Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: BLE_Acceleration_Statejudging
Fork of nRF51822 by
nordic/ble/ble_advdata.cpp
- Committer:
- MonroeLee
- Date:
- 2016-06-09
- Revision:
- 638:6efcf74f000d
- Parent:
- 65:98215c4f3a25
File content as of revision 638:6efcf74f000d:
/* Copyright (c) 2012 Nordic Semiconductor. All Rights Reserved.
*
* The information contained herein is property of Nordic Semiconductor ASA.
* Terms and conditions of usage are described in detail in NORDIC
* SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT.
*
* Licensees are granted free, non-transferable use of the information. NO
* WARRANTY of ANY KIND is provided. This heading must NOT be removed from
* the file.
*
*/
#include "ble_advdata.h"
#include "nordic_common.h"
#include "nrf_error.h"
#include "ble_gap.h"
#include "ble_srv_common.h"
#include "app_util.h"
// Offset from where advertisement data other than flags information can start.
#define ADV_FLAG_OFFSET 2
// Offset for Advertising Data.
// Offset is 2 as each Advertising Data contain 1 octet of Adveritising Data Type and
// one octet Advertising Data Length.
#define ADV_DATA_OFFSET 2
// NOTE: For now, Security Manager TK Value and Security Manager Out of Band Flags (OOB) are omitted
// from the advertising data.
static uint32_t name_encode(const ble_advdata_t * p_advdata,
uint8_t * p_encoded_data,
uint8_t * p_len)
{
uint32_t err_code;
uint16_t rem_adv_data_len;
uint16_t actual_length;
uint8_t adv_data_format;
uint8_t adv_offset;
adv_offset = *p_len;
// Check for buffer overflow.
if ((adv_offset + ADV_DATA_OFFSET > BLE_GAP_ADV_MAX_SIZE) ||
((p_advdata->short_name_len + ADV_DATA_OFFSET) > BLE_GAP_ADV_MAX_SIZE))
{
return NRF_ERROR_DATA_SIZE;
}
actual_length = rem_adv_data_len = (BLE_GAP_ADV_MAX_SIZE - adv_offset - ADV_FLAG_OFFSET);
// Get GAP device name and length
err_code = sd_ble_gap_device_name_get(&p_encoded_data[adv_offset + ADV_DATA_OFFSET],
&actual_length);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
// Check if device internd to use short name and it can fit available data size.
if ((p_advdata->name_type == BLE_ADVDATA_FULL_NAME) && (actual_length <= rem_adv_data_len))
{
// Complete device name can fit, setting Complete Name in Adv Data.
adv_data_format = BLE_GAP_AD_TYPE_COMPLETE_LOCAL_NAME;
rem_adv_data_len = actual_length;
}
else
{
// Else short name needs to be used. Or application has requested use of short name.
adv_data_format = BLE_GAP_AD_TYPE_SHORT_LOCAL_NAME;
// If application has set a preference on the short name size, it needs to be considered,
// else fit what can be fit.
if ((p_advdata->short_name_len != 0) && (p_advdata->short_name_len <= rem_adv_data_len))
{
// Short name fits available size.
rem_adv_data_len = p_advdata->short_name_len;
}
// Else whatever can fit the data buffer will be packed.
else
{
rem_adv_data_len = actual_length;
}
}
// Complete name field in encoded data.
p_encoded_data[adv_offset++] = rem_adv_data_len + 1;
p_encoded_data[adv_offset++] = adv_data_format;
(*p_len) += (rem_adv_data_len + ADV_DATA_OFFSET);
return NRF_SUCCESS;
}
static uint32_t appearance_encode(uint8_t * p_encoded_data, uint8_t * p_len)
{
uint32_t err_code;
uint16_t appearance;
// Check for buffer overflow.
if ((*p_len) + 4 > BLE_GAP_ADV_MAX_SIZE)
{
return NRF_ERROR_DATA_SIZE;
}
// Get GAP appearance field.
err_code = sd_ble_gap_appearance_get(&appearance);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
// Encode Length, AD Type and Appearance.
p_encoded_data[(*p_len)++] = 3;
p_encoded_data[(*p_len)++] = BLE_GAP_AD_TYPE_APPEARANCE;
(*p_len) += uint16_encode(appearance, &p_encoded_data[*p_len]);
return NRF_SUCCESS;
}
static uint32_t uint8_array_encode(const uint8_array_t * p_uint8_array,
uint8_t adv_type,
uint8_t * p_encoded_data,
uint8_t * p_len)
{
// Check parameter consistency.
