inport from local

Dependents:   Hobbyking_Cheetah_0511

Committer:
NYX
Date:
Mon Mar 16 06:35:48 2020 +0000
Revision:
0:85b3fd62ea1a
reinport to mbed;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
NYX 0:85b3fd62ea1a 1 /* mbed Microcontroller Library
NYX 0:85b3fd62ea1a 2 *******************************************************************************
NYX 0:85b3fd62ea1a 3 * Copyright (c) 2015, STMicroelectronics
NYX 0:85b3fd62ea1a 4 * All rights reserved.
NYX 0:85b3fd62ea1a 5 *
NYX 0:85b3fd62ea1a 6 * Redistribution and use in source and binary forms, with or without
NYX 0:85b3fd62ea1a 7 * modification, are permitted provided that the following conditions are met:
NYX 0:85b3fd62ea1a 8 *
NYX 0:85b3fd62ea1a 9 * 1. Redistributions of source code must retain the above copyright notice,
NYX 0:85b3fd62ea1a 10 * this list of conditions and the following disclaimer.
NYX 0:85b3fd62ea1a 11 * 2. Redistributions in binary form must reproduce the above copyright notice,
NYX 0:85b3fd62ea1a 12 * this list of conditions and the following disclaimer in the documentation
NYX 0:85b3fd62ea1a 13 * and/or other materials provided with the distribution.
NYX 0:85b3fd62ea1a 14 * 3. Neither the name of STMicroelectronics nor the names of its contributors
NYX 0:85b3fd62ea1a 15 * may be used to endorse or promote products derived from this software
NYX 0:85b3fd62ea1a 16 * without specific prior written permission.
NYX 0:85b3fd62ea1a 17 *
NYX 0:85b3fd62ea1a 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
NYX 0:85b3fd62ea1a 19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
NYX 0:85b3fd62ea1a 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
NYX 0:85b3fd62ea1a 21 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
NYX 0:85b3fd62ea1a 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
NYX 0:85b3fd62ea1a 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
NYX 0:85b3fd62ea1a 24 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
NYX 0:85b3fd62ea1a 25 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
NYX 0:85b3fd62ea1a 26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
NYX 0:85b3fd62ea1a 27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
NYX 0:85b3fd62ea1a 28 *******************************************************************************
NYX 0:85b3fd62ea1a 29 */
NYX 0:85b3fd62ea1a 30 #include "mbed_assert.h"
NYX 0:85b3fd62ea1a 31 #include "mbed_error.h"
NYX 0:85b3fd62ea1a 32 #include "spi_api.h"
NYX 0:85b3fd62ea1a 33
NYX 0:85b3fd62ea1a 34 #if DEVICE_SPI
NYX 0:85b3fd62ea1a 35 #include <stdbool.h>
NYX 0:85b3fd62ea1a 36 #include <math.h>
NYX 0:85b3fd62ea1a 37 #include <string.h>
NYX 0:85b3fd62ea1a 38 #include "cmsis.h"
NYX 0:85b3fd62ea1a 39 #include "pinmap.h"
NYX 0:85b3fd62ea1a 40 #include "PeripheralPins.h"
NYX 0:85b3fd62ea1a 41 #include "spi_device.h"
NYX 0:85b3fd62ea1a 42
NYX 0:85b3fd62ea1a 43 #if DEVICE_SPI_ASYNCH
NYX 0:85b3fd62ea1a 44 #define SPI_INST(obj) ((SPI_TypeDef *)(obj->spi.spi))
NYX 0:85b3fd62ea1a 45 #else
NYX 0:85b3fd62ea1a 46 #define SPI_INST(obj) ((SPI_TypeDef *)(obj->spi))
NYX 0:85b3fd62ea1a 47 #endif
NYX 0:85b3fd62ea1a 48
NYX 0:85b3fd62ea1a 49 #if DEVICE_SPI_ASYNCH
NYX 0:85b3fd62ea1a 50 #define SPI_S(obj) (( struct spi_s *)(&(obj->spi)))
NYX 0:85b3fd62ea1a 51 #else
NYX 0:85b3fd62ea1a 52 #define SPI_S(obj) (( struct spi_s *)(obj))
NYX 0:85b3fd62ea1a 53 #endif
NYX 0:85b3fd62ea1a 54
NYX 0:85b3fd62ea1a 55 #ifndef DEBUG_STDIO
NYX 0:85b3fd62ea1a 56 # define DEBUG_STDIO 0
NYX 0:85b3fd62ea1a 57 #endif
NYX 0:85b3fd62ea1a 58
NYX 0:85b3fd62ea1a 59 #if DEBUG_STDIO
NYX 0:85b3fd62ea1a 60 # include <stdio.h>
NYX 0:85b3fd62ea1a 61 # define DEBUG_PRINTF(...) do { printf(__VA_ARGS__); } while(0)
NYX 0:85b3fd62ea1a 62 #else
NYX 0:85b3fd62ea1a 63 # define DEBUG_PRINTF(...) {}
NYX 0:85b3fd62ea1a 64 #endif
NYX 0:85b3fd62ea1a 65
NYX 0:85b3fd62ea1a 66 /* Consider 10ms as the default timeout for sending/receving 1 byte */
NYX 0:85b3fd62ea1a 67 #define TIMEOUT_1_BYTE 10
NYX 0:85b3fd62ea1a 68
NYX 0:85b3fd62ea1a 69 void init_spi(spi_t *obj)
NYX 0:85b3fd62ea1a 70 {
NYX 0:85b3fd62ea1a 71 struct spi_s *spiobj = SPI_S(obj);
NYX 0:85b3fd62ea1a 72 SPI_HandleTypeDef *handle = &(spiobj->handle);
NYX 0:85b3fd62ea1a 73
NYX 0:85b3fd62ea1a 74 __HAL_SPI_DISABLE(handle);
NYX 0:85b3fd62ea1a 75
NYX 0:85b3fd62ea1a 76 DEBUG_PRINTF("init_spi: instance=0x%8X\r\n", (int)handle->Instance);
NYX 0:85b3fd62ea1a 77 if (HAL_SPI_Init(handle) != HAL_OK) {
NYX 0:85b3fd62ea1a 78 error("Cannot initialize SPI");
NYX 0:85b3fd62ea1a 79 }
NYX 0:85b3fd62ea1a 80
NYX 0:85b3fd62ea1a 81 /* In case of standard 4 wires SPI,PI can be kept enabled all time
NYX 0:85b3fd62ea1a 82 * and SCK will only be generated during the write operations. But in case
NYX 0:85b3fd62ea1a 83 * of 3 wires, it should be only enabled during rd/wr unitary operations,
NYX 0:85b3fd62ea1a 84 * which is handled inside STM32 HAL layer.
