Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of mbed_amf_controlsystem by
main.cpp
- Committer:
- mborchers
- Date:
- 2016-02-03
- Revision:
- 0:8a6003b8bb5b
- Child:
- 1:7eddde9fba60
File content as of revision 0:8a6003b8bb5b:
#include <mbed.h> #include "rtos.h" #include "Periphery/SupportSystem.h" #include "Misc/SystemTimer.h" #include "Threads/MachineDirectionControl.h" #define PI 3.14159265 Serial serialMinnow(p13, p14); PwmOut drivePWM(p22); PwmOut steerPWM(p21); I2C i2c(p9, p10); DigitalOut heartbeatLED(LED1); DigitalOut buttonLED(LED2); DigitalOut redlightLED(LED3); DigitalIn buttonOne(p25); DigitalIn buttonTwo(p26); DigitalIn buttonThree(p29); DigitalIn buttonFour(p30); IMU_RegisterDataBuffer_t *IMU_registerDataBuffer; RadioDecoder_RegisterDataBuffer_t *RadioDecoder_registerDataBuffer; uint32_t pulse_duration_drive_pwm_current, pulse_duration_drive_pwm_last; // Queues von der Bahnplanung Queue<float, 2> quadrature_queue; Queue<float, 2> machine_direction_queue; float steering_angle_minnow_queue; float velocity_minnow_queue; // Queues von dem Maussensor Queue<float, 2> imu_queue_velocity; Queue<float, 2> imu_queue_steering_angle; float steering_angle_imu_queue; float velocity_imu_queue; // Variablen von der Trajektorienplanung float velocity_set = 0, steering_angle_set = 0; // Variablen für die Längsregelung float velocity_current = 0, velocity_last = 0; // Variablen für die Querregelung float steering_angle_current = 0, steering_angle_last = 0; uint8_t timer_steering_angle_sampling_time = 0.01; float q_Kp = 8.166343211; float q_Ki = 18.6661236; float feed_forward_control_factor = 13.37091452; float q_esum = 0; float feed_forward = 0; float q_Ki_sampling_time = q_Ki * timer_steering_angle_sampling_time; float q_PI_controller, q_PWM, q_e, q_output; // Variablen für die Querregelung Ende void serial_thread(void const *args) { while (true) { Thread::wait(100); } } void machine_direction_control(void const *args) { osEvent velocity_set_event = machine_direction_queue.get(0); if (velocity_set_event.status == osEventMessage) { velocity_set = *(float*)velocity_set_event.value.p; } osEvent velocity_current_event = imu_queue_velocity.get(0); if (velocity_current_event.status == osEventMessage) { velocity_current = *(float *)velocity_current_event.value.p; } drivePWM.pulsewidth_us(1800); } void quadrature_control(void const *args) { osEvent steering_angle_set_event = quadrature_queue.get(0); if (steering_angle_set_event.status == osEventMessage) { steering_angle_set = *(float *)steering_angle_set_event.value.p; } osEvent steering_angle_current_event = imu_queue_steering_angle.get(0); if (steering_angle_current_event.status == osEventMessage) { steering_angle_current = *(float *)steering_angle_current_event.value.p; } q_e = steering_angle_set - steering_angle_current; q_esum = q_esum + q_e; feed_forward = steering_angle_set * feed_forward_control_factor; q_PI_controller = q_Kp*q_e + q_Ki_sampling_time * q_esum; q_output = feed_forward + q_PI_controller; if(q_output > 500){q_output = 500;} // evtl Begrenzung schon auf z.b. 300/ -300 stellen (wegen Linearität) if(q_output < -500){q_output = - 500;} q_PWM = 1500 + q_output; steerPWM.pulsewidth_us(q_PWM); } int main() { serialMinnow.baud(115200); drivePWM.period_ms(20); steerPWM.period_ms(20); SystemTimer *millis = new SystemTimer(); SupportSystem *supportSystem = new SupportSystem(0x80, &i2c); Thread