if (p_uint8_array->p_data == NULL)
{
return NRF_ERROR_INVALID_PARAM;
}
// Check for buffer overflow.
if ((*p_len) + ADV_DATA_OFFSET + p_uint8_array->size > BLE_GAP_ADV_MAX_SIZE)
{
return NRF_ERROR_DATA_SIZE;
}
// Encode Length and AD Type.
p_encoded_data[(*p_len)++] = 1 + p_uint8_array->size;
p_encoded_data[(*p_len)++] = adv_type;
// Encode array.
memcpy(&p_encoded_data[*p_len], p_uint8_array->p_data, p_uint8_array->size);
(*p_len) += p_uint8_array->size;
return NRF_SUCCESS;
}
static uint32_t tx_power_level_encode(int8_t tx_power_level,
uint8_t * p_encoded_data,
uint8_t * p_len)
{
// Check for buffer overflow.
if ((*p_len) + 3 > BLE_GAP_ADV_MAX_SIZE)
{
return NRF_ERROR_DATA_SIZE;
}
// Encode TX Power Level.
p_encoded_data[(*p_len)++] = 2;
p_encoded_data[(*p_len)++] = BLE_GAP_AD_TYPE_TX_POWER_LEVEL;
p_encoded_data[(*p_len)++] = (uint8_t)tx_power_level;
return NRF_SUCCESS;
}
static uint32_t uuid_list_sized_encode(const ble_advdata_uuid_list_t * p_uuid_list,
uint8_t adv_type,
uint8_t uuid_size,
uint8_t * p_encoded_data,
uint8_t * p_len)
{
int i;
bool is_heading_written = false;
uint8_t start_pos = *p_len;
for (i = 0; i < p_uuid_list->uuid_cnt; i++)
{
uint32_t err_code;
uint8_t encoded_size;
ble_uuid_t uuid = p_uuid_list->p_uuids[i];
// Find encoded uuid size.
err_code = sd_ble_uuid_encode(&uuid, &encoded_size, NULL);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
// Check size.
if (encoded_size == uuid_size)
{
uint8_t heading_bytes = (is_heading_written) ? 0 : 2;
// Check for buffer overflow
if (*p_len + encoded_size + heading_bytes > BLE_GAP_ADV_MAX_SIZE)
{
return NRF_ERROR_DATA_SIZE;
}
if (!is_heading_written)
{
// Write AD structure heading.
(*p_len)++;
p_encoded_data[(*p_len)++] = adv_type;
is_heading_written = true;
}
// Write UUID.
err_code = sd_ble_uuid_encode(&uuid, &encoded_size, &p_encoded_data[*p_len]);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
(*p_len) += encoded_size;
}
}
if (is_heading_written)
{
// Write length.
p_encoded_data[start_pos] = (*p_len) - (start_pos + 1);
}
return NRF_SUCCESS;
}
static uint32_t uuid_list_encode(const ble_advdata_uuid_list_t * p_uuid_list,
uint8_t adv_type_16,
uint8_t adv_type_128,
uint8_t * p_encoded_data,
uint8_t * p_len)
{
uint32_t err_code;
// Encode 16 bit UUIDs.
err_code = uuid_list_sized_encode(p_uuid_list,
adv_type_16,
sizeof(uint16_le_t),
p_encoded_data,
p_len);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
// Encode 128 bit UUIDs.
err_code = uuid_list_sized_encode(p_uuid_list,
adv_type_128,
sizeof(ble_uuid128_t),
p_encoded_data,
p_len);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
return NRF_SUCCESS;
}
static uint32_t conn_int_check(const ble_advdata_conn_int_t *p_conn_int)
{
// Check Minimum Connection Interval.
if ((p_conn_int->min_conn_interval < 0x0006) ||
(
(p_conn_int->min_conn_interval > 0x0c80) &&
(p_conn_int->min_conn_interval != 0xffff)
)
)
{
return NRF_ERROR_INVALID_PARAM;
}
// Check Maximum Connection Interval.
if ((p_conn_int->max_conn_interval < 0x0006) ||
(
(p_conn_int->max_conn_interval > 0x0c80) &&
(p_conn_int->max_conn_interval != 0xffff)
)
)
{
return NRF_ERROR_INVALID_PARAM;
}
// Make sure Minimum Connection Interval is not bigger than Maximum Connection Interval.