NYX 0:85b3fd62ea1a 85 */
NYX 0:85b3fd62ea1a 86 if (handle->Init.Direction == SPI_DIRECTION_2LINES) {
NYX 0:85b3fd62ea1a 87 __HAL_SPI_ENABLE(handle);
NYX 0:85b3fd62ea1a 88 }
NYX 0:85b3fd62ea1a 89 }
NYX 0:85b3fd62ea1a 90
NYX 0:85b3fd62ea1a 91 void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel)
NYX 0:85b3fd62ea1a 92 {
NYX 0:85b3fd62ea1a 93 struct spi_s *spiobj = SPI_S(obj);
NYX 0:85b3fd62ea1a 94 SPI_HandleTypeDef *handle = &(spiobj->handle);
NYX 0:85b3fd62ea1a 95
NYX 0:85b3fd62ea1a 96 // Determine the SPI to use
NYX 0:85b3fd62ea1a 97 SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI);
NYX 0:85b3fd62ea1a 98 SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO);
NYX 0:85b3fd62ea1a 99 SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK);
NYX 0:85b3fd62ea1a 100 SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL);
NYX 0:85b3fd62ea1a 101
NYX 0:85b3fd62ea1a 102 SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso);
NYX 0:85b3fd62ea1a 103 SPIName spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel);
NYX 0:85b3fd62ea1a 104
NYX 0:85b3fd62ea1a 105 spiobj->spi = (SPIName)pinmap_merge(spi_data, spi_cntl);
NYX 0:85b3fd62ea1a 106 MBED_ASSERT(spiobj->spi != (SPIName)NC);
NYX 0:85b3fd62ea1a 107
NYX 0:85b3fd62ea1a 108 #if defined SPI1_BASE
NYX 0:85b3fd62ea1a 109 // Enable SPI clock
NYX 0:85b3fd62ea1a 110 if (spiobj->spi == SPI_1) {
NYX 0:85b3fd62ea1a 111 __HAL_RCC_SPI1_CLK_ENABLE();
NYX 0:85b3fd62ea1a 112 spiobj->spiIRQ = SPI1_IRQn;
NYX 0:85b3fd62ea1a 113 }
NYX 0:85b3fd62ea1a 114 #endif
NYX 0:85b3fd62ea1a 115
NYX 0:85b3fd62ea1a 116 #if defined SPI2_BASE
NYX 0:85b3fd62ea1a 117 if (spiobj->spi == SPI_2) {
NYX 0:85b3fd62ea1a 118 __HAL_RCC_SPI2_CLK_ENABLE();
NYX 0:85b3fd62ea1a 119 spiobj->spiIRQ = SPI2_IRQn;
NYX 0:85b3fd62ea1a 120 }
NYX 0:85b3fd62ea1a 121 #endif
NYX 0:85b3fd62ea1a 122
NYX 0:85b3fd62ea1a 123 #if defined SPI3_BASE
NYX 0:85b3fd62ea1a 124 if (spiobj->spi == SPI_3) {
NYX 0:85b3fd62ea1a 125 __HAL_RCC_SPI3_CLK_ENABLE();
NYX 0:85b3fd62ea1a 126 spiobj->spiIRQ = SPI3_IRQn;
NYX 0:85b3fd62ea1a 127 }
NYX 0:85b3fd62ea1a 128 #endif
NYX 0:85b3fd62ea1a 129
NYX 0:85b3fd62ea1a 130 #if defined SPI4_BASE
NYX 0:85b3fd62ea1a 131 if (spiobj->spi == SPI_4) {
NYX 0:85b3fd62ea1a 132 __HAL_RCC_SPI4_CLK_ENABLE();
NYX 0:85b3fd62ea1a 133 spiobj->spiIRQ = SPI4_IRQn;
NYX 0:85b3fd62ea1a 134 }
NYX 0:85b3fd62ea1a 135 #endif
NYX 0:85b3fd62ea1a 136
NYX 0:85b3fd62ea1a 137 #if defined SPI5_BASE
NYX 0:85b3fd62ea1a 138 if (spiobj->spi == SPI_5) {
NYX 0:85b3fd62ea1a 139 __HAL_RCC_SPI5_CLK_ENABLE();
NYX 0:85b3fd62ea1a 140 spiobj->spiIRQ = SPI5_IRQn;
NYX 0:85b3fd62ea1a 141 }
NYX 0:85b3fd62ea1a 142 #endif
NYX 0:85b3fd62ea1a 143
NYX 0:85b3fd62ea1a 144 #if defined SPI6_BASE
NYX 0:85b3fd62ea1a 145 if (spiobj->spi == SPI_6) {
NYX 0:85b3fd62ea1a 146 __HAL_RCC_SPI6_CLK_ENABLE();
NYX 0:85b3fd62ea1a 147 spiobj->spiIRQ = SPI6_IRQn;
NYX 0:85b3fd62ea1a 148 }
NYX 0:85b3fd62ea1a 149 #endif
NYX 0:85b3fd62ea1a 150
NYX 0:85b3fd62ea1a 151 // Configure the SPI pins
NYX 0:85b3fd62ea1a 152 pinmap_pinout(mosi, PinMap_SPI_MOSI);
NYX 0:85b3fd62ea1a 153 pinmap_pinout(miso, PinMap_SPI_MISO);
NYX 0:85b3fd62ea1a 154 pinmap_pinout(sclk, PinMap_SPI_SCLK);
NYX 0:85b3fd62ea1a 155 spiobj->pin_miso = miso;
NYX 0:85b3fd62ea1a 156 spiobj->pin_mosi = mosi;
NYX 0:85b3fd62ea1a 157 spiobj->pin_sclk = sclk;
NYX 0:85b3fd62ea1a 158 spiobj->pin_ssel = ssel;
NYX 0:85b3fd62ea1a 159 if (ssel != NC) {
NYX 0:85b3fd62ea1a 160 pinmap_pinout(ssel, PinMap_SPI_SSEL);
NYX 0:85b3fd62ea1a 161 } else {
NYX 0:85b3fd62ea1a 162 handle->Init.NSS = SPI_NSS_SOFT;
NYX 0:85b3fd62ea1a 163 }
NYX 0:85b3fd62ea1a 164
NYX 0:85b3fd62ea1a 165 /* Fill default value */
NYX 0:85b3fd62ea1a 166 handle->Instance = SPI_INST(obj);
NYX 0:85b3fd62ea1a 167 handle->Init.Mode = SPI_MODE_MASTER;
NYX 0:85b3fd62ea1a 168 handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
NYX 0:85b3fd62ea1a 169
NYX 0:85b3fd62ea1a 170 if (miso != NC) {
NYX 0:85b3fd62ea1a 171 handle->Init.Direction = SPI_DIRECTION_2LINES;
NYX 0:85b3fd62ea1a 172 } else {
