The Accelerometer and Slope program
Dependencies: MMA8452 PowerControl mbed
N5110.cpp
- Committer:
- NicolasXu
- Date:
- 2015-05-11
- Revision:
- 0:7f98d386be37
File content as of revision 0:7f98d386be37:
/** @file N5110.cpp @brief Member functions implementations @brief The fundamental code of a Accelerometer and SpiritLevel @brief SpiritLevel 1.0 @author Bo Xu @date May 2015 */ #include "mbed.h" #include "N5110.h" #include "MMA8452.h" #include "PowerControl/PowerControl.h" #include "PowerControl/EthernetPowerControl.h" #define USR_POWERDOWN (0x104) /** @namespace button @brief AnalogIn for application button */ InterruptIn button(p16); #define accelerator 0 #define slope 1 int function = accelerator; /** namespace led @brief Pwmout for SpiritLevel LED */ PwmOut led(p24); N5110::N5110(PinName pwrPin, PinName scePin, PinName rstPin, PinName dcPin, PinName mosiPin, PinName sclkPin, PinName ledPin) { spi = new SPI(mosiPin,NC,sclkPin); // create new SPI instance and initialise initSPI(); // set up pins as required led = new PwmOut(ledPin); pwr = new DigitalOut(pwrPin); sce = new DigitalOut(scePin); rst = new DigitalOut(rstPin); dc = new DigitalOut(dcPin); } /** initialize the N5110 and declare the pins it connected to the microcontroller */ N5110 lcd(p7, p8, p9, p10, p11, p13, p26); /** initialize the MMA8452 sensor and declare the pins it connected to the microcontroller */ MMA8452 mma8452(p28, p27); Serial serial (USBTX, USBRX); int semihost_powerdown() { uint32_t arg; return __semihost(USR_POWERDOWN, &arg); } // initialise function - powers up and sends the initialisation commands void N5110::init() { turnOn(); // power up wait_ms(10); // small delay seems to prevent spurious pixels during mbed reset reset(); // reset LCD - must be done within 100 ms // function set - extended sendCommand(0x20 | CMD_FS_ACTIVE_MODE | CMD_FS_HORIZONTAL_MODE | CMD_FS_EXTENDED_MODE); // Don't completely understand these parameters - they seem to work as they are // Consult the datasheet if you need to change them sendCommand(CMD_VOP_7V38); // operating voltage - these values are from Chris Yan's Library sendCommand(CMD_TC_TEMP_2); // temperature control sendCommand(CMD_BI_MUX_48); // bias // function set - basic sendCommand(0x20 | CMD_FS_ACTIVE_MODE | CMD_FS_HORIZONTAL_MODE | CMD_FS_BASIC_MODE); normalMode(); // normal video mode by default sendCommand(CMD_DC_NORMAL_MODE); // black on white // RAM is undefined at power-up so clear clearRAM(); } // sets normal video mode (black on white) void N5110::normalMode() { sendCommand(CMD_DC_NORMAL_MODE); } // sets normal video mode (white on black) void N5110::inverseMode() { sendCommand(CMD_DC_INVERT_VIDEO); } /** function for the function button */ void buttonPressed(){ function = !function; } // function to power up the LCD and backlight void N5110::turnOn() { // set brightness of LED - 0.0 to 1.0 - default is 50% setBrightness( 0.2); pwr->write(1); // apply power } // function to power down LCD void N5110::turnOff() { setBrightness(0.0); // turn backlight off clearRAM(); // clear RAM to ensure specified current consumption // send command to ensure we are in basic mode sendCommand(0x20 | CMD_FS_ACTIVE_MODE | CMD_FS_HORIZONTAL_MODE | CMD_FS_BASIC_MODE); // clear the display sendCommand(CMD_DC_CLEAR_DISPLAY); // enter the extended mode and power down sendCommand(0x20 | CMD_FS_POWER_DOWN_MODE | CMD_FS_HORIZONTAL_MODE | CMD_FS_EXTENDED_MODE); // small delay and then turn off the power pin wait_ms(10); pwr->write(0); } // function to change LED backlight brightness void N5110::setBrightness(float brightness) { // check whether brightness is within range if (brightness < 0.0) brightness = 0.0; if (brightness > 1.0) brightness = 1.0; // set PWM duty cycle led->write(brightness); } // pulse the active low reset line void N5110::reset() { rst->write(0); // reset the LCD rst->write(1); } // function to initialise SPI peripheral void N5110::initSPI() { spi->format(8,1); // 8 bits, Mode 1 - polarity 0, phase 1 - base value of clock is 0, data captured on falling edge/propagated on rising edge spi->frequency(4000000); // maximum of screen is 4 MHz } // send a command to the display void N5110::sendCommand(unsigned char command) { dc->write(0); // set DC low for command sce->write(0); // set CE low to begin frame spi->write(command); // send command dc->write(1); // turn back to data by default sce->write(1); // set CE high to end frame (expected for transmission of single byte) } // send data to the display