf(command, "%d", &receivedKey); pc.printf("Received key: %016llx\n\r", receivedKey); memset(command, 0, sizeof(command)); newKey_mutex.lock(); newKey = receivedKey; newKey_mutex.unlock(); index = 0; } else { pc.printf("Current command: %s\n\r", command); } } } void bitcoin(){ while(1) { SHA256 sha; uint8_t sequence[] = {0x45,0x6D,0x62,0x65,0x64,0x64,0x65,0x64, 0x20,0x53,0x79,0x73,0x74,0x65,0x6D,0x73, 0x20,0x61,0x72,0x65,0x20,0x66,0x75,0x6E, 0x20,0x61,0x6E,0x64,0x20,0x64,0x6F,0x20, 0x61,0x77,0x65,0x73,0x6F,0x6D,0x65,0x20, 0x74,0x68,0x69,0x6E,0x67,0x73,0x21,0x20, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; uint64_t* key = (uint64_t*) ((int) sequence + 48); uint64_t* nonce = (uint64_t*) ((int) sequence + 56); uint8_t hash[32]; Timer t; t.start(); unsigned currentTime = 0; unsigned currentCount = 0; for (unsigned i = 0; i <= UINT_MAX; i++) { (*nonce)++; newKey_mutex.lock(); *key = newKey; newKey_mutex.unlock(); sha.computeHash(hash, sequence, 64); if (hash[0] == 0 && hash[1] == 0) { //putMessage(nonce); pc.printf("Successful nonce: %016x\n\r", *nonce); } if ((unsigned) t.read() == currentTime) { //pc.printf("Hash rate: %d\n\r", i - currentCount); pc.printf("Current key: %016llx\n\r", *key); currentTime++; currentCount = i; } } t.stop(); } } //Set a given drive state void motorOut(int8_t driveState){ //Lookup the output byte from the drive state. int8_t driveOut = driveTable[driveState & 0x07]; //Turn off first if (~driveOut & 0x01) L1L = 0; if (~driveOut & 0x02) L1H = 1; if (~driveOut & 0x04) L2L = 0; if (~driveOut & 0x08) L2H = 1; if (~driveOut & 0x10) L3L = 0; if (~driveOut & 0x20) L3H = 1; //Then turn on if (driveOut & 0x01) L1L = 1; if (driveOut & 0x02) L1H = 0; if (driveOut & 0x04) L2L = 1; if (driveOut & 0x08) L2H = 0; if (driveOut & 0x10) L3L = 1; if (driveOut & 0x20) L3H = 0; } //Convert photointerrupter inputs to a rotor state inline int8_t readRotorState(){ return stateMap[I1 + 2*I2 + 4*I3]; } int8_t motorHome() { motorOut(0); wait(2.0); return readRotorState(); } void push() { intState = readRotorState(); if (intState != intStateOld) { intStateOld = intState; motorOut((intState - orState + lead +6) % 6); //+6 to make sure the remainder is positive } } int main() { //Serial pc(SERIAL_TX, SERIAL_RX); bitcointhread.set_priority(osPriorityNormal); commandProcessorthread.set_priority(osPriorityHigh); commandProcessorthread.start(commandProcessor); bitcointhread.start(bitcoin); pc.printf("Hello Pete\n\r"); orState = motorHome(); pc.printf("Rotor origin: %x\n\r", orState); I1.rise(&push); I2.rise(&push); I3.rise(&push); I1.fall(&push); I2.fall(&push); I3.fall(&push); }