NYX 0:85b3fd62ea1a 173 handle->Init.Direction = SPI_DIRECTION_1LINE;
NYX 0:85b3fd62ea1a 174 }
NYX 0:85b3fd62ea1a 175
NYX 0:85b3fd62ea1a 176 handle->Init.CLKPhase = SPI_PHASE_1EDGE;
NYX 0:85b3fd62ea1a 177 handle->Init.CLKPolarity = SPI_POLARITY_LOW;
NYX 0:85b3fd62ea1a 178 handle->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
NYX 0:85b3fd62ea1a 179 handle->Init.CRCPolynomial = 7;
NYX 0:85b3fd62ea1a 180 handle->Init.DataSize = SPI_DATASIZE_8BIT;
NYX 0:85b3fd62ea1a 181 handle->Init.FirstBit = SPI_FIRSTBIT_MSB;
NYX 0:85b3fd62ea1a 182 handle->Init.TIMode = SPI_TIMODE_DISABLE;
NYX 0:85b3fd62ea1a 183
NYX 0:85b3fd62ea1a 184 init_spi(obj);
NYX 0:85b3fd62ea1a 185 }
NYX 0:85b3fd62ea1a 186
NYX 0:85b3fd62ea1a 187 void spi_free(spi_t *obj)
NYX 0:85b3fd62ea1a 188 {
NYX 0:85b3fd62ea1a 189 struct spi_s *spiobj = SPI_S(obj);
NYX 0:85b3fd62ea1a 190 SPI_HandleTypeDef *handle = &(spiobj->handle);
NYX 0:85b3fd62ea1a 191
NYX 0:85b3fd62ea1a 192 DEBUG_PRINTF("spi_free\r\n");
NYX 0:85b3fd62ea1a 193
NYX 0:85b3fd62ea1a 194 __HAL_SPI_DISABLE(handle);
NYX 0:85b3fd62ea1a 195 HAL_SPI_DeInit(handle);
NYX 0:85b3fd62ea1a 196
NYX 0:85b3fd62ea1a 197 #if defined SPI1_BASE
NYX 0:85b3fd62ea1a 198 // Reset SPI and disable clock
NYX 0:85b3fd62ea1a 199 if (spiobj->spi == SPI_1) {
NYX 0:85b3fd62ea1a 200 __HAL_RCC_SPI1_FORCE_RESET();
NYX 0:85b3fd62ea1a 201 __HAL_RCC_SPI1_RELEASE_RESET();
NYX 0:85b3fd62ea1a 202 __HAL_RCC_SPI1_CLK_DISABLE();
NYX 0:85b3fd62ea1a 203 }
NYX 0:85b3fd62ea1a 204 #endif
NYX 0:85b3fd62ea1a 205 #if defined SPI2_BASE
NYX 0:85b3fd62ea1a 206 if (spiobj->spi == SPI_2) {
NYX 0:85b3fd62ea1a 207 __HAL_RCC_SPI2_FORCE_RESET();
NYX 0:85b3fd62ea1a 208 __HAL_RCC_SPI2_RELEASE_RESET();
NYX 0:85b3fd62ea1a 209 __HAL_RCC_SPI2_CLK_DISABLE();
NYX 0:85b3fd62ea1a 210 }
NYX 0:85b3fd62ea1a 211 #endif
NYX 0:85b3fd62ea1a 212
NYX 0:85b3fd62ea1a 213 #if defined SPI3_BASE
NYX 0:85b3fd62ea1a 214 if (spiobj->spi == SPI_3) {
NYX 0:85b3fd62ea1a 215 __HAL_RCC_SPI3_FORCE_RESET();
NYX 0:85b3fd62ea1a 216 __HAL_RCC_SPI3_RELEASE_RESET();
NYX 0:85b3fd62ea1a 217 __HAL_RCC_SPI3_CLK_DISABLE();
NYX 0:85b3fd62ea1a 218 }
NYX 0:85b3fd62ea1a 219 #endif
NYX 0:85b3fd62ea1a 220
NYX 0:85b3fd62ea1a 221 #if defined SPI4_BASE
NYX 0:85b3fd62ea1a 222 if (spiobj->spi == SPI_4) {
NYX 0:85b3fd62ea1a 223 __HAL_RCC_SPI4_FORCE_RESET();
NYX 0:85b3fd62ea1a 224 __HAL_RCC_SPI4_RELEASE_RESET();
NYX 0:85b3fd62ea1a 225 __HAL_RCC_SPI4_CLK_DISABLE();
NYX 0:85b3fd62ea1a 226 }
NYX 0:85b3fd62ea1a 227 #endif
NYX 0:85b3fd62ea1a 228
NYX 0:85b3fd62ea1a 229 #if defined SPI5_BASE
NYX 0:85b3fd62ea1a 230 if (spiobj->spi == SPI_5) {
NYX 0:85b3fd62ea1a 231 __HAL_RCC_SPI5_FORCE_RESET();
NYX 0:85b3fd62ea1a 232 __HAL_RCC_SPI5_RELEASE_RESET();
NYX 0:85b3fd62ea1a 233 __HAL_RCC_SPI5_CLK_DISABLE();
NYX 0:85b3fd62ea1a 234 }
NYX 0:85b3fd62ea1a 235 #endif
NYX 0:85b3fd62ea1a 236
NYX 0:85b3fd62ea1a 237 #if defined SPI6_BASE
NYX 0:85b3fd62ea1a 238 if (spiobj->spi == SPI_6) {
NYX 0:85b3fd62ea1a 239 __HAL_RCC_SPI6_FORCE_RESET();
NYX 0:85b3fd62ea1a 240 __HAL_RCC_SPI6_RELEASE_RESET();
NYX 0:85b3fd62ea1a 241 __HAL_RCC_SPI6_CLK_DISABLE();
NYX 0:85b3fd62ea1a 242 }
NYX 0:85b3fd62ea1a 243 #endif
NYX 0:85b3fd62ea1a 244
NYX 0:85b3fd62ea1a 245 // Configure GPIOs
NYX 0:85b3fd62ea1a 246 pin_function(spiobj->pin_miso, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
NYX 0:85b3fd62ea1a 247 pin_function(spiobj->pin_mosi, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
NYX 0:85b3fd62ea1a 248 pin_function(spiobj->pin_sclk, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
NYX 0:85b3fd62ea1a 249 if (handle->Init.NSS != SPI_NSS_SOFT) {
NYX 0:85b3fd62ea1a 250 pin_function(spiobj->pin_ssel, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
NYX 0:85b3fd62ea1a 251 }
NYX 0:85b3fd62ea1a 252 }
NYX 0:85b3fd62ea1a 253
NYX 0:85b3fd62ea1a 254 void spi_format(spi_t *obj, int bits, int mode, int slave)
NYX 0:85b3fd62ea1a 255 {
NYX 0:85b3fd62ea1a 256 struct spi_s *spiobj = SPI_S(obj);
NYX 0:85b3fd62ea1a 257 SPI_HandleTypeDef *handle = &(spiobj->handle);
NYX 0:85b3fd62ea1a 258
