Filter for EMG signals The signal will be filtered using a notch, highpass and lowpass filter. The filtered signal will be compared to a preset threshold and according to the strength of the signal the program will perform an action. In this case it will assign a colour to a led.

Dependencies:   HIDScope MODSERIAL mbed

Fork of EMGfilter24 by Steven Spoolder

BiQuad.cpp

Committer:
Iknowright
Date:
2016-10-24
Revision:
0:41226c0fd285

File content as of revision 0:41226c0fd285:

#include "BiQuad.h"
#include <stdlib.h>
#include <stddef.h>

BiQuad::BiQuad() {
    resetStateOnGainChange = true;
    set( 1.0, 0.0, 0.0, 0.0, 0.0 );
}

BiQuad::BiQuad(double b0, double b1, double b2, double a1, double a2) {
    resetStateOnGainChange = true;
    set( b0, b1, b2, a1, a2 );
}

BiQuad::BiQuad(double b0, double b1, double b2, double a0, double a1, double a2) {
    resetStateOnGainChange = true;
    set( b0/a0, b1/a0, b2/a0, a1/a0, a2/a0 );
}

void BiQuad::PIDF( double Kp, double Ki, double Kd, double N, double Ts  ) {

    double b0, b1, b2, bd, a1, a2;

    a1 = -4.0/(N*Ts+2.0);
    a2 = -(N*Ts-2.0)/(N*Ts+2.0);

    bd = ( N*Ts+2.0 );

    b0 = ( 4.0*Kp + 4.0*Kd*N + 2.0*Ki*Ts + 2.0*Kp*N*Ts + Ki*N*Ts*Ts )/(2.0*bd);
    b1 = ( Ki*N*Ts*Ts - 4.0*Kp - 4.0*Kd*N )/bd;
    b2 = ( 4.0*Kp + 4.0*Kd*N - 2*Ki*Ts - 2*Kp*N*Ts + Ki*N*Ts*Ts )/(2.0*bd);

    set( b0, b1, b2, a1, a2 );

};

void BiQuad::set(double b0, double b1, double b2, double a1, double a2) {

    B[0] = b0; B[1] = b1; B[2] = b2;
    A[0] = a1; A[1] = a2;

    if( resetStateOnGainChange )
        wz[0] = 0; wz[1] = 0;

}

double BiQuad::step(double x) {

    double y,w;

    /* Direct form II */
    w =      x - A[0]*wz[0] - A[1]*wz[1];
    y = B[0]*w + B[1]*wz[0] + B[2]*wz[1];

    /* Shift */
    wz[1] = wz[0];
    wz[0] = w;

    return y;

}

std::vector< std::complex<double> > BiQuad::poles() {

    std::vector< std::complex<double> > poles;

    std::complex<double> b2(A[0]*A[0],0);
    std::complex<double> ds = std::sqrt( b2-4*A[1] );

    poles.push_back( 0.5*(-A[0]+ds) );
    poles.push_back( 0.5*(-A[0]-ds) );

    return poles;

}

std::vector< std::complex<double> > BiQuad::zeros() {

    std::vector< std::complex<double> > zeros;

    std::complex<double> b2(B[1]*B[1],0);
    std::complex<double> ds = std::sqrt( b2-4*B[0]*B[2] );

    zeros.push_back( 0.5*(-B[1]+ds)/B[0] );
    zeros.push_back( 0.5*(-B[1]-ds)/B[0] );

    return zeros;

}

bool BiQuad::stable() {
    bool stable = true;
    std::vector< std::complex<double> > ps = poles();
    for( size_t i = 0; i < ps.size(); i++ )
        stable = stable & ( std::abs( ps[i] ) < 1 );
    return stable;
}

void BiQuad::setResetStateOnGainChange( bool v ){
    resetStateOnGainChange = v;
}

BiQuadChain &BiQuadChain::add(BiQuad *bq) {
    biquads.push_back( bq );
    return *this;
}

double BiQuadChain::step(double x) {

    int i;
    size_t bqs;

    bqs = biquads.size();

    for( i = 0; i < bqs; i++ )
        x = biquads[i]->step( x );

    return x;
}

std::vector< std::complex<double> > BiQuadChain::poles_zeros( bool zeros ) {

    std::vector< std::complex<double> > chain, bq;
    int i;
    size_t bqs;

    bqs = biquads.size();

    for( i = 0; i < bqs; i++ ){
        bq = ( zeros ) ? biquads[ i ]->zeros() : biquads[ i ]->poles();
        chain.insert( chain.end(), bq.begin(), bq.end() );
    }

    return chain;

}

std::vector< std::complex<double> > BiQuadChain::poles() {
    return poles_zeros( false );
}

std::vector< std::complex<double> > BiQuadChain::zeros() {
    return poles_zeros( true );
}

bool BiQuadChain::stable() {
    bool stable = true;
    for( size_t i = 0; i < biquads.size(); i++ )
        stable = stable & biquads[i]->stable();
    return stable;
}