if ((p_conn_int->min_conn_interval != 0xffff) &&
(p_conn_int->max_conn_interval != 0xffff) &&
(p_conn_int->min_conn_interval > p_conn_int->max_conn_interval)
)
{
return NRF_ERROR_INVALID_PARAM;
}
return NRF_SUCCESS;
}
static uint32_t conn_int_encode(const ble_advdata_conn_int_t * p_conn_int,
uint8_t * p_encoded_data,
uint8_t * p_len)
{
uint32_t err_code;
// Check for buffer overflow.
if ((*p_len) + ADV_DATA_OFFSET + 2 * sizeof(uint16_le_t) > BLE_GAP_ADV_MAX_SIZE)
{
return NRF_ERROR_DATA_SIZE;
}
// Check parameters.
err_code = conn_int_check(p_conn_int);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
// Encode Length and AD Type.
p_encoded_data[(*p_len)++] = 1 + 2 * sizeof(uint16_le_t);
p_encoded_data[(*p_len)++] = BLE_GAP_AD_TYPE_SLAVE_CONNECTION_INTERVAL_RANGE;
// Encode Minimum and Maximum Connection Intervals.
(*p_len) += uint16_encode(p_conn_int->min_conn_interval, &p_encoded_data[*p_len]);
(*p_len) += uint16_encode(p_conn_int->max_conn_interval, &p_encoded_data[*p_len]);
return NRF_SUCCESS;
}
static uint32_t manuf_specific_data_encode(const ble_advdata_manuf_data_t * p_manuf_sp_data,
uint8_t * p_encoded_data,
uint8_t * p_len)
{
uint8_t data_size = sizeof(uint16_le_t) + p_manuf_sp_data->data.size;
// Check for buffer overflow.
if ((*p_len) + ADV_DATA_OFFSET + data_size > BLE_GAP_ADV_MAX_SIZE)
{
return NRF_ERROR_DATA_SIZE;
}
// Encode Length and AD Type.
p_encoded_data[(*p_len)++] = 1 + data_size;
p_encoded_data[(*p_len)++] = BLE_GAP_AD_TYPE_MANUFACTURER_SPECIFIC_DATA;
// Encode Company Identifier.
(*p_len) += uint16_encode(p_manuf_sp_data->company_identifier, &p_encoded_data[*p_len]);
// Encode additional manufacturer specific data.
if (p_manuf_sp_data->data.size > 0)
{
if (p_manuf_sp_data->data.p_data == NULL)
{
return NRF_ERROR_INVALID_PARAM;
}
memcpy(&p_encoded_data[*p_len], p_manuf_sp_data->data.p_data, p_manuf_sp_data->data.size);
(*p_len) += p_manuf_sp_data->data.size;
}
return NRF_SUCCESS;
}
static uint32_t service_data_encode(const ble_advdata_t * p_advdata,
uint8_t * p_encoded_data,
uint8_t * p_len)
{
uint8_t i;
// Check parameter consistency.
if (p_advdata->p_service_data_array == NULL)
{
return NRF_ERROR_INVALID_PARAM;
}
for (i = 0; i < p_advdata->service_data_count; i++)
{
ble_advdata_service_data_t * p_service_data;
uint8_t data_size;
p_service_data = &p_advdata->p_service_data_array[i];
data_size = sizeof(uint16_le_t) + p_service_data->data.size;
// Encode Length and AD Type.
p_encoded_data[(*p_len)++] = 1 + data_size;
p_encoded_data[(*p_len)++] = BLE_GAP_AD_TYPE_SERVICE_DATA;
// Encode service UUID.
(*p_len) += uint16_encode(p_service_data->service_uuid, &p_encoded_data[*p_len]);
// Encode additional service data.
if (p_service_data->data.size > 0)
{
if (p_service_data->data.p_data == NULL)
{
return NRF_ERROR_INVALID_PARAM;
}
memcpy(&p_encoded_data[*p_len], p_service_data->data.p_data, p_service_data->data.size);
(*p_len) += p_service_data->data.size;
}
}
return NRF_SUCCESS;
}
static uint32_t adv_data_encode(const ble_advdata_t * p_advdata,
uint8_t * p_encoded_data,
uint8_t * p_len)
{
uint32_t err_code = NRF_SUCCESS;
*p_len = 0;
// Encode name.
if (p_advdata->name_type != BLE_ADVDATA_NO_NAME)
{
err_code = name_encode(p_advdata, p_encoded_data, p_len);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
}
// Encode appearance.
if (p_advdata->include_appearance)
{
err_code = appearance_encode(p_encoded_data, p_len);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
}
// Encode flags.