NYX 0:85b3fd62ea1a 259 DEBUG_PRINTF("spi_format, bits:%d, mode:%d, slave?:%d\r\n", bits, mode, slave);
NYX 0:85b3fd62ea1a 260
NYX 0:85b3fd62ea1a 261 // Save new values
NYX 0:85b3fd62ea1a 262 handle->Init.DataSize = (bits == 16) ? SPI_DATASIZE_16BIT : SPI_DATASIZE_8BIT;
NYX 0:85b3fd62ea1a 263
NYX 0:85b3fd62ea1a 264 switch (mode) {
NYX 0:85b3fd62ea1a 265 case 0:
NYX 0:85b3fd62ea1a 266 handle->Init.CLKPolarity = SPI_POLARITY_LOW;
NYX 0:85b3fd62ea1a 267 handle->Init.CLKPhase = SPI_PHASE_1EDGE;
NYX 0:85b3fd62ea1a 268 break;
NYX 0:85b3fd62ea1a 269 case 1:
NYX 0:85b3fd62ea1a 270 handle->Init.CLKPolarity = SPI_POLARITY_LOW;
NYX 0:85b3fd62ea1a 271 handle->Init.CLKPhase = SPI_PHASE_2EDGE;
NYX 0:85b3fd62ea1a 272 break;
NYX 0:85b3fd62ea1a 273 case 2:
NYX 0:85b3fd62ea1a 274 handle->Init.CLKPolarity = SPI_POLARITY_HIGH;
NYX 0:85b3fd62ea1a 275 handle->Init.CLKPhase = SPI_PHASE_1EDGE;
NYX 0:85b3fd62ea1a 276 break;
NYX 0:85b3fd62ea1a 277 default:
NYX 0:85b3fd62ea1a 278 handle->Init.CLKPolarity = SPI_POLARITY_HIGH;
NYX 0:85b3fd62ea1a 279 handle->Init.CLKPhase = SPI_PHASE_2EDGE;
NYX 0:85b3fd62ea1a 280 break;
NYX 0:85b3fd62ea1a 281 }
NYX 0:85b3fd62ea1a 282
NYX 0:85b3fd62ea1a 283 if (handle->Init.NSS != SPI_NSS_SOFT) {
NYX 0:85b3fd62ea1a 284 handle->Init.NSS = (slave) ? SPI_NSS_HARD_INPUT : SPI_NSS_HARD_OUTPUT;
NYX 0:85b3fd62ea1a 285 }
NYX 0:85b3fd62ea1a 286
NYX 0:85b3fd62ea1a 287 handle->Init.Mode = (slave) ? SPI_MODE_SLAVE : SPI_MODE_MASTER;
NYX 0:85b3fd62ea1a 288
NYX 0:85b3fd62ea1a 289 init_spi(obj);
NYX 0:85b3fd62ea1a 290 }
NYX 0:85b3fd62ea1a 291
NYX 0:85b3fd62ea1a 292 /*
NYX 0:85b3fd62ea1a 293 * Only the IP clock input is family dependant so it computed
NYX 0:85b3fd62ea1a 294 * separately in spi_get_clock_freq
NYX 0:85b3fd62ea1a 295 */
NYX 0:85b3fd62ea1a 296 extern int spi_get_clock_freq(spi_t *obj);
NYX 0:85b3fd62ea1a 297
NYX 0:85b3fd62ea1a 298 static const uint16_t baudrate_prescaler_table[] = {SPI_BAUDRATEPRESCALER_2,
NYX 0:85b3fd62ea1a 299 SPI_BAUDRATEPRESCALER_4,
NYX 0:85b3fd62ea1a 300 SPI_BAUDRATEPRESCALER_8,
NYX 0:85b3fd62ea1a 301 SPI_BAUDRATEPRESCALER_16,
NYX 0:85b3fd62ea1a 302 SPI_BAUDRATEPRESCALER_32,
NYX 0:85b3fd62ea1a 303 SPI_BAUDRATEPRESCALER_64,
NYX 0:85b3fd62ea1a 304 SPI_BAUDRATEPRESCALER_128,
NYX 0:85b3fd62ea1a 305 SPI_BAUDRATEPRESCALER_256};
NYX 0:85b3fd62ea1a 306
NYX 0:85b3fd62ea1a 307 void spi_frequency(spi_t *obj, int hz) {
NYX 0:85b3fd62ea1a 308 struct spi_s *spiobj = SPI_S(obj);
NYX 0:85b3fd62ea1a 309 int spi_hz = 0;
NYX 0:85b3fd62ea1a 310 uint8_t prescaler_rank = 0;
NYX 0:85b3fd62ea1a 311 uint8_t last_index = (sizeof(baudrate_prescaler_table)/sizeof(baudrate_prescaler_table[0])) - 1;
NYX 0:85b3fd62ea1a 312 SPI_HandleTypeDef *handle = &(spiobj->handle);
NYX 0:85b3fd62ea1a 313
NYX 0:85b3fd62ea1a 314 /* Calculate the spi clock for prescaler_rank 0: SPI_BAUDRATEPRESCALER_2 */
NYX 0:85b3fd62ea1a 315 spi_hz = spi_get_clock_freq(obj) / 2;
NYX 0:85b3fd62ea1a 316
NYX 0:85b3fd62ea1a 317 /* Define pre-scaler in order to get highest available frequency below requested frequency */
NYX 0:85b3fd62ea1a 318 while ((spi_hz > hz) && (prescaler_rank < last_index)) {
NYX 0:85b3fd62ea1a 319 spi_hz = spi_hz / 2;
NYX 0:85b3fd62ea1a 320 prescaler_rank++;
NYX 0:85b3fd62ea1a 321 }
NYX 0:85b3fd62ea1a 322
NYX 0:85b3fd62ea1a 323 /* Use the best fit pre-scaler */
NYX 0:85b3fd62ea1a 324 handle->Init.BaudRatePrescaler = baudrate_prescaler_table[prescaler_rank];
NYX 0:85b3fd62ea1a 325
NYX 0:85b3fd62ea1a 326 /* In case maximum pre-scaler still gives too high freq, raise an error */
NYX 0:85b3fd62ea1a 327 if (spi_hz > hz) {
NYX 0:85b3fd62ea1a 328 DEBUG_PRINTF("WARNING: lowest SPI freq (%d) higher than requested (%d)\r\n", spi_hz, hz);
NYX 0:85b3fd62ea1a 329 }
NYX 0:85b3fd62ea1a 330
NYX 0:85b3fd62ea1a 331 DEBUG_PRINTF("spi_frequency, request:%d, select:%d\r\n", hz, spi_hz);
NYX 0:85b3fd62ea1a 332
NYX 0:85b3fd62ea1a 333 init_spi(obj);
NYX 0:85b3fd62ea1a 334 }
NYX 0:85b3fd62ea1a 335
NYX 0:85b3fd62ea1a 336 static inline int ssp_readable(spi_t *obj)
NYX 0:85b3fd62ea1a 337 {
NYX 0:85b3fd62ea1a 338 int status;