at the current XY address // dc is set to 1 (i.e. data) after sending a command and so should // be the default mode. void N5110::sendData(unsigned char data) { sce->write(0); // set CE low to begin frame spi->write(data); sce->write(1); // set CE high to end frame (expected for transmission of single byte) } // this function writes 0 to the 504 bytes to clear the RAM void N5110::clearRAM() { int i; sce->write(0); //set CE low to begin frame for(i = 0; i < WIDTH * HEIGHT; i++) { // 48 x 84 bits = 504 bytes spi->write(0x00); // send 0's } sce->write(1); // set CE high to end frame } // function to set the XY address in RAM for subsequenct data write void N5110::setXYAddress(int x, int y) { if (x>=0 && x<WIDTH && y>=0 && y<HEIGHT) { // check within range sendCommand(0x80 | x); // send addresses to display with relevant mask sendCommand(0x40 | y); } } // These functions are used to set, clear and get the value of pixels in the display // Pixels are addressed in the range of 0 to 47 (y) and 0 to 83 (x). The refresh() // function must be called after set and clear in order to update the display void N5110::setPixel(int x, int y) { if (x>=0 && x<WIDTH && y>=0 && y<HEIGHT) { // check within range // calculate bank and shift 1 to required position in the data byte buffer[x][y/8] |= (1 << y%8); } } void N5110::clearPixel(int x, int y) { if (x>=0 && x<WIDTH && y>=0 && y<HEIGHT) { // check within range // calculate bank and shift 1 to required position (using bit clear) buffer[x][y/8] &= ~(1 << y%8); } } int N5110::getPixel(int x, int y) { if (x>=0 && x<WIDTH && y>=0 && y<HEIGHT) { // check within range // return relevant bank and mask required bit return (int) buffer[x][y/8] & (1 << y%8); // note this does not necessarily return 1 - a non-zero number represents a pixel } else { return 0; } } // function to refresh the display void N5110::refresh() { int i,j; setXYAddress(0,0); // important to set address back to 0,0 before refreshing display // address auto increments after printing string, so buffer[0][0] will not coincide // with top-left pixel after priting string sce->write(0); //set CE low to begin frame for(j = 0; j < BANKS; j++) { // be careful to use correct order (j,i) for horizontal addressing for(i = 0; i < WIDTH; i++) { spi->write(buffer[i][j]); // send buffer } } sce->write(1); // set CE high to end frame } // fills the buffer with random bytes. Can be used to test the display. // The rand() function isn't seeded so it probably creates the same pattern everytime void N5110::randomiseBuffer() { int i,j; for(j = 0; j < BANKS; j++) { // be careful to use correct order (j,i) for horizontal addressing for(i = 0; i < WIDTH; i++) { buffer[i][j] = rand()%256; // generate random byte } } } // function to print 5x7 font void N5110::printChar(char c,int x,int y) { if (y>=0 && y<BANKS) { // check if printing in range of y banks for (int i = 0; i < 5 ; i++ ) { int pixel_x = x+i; if (pixel_x > WIDTH-1) // ensure pixel isn't outside the buffer size (0 - 83) break; buffer[pixel_x][y] = font5x7[(c - 32)*5 + i]; // array is offset by 32 relative to ASCII, each character is 5 pixels wide } refresh(); // this sends the buffer to the display and sets address (cursor) back to 0,0 } } // function to print string at specified position void N5110::printString(const char * str,int x,int y) { if (y>=0 && y<BANKS) { // check if printing in range of y banks int n = 0 ; // counter for number of characters in string // loop through string and print character while(*str) { // writes the character bitmap data to the buffer, so that // text and pixels can be displayed at the same time for (int i = 0; i < 5 ; i++ ) { int pixel_x = x+i+n*6; if (pixel_x > WIDTH-1) // ensure pixel isn't outside the buffer size (0 - 83) break; buffer[pixel_x][y] = font5x7[(*str - 32)*5 + i]; } str++; // go to next character in string n++; // increment index } refresh(); // this sends the buffer to the display and sets address (cursor) back to 0,0 } } // function to clear the screen void N5110::clear() { clearBuffer(); // clear the buffer then call the refresh function refresh(); } // function to clear the buffer void N5110::clearBuffer() { int i,j; for (i=0; i<WIDTH; i++) { // loop through the banks and set the buffer to 0 for (j=0; j<BANKS; j++) { buffer[i][j]=0; } } } // function to plot array on display void N5110::plotArray(float array[]) { int i; for (i=0; i<WIDTH; i++) { // loop through array // elements are normalised from 0.0 to 1.0, so multiply // by 47 to convert