if (p_advdata->flags.size > 0)
{
err_code = uint8_array_encode(&p_advdata->flags,
BLE_GAP_AD_TYPE_FLAGS,
p_encoded_data,
p_len);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
}
// Encode TX power level.
if (p_advdata->p_tx_power_level != NULL)
{
err_code = tx_power_level_encode(*p_advdata->p_tx_power_level, p_encoded_data, p_len);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
}
// Encode 'more available' uuid list.
if (p_advdata->uuids_more_available.uuid_cnt > 0)
{
err_code = uuid_list_encode(&p_advdata->uuids_more_available,
BLE_GAP_AD_TYPE_16BIT_SERVICE_UUID_MORE_AVAILABLE,
BLE_GAP_AD_TYPE_128BIT_SERVICE_UUID_MORE_AVAILABLE,
p_encoded_data,
p_len);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
}
// Encode 'complete' uuid list.
if (p_advdata->uuids_complete.uuid_cnt > 0)
{
err_code = uuid_list_encode(&p_advdata->uuids_complete,
BLE_GAP_AD_TYPE_16BIT_SERVICE_UUID_COMPLETE,
BLE_GAP_AD_TYPE_128BIT_SERVICE_UUID_COMPLETE,
p_encoded_data,
p_len);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
}
// Encode 'solicited service' uuid list.
if (p_advdata->uuids_solicited.uuid_cnt > 0)
{
err_code = uuid_list_encode(&p_advdata->uuids_solicited,
BLE_GAP_AD_TYPE_SOLICITED_SERVICE_UUIDS_16BIT,
BLE_GAP_AD_TYPE_SOLICITED_SERVICE_UUIDS_128BIT,
p_encoded_data,
p_len);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
}
// Encode Slave Connection Interval Range.
if (p_advdata->p_slave_conn_int != NULL)
{
err_code = conn_int_encode(p_advdata->p_slave_conn_int, p_encoded_data, p_len);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
}
// Encode Manufacturer Specific Data.
if (p_advdata->p_manuf_specific_data != NULL)
{
err_code = manuf_specific_data_encode(p_advdata->p_manuf_specific_data,
p_encoded_data,
p_len);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
}
// Encode Service Data.
if (p_advdata->service_data_count > 0)
{
err_code = service_data_encode(p_advdata, p_encoded_data, p_len);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
}
return err_code;
}
static uint32_t advdata_check(const ble_advdata_t * p_advdata)
{
// Flags must be included in advertising data, and the BLE_GAP_ADV_FLAG_BR_EDR_NOT_SUPPORTED flag must be set.
if ((p_advdata->flags.size == 0) ||
(p_advdata->flags.p_data == NULL) ||
((p_advdata->flags.p_data[0] & BLE_GAP_ADV_FLAG_BR_EDR_NOT_SUPPORTED) == 0)
)
{
return NRF_ERROR_INVALID_PARAM;
}
return NRF_SUCCESS;
}
static uint32_t srdata_check(const ble_advdata_t * p_srdata)
{
// Flags shall not be included in the scan response data.
if (p_srdata->flags.size > 0)
{
return NRF_ERROR_INVALID_PARAM;
}
return NRF_SUCCESS;
}
uint32_t ble_advdata_set(const ble_advdata_t * p_advdata, const ble_advdata_t * p_srdata)
{
uint32_t err_code;
uint8_t len_advdata = 0;
uint8_t len_srdata = 0;
uint8_t encoded_advdata[BLE_GAP_ADV_MAX_SIZE];
uint8_t encoded_srdata[BLE_GAP_ADV_MAX_SIZE];
uint8_t * p_encoded_advdata;
uint8_t * p_encoded_srdata;
// Encode advertising data (if supplied).
if (p_advdata != NULL)
{
err_code = advdata_check(p_advdata);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
err_code = adv_data_encode(p_advdata, encoded_advdata, &len_advdata);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
p_encoded_advdata = encoded_advdata;
}
else
{
p_encoded_advdata = NULL;
}
// Encode scan response data (if supplied).
if (p_srdata != NULL)
{
err_code = srdata_check(p_srdata);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
err_code = adv_data_encode(p_srdata, encoded_srdata, &len_srdata);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
p_encoded_srdata = encoded_srdata;
}
else
{
p_encoded_srdata = NULL;
}
// Pass encoded advertising data and/or scan response data to the stack.
return sd_ble_gap_adv_data_set(p_encoded_advdata, len_advdata, p_encoded_srdata, len_srdata);
}