NYX 0:85b3fd62ea1a 339 struct spi_s *spiobj = SPI_S(obj);
NYX 0:85b3fd62ea1a 340 SPI_HandleTypeDef *handle = &(spiobj->handle);
NYX 0:85b3fd62ea1a 341
NYX 0:85b3fd62ea1a 342 // Check if data is received
NYX 0:85b3fd62ea1a 343 status = ((__HAL_SPI_GET_FLAG(handle, SPI_FLAG_RXNE) != RESET) ? 1 : 0);
NYX 0:85b3fd62ea1a 344 return status;
NYX 0:85b3fd62ea1a 345 }
NYX 0:85b3fd62ea1a 346
NYX 0:85b3fd62ea1a 347 static inline int ssp_writeable(spi_t *obj)
NYX 0:85b3fd62ea1a 348 {
NYX 0:85b3fd62ea1a 349 int status;
NYX 0:85b3fd62ea1a 350 struct spi_s *spiobj = SPI_S(obj);
NYX 0:85b3fd62ea1a 351 SPI_HandleTypeDef *handle = &(spiobj->handle);
NYX 0:85b3fd62ea1a 352
NYX 0:85b3fd62ea1a 353 // Check if data is transmitted
NYX 0:85b3fd62ea1a 354 status = ((__HAL_SPI_GET_FLAG(handle, SPI_FLAG_TXE) != RESET) ? 1 : 0);
NYX 0:85b3fd62ea1a 355 return status;
NYX 0:85b3fd62ea1a 356 }
NYX 0:85b3fd62ea1a 357
NYX 0:85b3fd62ea1a 358 static inline int ssp_busy(spi_t *obj)
NYX 0:85b3fd62ea1a 359 {
NYX 0:85b3fd62ea1a 360 int status;
NYX 0:85b3fd62ea1a 361 struct spi_s *spiobj = SPI_S(obj);
NYX 0:85b3fd62ea1a 362 SPI_HandleTypeDef *handle = &(spiobj->handle);
NYX 0:85b3fd62ea1a 363 status = ((__HAL_SPI_GET_FLAG(handle, SPI_FLAG_BSY) != RESET) ? 1 : 0);
NYX 0:85b3fd62ea1a 364 return status;
NYX 0:85b3fd62ea1a 365 }
NYX 0:85b3fd62ea1a 366
NYX 0:85b3fd62ea1a 367 int spi_master_write(spi_t *obj, int value)
NYX 0:85b3fd62ea1a 368 {
NYX 0:85b3fd62ea1a 369 struct spi_s *spiobj = SPI_S(obj);
NYX 0:85b3fd62ea1a 370 SPI_HandleTypeDef *handle = &(spiobj->handle);
NYX 0:85b3fd62ea1a 371
NYX 0:85b3fd62ea1a 372 if (handle->Init.Direction == SPI_DIRECTION_1LINE) {
NYX 0:85b3fd62ea1a 373 return HAL_SPI_Transmit(handle, (uint8_t*)&value, 1, TIMEOUT_1_BYTE);
NYX 0:85b3fd62ea1a 374 }
NYX 0:85b3fd62ea1a 375
NYX 0:85b3fd62ea1a 376 #if defined(LL_SPI_RX_FIFO_TH_HALF)
NYX 0:85b3fd62ea1a 377 /* Configure the default data size */
NYX 0:85b3fd62ea1a 378 if (handle->Init.DataSize == SPI_DATASIZE_16BIT) {
NYX 0:85b3fd62ea1a 379 LL_SPI_SetRxFIFOThreshold(SPI_INST(obj), LL_SPI_RX_FIFO_TH_HALF);
NYX 0:85b3fd62ea1a 380 } else {
NYX 0:85b3fd62ea1a 381 LL_SPI_SetRxFIFOThreshold(SPI_INST(obj), LL_SPI_RX_FIFO_TH_QUARTER);
NYX 0:85b3fd62ea1a 382 }
NYX 0:85b3fd62ea1a 383 #endif
NYX 0:85b3fd62ea1a 384
NYX 0:85b3fd62ea1a 385 /* Here we're using LL which means direct registers access
NYX 0:85b3fd62ea1a 386 * There is no error management, so we may end up looping
NYX 0:85b3fd62ea1a 387 * infinitely here in case of faulty device for insatnce,
NYX 0:85b3fd62ea1a 388 * but this will increase performances significantly
NYX 0:85b3fd62ea1a 389 */
NYX 0:85b3fd62ea1a 390
NYX 0:85b3fd62ea1a 391 /* Wait TXE flag to transmit data */
NYX 0:85b3fd62ea1a 392 while (!LL_SPI_IsActiveFlag_TXE(SPI_INST(obj)));
NYX 0:85b3fd62ea1a 393
NYX 0:85b3fd62ea1a 394 if (handle->Init.DataSize == SPI_DATASIZE_16BIT) {
NYX 0:85b3fd62ea1a 395 LL_SPI_TransmitData16(SPI_INST(obj), value);
NYX 0:85b3fd62ea1a 396 } else {
NYX 0:85b3fd62ea1a 397 LL_SPI_TransmitData8(SPI_INST(obj), (uint8_t) value);
NYX 0:85b3fd62ea1a 398 }
NYX 0:85b3fd62ea1a 399
NYX 0:85b3fd62ea1a 400 /* Then wait RXE flag before reading */
NYX 0:85b3fd62ea1a 401 while (!LL_SPI_IsActiveFlag_RXNE(SPI_INST(obj)));
NYX 0:85b3fd62ea1a 402
NYX 0:85b3fd62ea1a 403 if (handle->Init.DataSize == SPI_DATASIZE_16BIT) {
NYX 0:85b3fd62ea1a 404 return LL_SPI_ReceiveData16(SPI_INST(obj));
NYX 0:85b3fd62ea1a 405 } else {
NYX 0:85b3fd62ea1a 406 return LL_SPI_ReceiveData8(SPI_INST(obj));
NYX 0:85b3fd62ea1a 407 }
NYX 0:85b3fd62ea1a 408 }
NYX 0:85b3fd62ea1a 409
NYX 0:85b3fd62ea1a 410 int spi_master_block_write(spi_t *obj, const char *tx_buffer, int tx_length,
NYX 0:85b3fd62ea1a 411 char *rx_buffer, int rx_length, char write_fill)
NYX 0:85b3fd62ea1a 412 {
NYX 0:85b3fd62ea1a 413 struct spi_s *spiobj = SPI_S(obj);
NYX 0:85b3fd62ea1a 414 SPI_HandleTypeDef *handle = &(spiobj->handle);
NYX 0:85b3fd62ea1a 415 int total = (tx_length > rx_length) ? tx_length : rx_length;
NYX 0:85b3fd62ea1a 416 int i = 0;