to pixel range, and subtract from 47 // since top-left is 0,0 in the display geometry setPixel(i,47 - int(array[i]*47.0)); } refresh(); } // function to draw circle void N5110:: drawCircle(int x0,int y0,int radius,int fill) { // from http://en.wikipedia.org/wiki/Midpoint_circle_algorithm int x = radius; int y = 0; int radiusError = 1-x; while(x >= y) { // if transparent, just draw outline if (fill == 0) { setPixel( x + x0, y + y0); setPixel(-x + x0, y + y0); setPixel( y + x0, x + y0); setPixel(-y + x0, x + y0); setPixel(-y + x0, -x + y0); setPixel( y + x0, -x + y0); setPixel( x + x0, -y + y0); setPixel(-x + x0, -y + y0); } else { // drawing filled circle, so draw lines between points at same y value int type = (fill==1) ? 1:0; // black or white fill drawLine(x+x0,y+y0,-x+x0,y+y0,type); drawLine(y+x0,x+y0,-y+x0,x+y0,type); drawLine(y+x0,-x+y0,-y+x0,-x+y0,type); drawLine(x+x0,-y+y0,-x+x0,-y+y0,type); } y++; if (radiusError<0) { radiusError += 2 * y + 1; } else { x--; radiusError += 2 * (y - x) + 1; } } } void N5110::drawLine(int x0,int y0,int x1,int y1,int type) { int y_range = y1-y0; // calc range of y and x int x_range = x1-x0; int start,stop,step; // if dotted line, set step to 2, else step is 1 step = (type==2) ? 2:1; // make sure we loop over the largest range to get the most pixels on the display // for instance, if drawing a vertical line (x_range = 0), we need to loop down the y pixels // or else we'll only end up with 1 pixel in the x column if ( abs(x_range) > abs(y_range) ) { // ensure we loop from smallest to largest or else for-loop won't run as expected start = x1>x0 ? x0:x1; stop = x1>x0 ? x1:x0; // loop between x pixels for (int x = start; x<= stop ; x+=step) { // do linear interpolation int y = y0 + (y1-y0)*(x-x0)/(x1-x0); if (type == 0) // if 'white' line, turn off pixel clearPixel(x,y); else setPixel(x,y); // else if 'black' or 'dotted' turn on pixel } } else { // ensure we loop from smallest to largest or else for-loop won't run as expected start = y1>y0 ? y0:y1; stop = y1>y0 ? y1:y0; for (int y = start; y<= stop ; y+=step) { // do linear interpolation int x = x0 + (x1-x0)*(y-y0)/(y1-y0); if (type == 0) // if 'white' line, turn off pixel clearPixel(x,y); else setPixel(x,y); // else if 'black' or 'dotted' turn on pixel } } } void N5110::drawRect(int x0,int y0,int width,int height,int fill) { if (fill == 0) { // transparent, just outline drawLine(x0,y0,x0+width,y0,1); // top drawLine(x0,y0+height,x0+width,y0+height,1); // bottom drawLine(x0,y0,x0,y0+height,1); // left drawLine(x0+width,y0,x0+width,y0+height,1); // right } else { // filled rectangle int type = (fill==1) ? 1:0; // black or white fill for (int y = y0; y<= y0+height; y++) { // loop through rows of rectangle drawLine(x0,y,x0+width,y,type); // draw line across screen } } } int main(){ /** Power down the Ethernet in order to save power */ semihost_powerdown(); PHY_PowerDown(); /** initialize the LCD display and MMA8452 sensor */ lcd.init(); mma8452.init(); Acceleration acceleration; wait(.001); button.rise(&buttonPressed); while (1){ /** Read values from the MMA8452 sensor */ acceleration = mma8452.readValues(); /** state two different applications of the device function=0 - Accelerometer function=1 - Slope */ switch(function){ case accelerator: /** the algorithm of the acceleration */ char buffer[14]; int length = sprintf(buffer,"Acceleration"); char buffer2[14]; length = sprintf(buffer2,"x = %.2f g", acceleration.x); char buffer3[14]; length = sprintf(buffer3,"y = %.2f g", acceleration.y); char buffer4[14]; length = sprintf(buffer4,"z = %.2f g", acceleration.z); /** draw a rectangle and print the acceleration */ lcd.drawRect(0,0,83,47,0); lcd.printString(buffer,4,1); lcd.printString(buffer2,4,2); lcd.printString(buffer3,4,3); lcd.printString(buffer4,4,4); wait(0.1); lcd.clear(); break; case slope: /** algorithm to calculate the angle */ char buffer5[14]; length = sprintf(buffer5, "Slope"); char buffer6[14]; length = sprintf(buffer6, "x =%.2f pi", asin(acceleration.x)/3.1415926); char buffer7[14]; length = sprintf(buffer7, "y =%.2f pi", asin(acceleration.y)/3.1415926); /** draw rectangle and print the data */ lcd.drawRect(0,0,83,47,0); lcd.printString(buffer5,3,1); lcd.printString(buffer6,3,2); lcd.printString(buffer7,3,3); wait(0.1); lcd.clear(); /** determine if the device is perfect level when the acceleration on z-axis is greater than 0.95 the LED will be turned on */ if (acceleration.z > 0.95){ led.write(1); }else led.write(0); break; } } }