machineDirectionControl(test_thread); RtosTimer machine_direction_control_timer(machine_direction_control); RtosTimer quadrature_control_timer(quadrature_control); // Konfiguration AMF-IMU // [0]: Conversation Factor // [1]: Sensor Position X // [2]: Sensor Position Y // [3]: Sensor Position Angle float configData[4] = {0.002751114f, 167.0f, 0.0f, 269.0f}; supportSystem->writeData(SUPPORT_SYSTEM_REGISTER_ADDRESS_IMU_CONVERSION_FACTOR, configData, sizeof(float)*4); // Flag setzen uint8_t command = 1<<3; supportSystem->writeData(SUPPORT_SYSTEM_REGISTER_ADDRESS_IMU_COMMAND, &command, sizeof(uint8_t)); bool timer_started = false; wait(0.1); velocity_minnow_queue = 12.0; quadrature_queue.put(&velocity_minnow_queue); while(true) { IMU_registerDataBuffer = supportSystem->getImuRegisterDataBuffer(); RadioDecoder_registerDataBuffer = supportSystem->getRadioDecoderRegisterDataBuffer(); for(uint8_t i=0; i<3; i++) { serialMinnow.printf("RadioDecoder - Ch[%d] Valid: %d\r\n",i,RadioDecoder_registerDataBuffer->channelValid[i]); serialMinnow.printf("RadioDecoder - Ch[%d] ActiveTime: %d\r\n",i,RadioDecoder_registerDataBuffer->channelActiveTime[i]); serialMinnow.printf("RadioDecoder - Ch[%d] Percentage: %d\r\n",i,RadioDecoder_registerDataBuffer->channelPercent[i]); } uint16_t rc_percentage = RadioDecoder_registerDataBuffer->channelActiveTime[0]; uint8_t rc_valid = RadioDecoder_registerDataBuffer->channelValid[0]; uint16_t drive_percentage = RadioDecoder_registerDataBuffer->channelActiveTime[1]; uint8_t drive_valid = RadioDecoder_registerDataBuffer->channelValid[1]; uint16_t steer_percentage = RadioDecoder_registerDataBuffer->channelActiveTime[2]; uint8_t steer_valid = RadioDecoder_registerDataBuffer->channelValid[2]; if (rc_percentage > (uint16_t) 1800 && rc_valid != 0) { // oben => Wettbewerb heartbeatLED = true; buttonLED = false; redlightLED = false; supportSystem->setLightManagerRemoteLight(false, true); if (!timer_started) { timer_started = true; machine_direction_control_timer.start(10); quadrature_control_timer.start(10); } } else if (rc_percentage > (uint16_t) 1200 && rc_valid != 0) { // unten => RC-Wettbewerb heartbeatLED = false; buttonLED = false; redlightLED = true; supportSystem->setLightManagerRemoteLight(true, true); if (drive_valid) { drivePWM.pulsewidth_us(drive_percentage); } if (steer_valid) { steerPWM.pulsewidth_us(steer_percentage); } if (timer_started) { timer_started = false; machine_direction_control_timer.stop(); quadrature_control_timer.stop(); } } else if (rc_percentage > (uint16_t) 800 && rc_valid != 0) { // mitte => RC-Training heartbeatLED = false; buttonLED = true; redlightLED = false; supportSystem->setLightManagerRemoteLight(true, true); if (drive_valid) { drivePWM.pulsewidth_us(drive_percentage); } if (steer_valid) { steerPWM.pulsewidth_us(steer_percentage); } if (timer_started) { timer_started = false; machine_direction_control_timer.stop(); quadrature_control_timer.stop(); } } velocity_imu_queue = IMU_registerDataBuffer->velocityXFilteredRegister; imu_queue_velocity.put(&velocity_imu_queue); float radius = IMU_registerDataBuffer->velocityXFilteredRegister/IMU_registerDataBuffer->velocityAngularFilteredRegister; steering_angle_imu_queue = atan(0.205/radius)*180/PI; imu_queue_steering_angle.put(&steering_angle_imu_queue); serialMinnow.printf("%f\r\n\r\n", IMU_registerDataBuffer->sensorPositionAngleRegister); Thread::wait(50); } }