NYX 0:85b3fd62ea1a 417 if (handle->Init.Direction == SPI_DIRECTION_2LINES) {
NYX 0:85b3fd62ea1a 418 for (i = 0; i < total; i++) {
NYX 0:85b3fd62ea1a 419 char out = (i < tx_length) ? tx_buffer[i] : write_fill;
NYX 0:85b3fd62ea1a 420 char in = spi_master_write(obj, out);
NYX 0:85b3fd62ea1a 421 if (i < rx_length) {
NYX 0:85b3fd62ea1a 422 rx_buffer[i] = in;
NYX 0:85b3fd62ea1a 423 }
NYX 0:85b3fd62ea1a 424 }
NYX 0:85b3fd62ea1a 425 } else {
NYX 0:85b3fd62ea1a 426 /* In case of 1 WIRE only, first handle TX, then Rx */
NYX 0:85b3fd62ea1a 427 if (tx_length != 0) {
NYX 0:85b3fd62ea1a 428 if (HAL_OK != HAL_SPI_Transmit(handle, (uint8_t*)tx_buffer, tx_length, tx_length*TIMEOUT_1_BYTE)) {
NYX 0:85b3fd62ea1a 429 /* report an error */
NYX 0:85b3fd62ea1a 430 total = 0;
NYX 0:85b3fd62ea1a 431 }
NYX 0:85b3fd62ea1a 432 }
NYX 0:85b3fd62ea1a 433 if (rx_length != 0) {
NYX 0:85b3fd62ea1a 434 if (HAL_OK != HAL_SPI_Receive(handle, (uint8_t*)rx_buffer, rx_length, rx_length*TIMEOUT_1_BYTE)) {
NYX 0:85b3fd62ea1a 435 /* report an error */
NYX 0:85b3fd62ea1a 436 total = 0;
NYX 0:85b3fd62ea1a 437 }
NYX 0:85b3fd62ea1a 438 }
NYX 0:85b3fd62ea1a 439 }
NYX 0:85b3fd62ea1a 440
NYX 0:85b3fd62ea1a 441 return total;
NYX 0:85b3fd62ea1a 442 }
NYX 0:85b3fd62ea1a 443
NYX 0:85b3fd62ea1a 444 int spi_slave_receive(spi_t *obj)
NYX 0:85b3fd62ea1a 445 {
NYX 0:85b3fd62ea1a 446 return ((ssp_readable(obj) && !ssp_busy(obj)) ? 1 : 0);
NYX 0:85b3fd62ea1a 447 };
NYX 0:85b3fd62ea1a 448
NYX 0:85b3fd62ea1a 449 int spi_slave_read(spi_t *obj)
NYX 0:85b3fd62ea1a 450 {
NYX 0:85b3fd62ea1a 451 struct spi_s *spiobj = SPI_S(obj);
NYX 0:85b3fd62ea1a 452 SPI_HandleTypeDef *handle = &(spiobj->handle);
NYX 0:85b3fd62ea1a 453 while (!ssp_readable(obj));
NYX 0:85b3fd62ea1a 454 if (handle->Init.DataSize == SPI_DATASIZE_16BIT) {
NYX 0:85b3fd62ea1a 455 return LL_SPI_ReceiveData16(SPI_INST(obj));
NYX 0:85b3fd62ea1a 456 } else {
NYX 0:85b3fd62ea1a 457 return LL_SPI_ReceiveData8(SPI_INST(obj));
NYX 0:85b3fd62ea1a 458 }
NYX 0:85b3fd62ea1a 459 }
NYX 0:85b3fd62ea1a 460
NYX 0:85b3fd62ea1a 461 void spi_slave_write(spi_t *obj, int value)
NYX 0:85b3fd62ea1a 462 {
NYX 0:85b3fd62ea1a 463 SPI_TypeDef *spi = SPI_INST(obj);
NYX 0:85b3fd62ea1a 464 struct spi_s *spiobj = SPI_S(obj);
NYX 0:85b3fd62ea1a 465 SPI_HandleTypeDef *handle = &(spiobj->handle);
NYX 0:85b3fd62ea1a 466 while (!ssp_writeable(obj));
NYX 0:85b3fd62ea1a 467 if (handle->Init.DataSize == SPI_DATASIZE_8BIT) {
NYX 0:85b3fd62ea1a 468 // Force 8-bit access to the data register
NYX 0:85b3fd62ea1a 469 uint8_t *p_spi_dr = 0;
NYX 0:85b3fd62ea1a 470 p_spi_dr = (uint8_t *) & (spi->DR);
NYX 0:85b3fd62ea1a 471 *p_spi_dr = (uint8_t)value;
NYX 0:85b3fd62ea1a 472 } else { // SPI_DATASIZE_16BIT
NYX 0:85b3fd62ea1a 473 spi->DR = (uint16_t)value;
NYX 0:85b3fd62ea1a 474 }
NYX 0:85b3fd62ea1a 475 }
NYX 0:85b3fd62ea1a 476
NYX 0:85b3fd62ea1a 477 int spi_busy(spi_t *obj)
NYX 0:85b3fd62ea1a 478 {
NYX 0:85b3fd62ea1a 479 return ssp_busy(obj);
NYX 0:85b3fd62ea1a 480 }
NYX 0:85b3fd62ea1a 481
NYX 0:85b3fd62ea1a 482 #ifdef DEVICE_SPI_ASYNCH
NYX 0:85b3fd62ea1a 483 typedef enum {
NYX 0:85b3fd62ea1a 484 SPI_TRANSFER_TYPE_NONE = 0,
NYX 0:85b3fd62ea1a 485 SPI_TRANSFER_TYPE_TX = 1,
NYX 0:85b3fd62ea1a 486 SPI_TRANSFER_TYPE_RX = 2,
NYX 0:85b3fd62ea1a 487 SPI_TRANSFER_TYPE_TXRX = 3,
NYX 0:85b3fd62ea1a 488 } transfer_type_t;
NYX 0:85b3fd62ea1a 489
NYX 0:85b3fd62ea1a 490
NYX 0:85b3fd62ea1a 491 /// @returns the number of bytes transferred, or `0` if nothing transferred
NYX 0:85b3fd62ea1a 492 static int spi_master_start_asynch_transfer(spi_t *obj, transfer_type_t transfer_type, const void *tx, void *rx, size_t length)
NYX 0:85b3fd62ea1a 493 {
NYX 0:85b3fd62ea1a 494 struct spi_s *spiobj = SPI_S(obj);
NYX 0:85b3fd62ea1a 495 SPI_HandleTypeDef *handle = &(spiobj->handle);
NYX 0:85b3fd62ea1a 496 bool is16bit = (handle->Init.DataSize == SPI_DATASIZE_16BIT);
NYX 0:85b3fd62ea1a 497 // the HAL expects number of transfers instead of number of bytes
NYX 0:85b3fd62ea1a 498 // so for 16 bit transfer width the count needs to be halved
NYX 0:85b3fd62ea1a 499 size_t words;
NYX 0:85b3fd62ea1a 500
NYX 0:85b3fd62ea1a 501 DEBUG_PRINTF("SPI inst=0x%8X Start: %u, %u\r\n", (int)handle->Instance, transfer_type, length);
NYX 0:85b3fd62ea1a 502
NYX 0:85b3fd62ea1a 503 obj->spi.transfer_type = transfer_type;
NYX 0:85b3fd62ea1a 504
NYX 0:85b3fd62ea1a 505 if (is16bit) {
NYX 0:85b3fd62ea1a 506 words = length / 2;
NYX 0:85b3fd62ea1a 507 } else {
NYX 0:85b3fd62ea1a 508 words = length;
NYX 0:85b3fd62ea1a 509 }
NYX 0:85b3fd62ea1a 510
NYX 0:85b3fd62ea1a 511 // enable the interrupt
NYX 0:85b3fd62ea1a 512 IRQn_Type irq_n = spiobj->spiIRQ;
NYX 0:85b3fd62ea1a 513 NVIC_DisableIRQ(irq_n);
NYX 0:85b3fd62ea1a 514 NVIC_ClearPendingIRQ(irq_n);
NYX 0:85b3fd62ea1a 515 NVIC_SetPriority(irq_n, 1);
NYX 0:85b3fd62ea1a 516 NVIC_EnableIRQ(irq_n);
NYX 0:85b3fd62ea1a 517
NYX 0:85b3fd62ea1a 518 // enable the right hal transfer
NYX 0:85b3fd62ea1a 519 int rc = 0;
NYX 0:85b3fd62ea1a 520 switch(transfer_type) {
NYX 0:85b3fd62ea1a 521 case SPI_TRANSFER_TYPE_TXRX:
NYX 0:85b3fd62ea1a 522 rc = HAL_SPI_TransmitReceive_IT(handle, (uint8_t*)tx, (uint8_t*)rx, words);
NYX 0:85b3fd62ea1a 523 break;
NYX 0:85b3fd62ea1a 524 case SPI_TRANSFER_TYPE_TX:
NYX 0:85b3fd62ea1a 525 rc = HAL_SPI_Transmit_IT(handle, (uint8_t*)tx, words);
NYX 0:85b3fd62ea1a 526 break;
NYX 0:85b3fd62ea1a 527 case SPI_TRANSFER_TYPE_RX:
NYX 0:85b3fd62ea1a 528 // the receive function also "transmits" the receive buffer so in order
NYX 0:85b3fd62ea1a 529 // to guarantee that 0xff is on the line, we explicitly memset it here
NYX 0:85b3fd62ea1a 530 memset(rx, SPI_FILL_WORD, length);
NYX 0:85b3fd62ea1a 531 rc = HAL_SPI_Receive_IT(handle, (uint8_t*)rx, words);
NYX 0:85b3fd62ea1a 532 break;
NYX 0:85b3fd62ea1a 533 default:
NYX 0:85b3fd62ea1a 534 length = 0;
NYX 0:85b3fd62ea1a 535 }
NYX 0:85b3fd62ea1a 536
NYX 0:85b3fd62ea1a 537 if (rc) {
NYX 0:85b3fd62ea1a 538 DEBUG_PRINTF("SPI: RC=%u\n", rc);
NYX 0:85b3fd62ea1a 539 length = 0;
NYX 0:85b3fd62ea1a 540 }
NYX 0:85b3fd62ea1a 541
NYX 0:85b3fd62ea1a 542 return length;
NYX 0:85b3fd62ea1a 543 }
NYX 0:85b3fd62ea1a 544
NYX 0:85b3fd62ea1a 545 // asynchronous API
NYX 0:85b3fd62ea1a 546 void spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint8_t bit_width, uint32_t handler, uint32_t event, DMAUsage hint)
NYX 0:85b3fd62ea1a 547 {
NYX 0:85b3fd62ea1a 548 struct spi_s *spiobj = SPI_S(obj);
NYX 0:85b3fd62ea1a 549 SPI_HandleTypeDef *handle = &(spiobj->handle);
NYX 0:85b3fd62ea1a 550
NYX 0:85b3fd62ea1a 551 // TODO: DMA usage is currently ignored
NYX 0:85b3fd62ea1a 552 (void) hint;
NYX 0:85b3fd62ea1a 553
NYX 0:85b3fd62ea1a 554 // check which use-case we have
NYX 0:85b3fd62ea1a 555 bool use_tx = (tx != NULL && tx_length > 0);
NYX 0:85b3fd62ea1a 556 bool use_rx = (rx != NULL && rx_length > 0);
NYX 0:85b3fd62ea1a 557 bool is16bit = (handle->Init.DataSize == SPI_DATASIZE_16BIT);
NYX 0:85b3fd62ea1a 558
NYX 0:85b3fd62ea1a 559 // don't do anything, if the buffers aren't valid
NYX 0:85b3fd62ea1a 560 if (!use_tx && !use_rx)
NYX 0:85b3fd62ea1a 561 return;
NYX 0:85b3fd62ea1a 562
NYX 0:85b3fd62ea1a 563 // copy the buffers to the SPI object
NYX 0:85b3fd62ea1a 564 obj->tx_buff.buffer = (void *) tx;
NYX 0:85b3fd62ea1a 565 obj->tx_buff.length = tx_length;
NYX 0:85b3fd62ea1a 566 obj->tx_buff.pos = 0;
NYX 0:85b3fd62ea1a 567 obj->tx_buff.width = is16bit ? 16 : 8;
NYX 0:85b3fd62ea1a 568
NYX 0:85b3fd62ea1a 569 obj->rx_buff.buffer = rx;
NYX 0:85b3fd62ea1a 570 obj->rx_buff.length = rx_length;
NYX 0:85b3fd62ea1a 571 obj->rx_buff.pos = 0;
NYX 0:85b3fd62ea1a 572 obj->rx_buff.width = obj->tx_buff.width;
NYX 0:85b3fd62ea1a 573
NYX 0:85b3fd62ea1a 574 obj->spi.event = event;
NYX 0:85b3fd62ea1a 575
NYX 0:85b3fd62ea1a 576 DEBUG_PRINTF("SPI: Transfer: %u, %u\n", tx_length, rx_length);
NYX 0:85b3fd62ea1a 577
NYX 0:85b3fd62ea1a 578 // register the thunking handler
NYX 0:85b3fd62ea1a 579 IRQn_Type irq_n = spiobj->spiIRQ;
NYX 0:85b3fd62ea1a 580 NVIC_SetVector(irq_n, (uint32_t)handler);
NYX 0:85b3fd62ea1a 581
NYX 0:85b3fd62ea1a 582 // enable the right hal transfer
NYX 0:85b3fd62ea1a 583 if (use_tx && use_rx) {
NYX 0:85b3fd62ea1a 584 // we cannot manage different rx / tx sizes, let's use smaller one
NYX 0:85b3fd62ea1a 585 size_t size = (tx_length < rx_length)? tx_length : rx_length;
NYX 0:85b3fd62ea1a 586 if(tx_length != rx_length) {
NYX 0:85b3fd62ea1a 587 DEBUG_PRINTF("SPI: Full duplex transfer only 1 size: %d\n", size);
NYX 0:85b3fd62ea1a 588 obj->tx_buff.length = size;
NYX 0:85b3fd62ea1a 589 obj->rx_buff.length = size;
NYX 0:85b3fd62ea1a 590 }
NYX 0:85b3fd62ea1a 591 spi_master_start_asynch_transfer(obj, SPI_TRANSFER_TYPE_TXRX, tx, rx, size);
NYX 0:85b3fd62ea1a 592 } else if (use_tx) {
NYX 0:85b3fd62ea1a 593 spi_master_start_asynch_transfer(obj, SPI_TRANSFER_TYPE_TX, tx, NULL, tx_length);
NYX 0:85b3fd62ea1a 594 } else if (use_rx) {
NYX 0:85b3fd62ea1a 595 spi_master_start_asynch_transfer(obj, SPI_TRANSFER_TYPE_RX, NULL, rx, rx_length);
NYX 0:85b3fd62ea1a 596 }
NYX 0:85b3fd62ea1a 597 }
NYX 0:85b3fd62ea1a 598
NYX 0:85b3fd62ea1a 599 inline uint32_t spi_irq_handler_asynch(spi_t *obj)
NYX 0:85b3fd62ea1a 600 {
NYX 0:85b3fd62ea1a 601 int event = 0;
NYX 0:85b3fd62ea1a 602
NYX 0:85b3fd62ea1a 603 // call the CubeF4 handler, this will update the handle
NYX 0:85b3fd62ea1a 604 HAL_SPI_IRQHandler(&obj->spi.handle);
NYX 0:85b3fd62ea1a 605
NYX 0:85b3fd62ea1a 606 if (obj->spi.handle.State == HAL_SPI_STATE_READY) {
NYX 0:85b3fd62ea1a 607 // When HAL SPI is back to READY state, check if there was an error
NYX 0:85b3fd62ea1a 608 int error = obj->spi.handle.ErrorCode;
NYX 0:85b3fd62ea1a 609 if(error != HAL_SPI_ERROR_NONE) {
NYX 0:85b3fd62ea1a 610 // something went wrong and the transfer has definitely completed
NYX 0:85b3fd62ea1a 611 event = SPI_EVENT_ERROR | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE;
NYX 0:85b3fd62ea1a 612
NYX 0:85b3fd62ea1a 613 if (error & HAL_SPI_ERROR_OVR) {
NYX 0:85b3fd62ea1a 614 // buffer overrun
NYX 0:85b3fd62ea1a 615 event |= SPI_EVENT_RX_OVERFLOW;
NYX 0:85b3fd62ea1a 616 }
NYX 0:85b3fd62ea1a 617 } else {
NYX 0:85b3fd62ea1a 618 // else we're done
NYX 0:85b3fd62ea1a 619 event = SPI_EVENT_COMPLETE | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE;
NYX 0:85b3fd62ea1a 620 }
NYX 0:85b3fd62ea1a 621 // enable the interrupt
NYX 0:85b3fd62ea1a 622 NVIC_DisableIRQ(obj->spi.spiIRQ);
NYX 0:85b3fd62ea1a 623 NVIC_ClearPendingIRQ(obj->spi.spiIRQ);
NYX 0:85b3fd62ea1a 624 }
NYX 0:85b3fd62ea1a 625
NYX 0:85b3fd62ea1a 626
NYX 0:85b3fd62ea1a 627 return (event & (obj->spi.event | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE));
NYX 0:85b3fd62ea1a 628 }
NYX 0:85b3fd62ea1a 629
NYX 0:85b3fd62ea1a 630 uint8_t spi_active(spi_t *obj)
NYX 0:85b3fd62ea1a 631 {
NYX 0:85b3fd62ea1a 632 struct spi_s *spiobj = SPI_S(obj);
NYX 0:85b3fd62ea1a 633 SPI_HandleTypeDef *handle = &(spiobj->handle);
NYX 0:85b3fd62ea1a 634 HAL_SPI_StateTypeDef state = HAL_SPI_GetState(handle);
NYX 0:85b3fd62ea1a 635
NYX 0:85b3fd62ea1a 636 switch(state) {
NYX 0:85b3fd62ea1a 637 case HAL_SPI_STATE_RESET:
NYX 0:85b3fd62ea1a 638 case HAL_SPI_STATE_READY:
NYX 0:85b3fd62ea1a 639 case HAL_SPI_STATE_ERROR:
NYX 0:85b3fd62ea1a 640 return 0;
NYX 0:85b3fd62ea1a 641 default:
NYX 0:85b3fd62ea1a 642 return 1;
NYX 0:85b3fd62ea1a 643 }
NYX 0:85b3fd62ea1a 644 }
NYX 0:85b3fd62ea1a 645
NYX 0:85b3fd62ea1a 646 void spi_abort_asynch(spi_t *obj)
NYX 0:85b3fd62ea1a 647 {
NYX 0:85b3fd62ea1a 648 struct spi_s *spiobj = SPI_S(obj);
NYX 0:85b3fd62ea1a 649 SPI_HandleTypeDef *handle = &(spiobj->handle);
NYX 0:85b3fd62ea1a 650
NYX 0:85b3fd62ea1a 651 // disable interrupt
NYX 0:85b3fd62ea1a 652 IRQn_Type irq_n = spiobj->spiIRQ;
NYX 0:85b3fd62ea1a 653 NVIC_ClearPendingIRQ(irq_n);
NYX 0:85b3fd62ea1a 654 NVIC_DisableIRQ(irq_n);
NYX 0:85b3fd62ea1a 655
NYX 0:85b3fd62ea1a 656 // clean-up
NYX 0:85b3fd62ea1a 657 __HAL_SPI_DISABLE(handle);
NYX 0:85b3fd62ea1a 658 HAL_SPI_DeInit(handle);
NYX 0:85b3fd62ea1a 659 HAL_SPI_Init(handle);
NYX 0:85b3fd62ea1a 660 __HAL_SPI_ENABLE(handle);
NYX 0:85b3fd62ea1a 661 }
NYX 0:85b3fd62ea1a 662
NYX 0:85b3fd62ea1a 663 #endif //DEVICE_SPI_ASYNCH
NYX 0:85b3fd62ea1a 664
NYX 0:85b3fd62ea1a 665 #endif