rc
Dependents: WizFi250_AP_HelloWorld
Fork of mbed-src by
targets/cmsis/core_cmInstr.h
- Committer:
- kaizen
- Date:
- 2015-08-24
- Revision:
- 617:d1b257119699
- Parent:
- 13:0645d8841f51
File content as of revision 617:d1b257119699:
/**************************************************************************//** * @file core_cmInstr.h * @brief CMSIS Cortex-M Core Instruction Access Header File * @version V3.20 * @date 05. March 2013 * * @note * ******************************************************************************/ /* Copyright (c) 2009 - 2013 ARM LIMITED All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of ARM nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------*/ #ifndef __CORE_CMINSTR_H #define __CORE_CMINSTR_H /* ########################## Core Instruction Access ######################### */ /** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface Access to dedicated instructions @{ */ #if defined ( __CC_ARM ) /*------------------RealView Compiler -----------------*/ /* ARM armcc specific functions */ #if (__ARMCC_VERSION < 400677) #error "Please use ARM Compiler Toolchain V4.0.677 or later!" #endif /** \brief No Operation No Operation does nothing. This instruction can be used for code alignment purposes. */ #define __NOP __nop /** \brief Wait For Interrupt Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs. */ #define __WFI __wfi /** \brief Wait For Event Wait For Event is a hint instruction that permits the processor to enter a low-power state until one of a number of events occurs. */ #define __WFE __wfe /** \brief Send Event Send Event is a hint instruction. It causes an event to be signaled to the CPU. */ #define __SEV __sev /** \brief Instruction Synchronization Barrier Instruction Synchronization Barrier flushes the pipeline in the processor, so that all instructions following the ISB are fetched from cache or memory, after the instruction has been completed. */ #define __ISB() __isb(0xF) /** \brief Data Synchronization Barrier This function acts as a special kind of Data Memory Barrier. It completes when all explicit memory accesses before this instruction complete. */ #define __DSB() __dsb(0xF) /** \brief Data Memory Barrier This function ensures the apparent order of the explicit memory operations before and after the instruction, without ensuring their completion. */ #define __DMB() __dmb(0xF) /** \brief Reverse byte order (32 bit) This function reverses the byte order in integer value. \param [in] value Value to reverse \return Reversed value */ #define __REV __rev /** \brief Reverse byte order (16 bit) This function reverses the byte order in two unsigned short values. \param [in] value Value to reverse \return Reversed value */ #ifndef __NO_EMBEDDED_ASM __attribute__((section(".rev16_text"))) __STATIC_INLINE __ASM uint32_t __REV16(uint32_t value) { rev16 r0, r0 bx lr } #endif /** \brief Reverse byte order in signed short value This function reverses the byte order in a signed short value with sign extension to integer. \param [in] value Value to reverse \return Reversed value */ #ifndef __NO_EMBEDDED_ASM __attribute__((section(".revsh_text"))) __STATIC_INLINE __ASM int32_t __REVSH(int32_t value) { revsh r0, r0 bx lr } #endif /** \brief Rotate Right in unsigned value (32 bit) This function Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits. \param [in] value Value to rotate \param [in] value Number of Bits to rotate \return Rotated value */ #define __ROR __ror /** \brief Breakpoint This function causes the processor to enter Debug state. Debug tools can use this to investigate system state when the instruction at a particular address is reached. \param [in] value is ignored by the processor. If required, a debugger can use it to store additional information about the breakpoint. */ #define __BKPT(value) __breakpoint(value) #if (__CORTEX_M >= 0x03) /** \brief Reverse bit order of value This function reverses the bit order of the given value. \param [in] value Value to reverse \return Reversed value */ #define __RBIT __rbit /** \brief LDR Exclusive (8 bit) This function performs a exclusive LDR command for 8 bit value. \param [in] ptr Pointer to data \return value of type uint8_t at (*ptr) */ #define __LDREXB(ptr) ((uint8_t ) __ldrex(ptr)) /** \brief LDR Exclusive (16 bit) This function performs a exclusive LDR command for 16 bit values. \param [in] ptr Pointer to data \return value of type uint16_t at (*ptr) */ #define __LDREXH(ptr) ((uint16_t) __ldrex(ptr)) /** \brief LDR Exclusive (32 bit) This function performs a exclusive LDR command for 32 bit values. \param [in] ptr Pointer to data \return value of type uint32_t at (*ptr) */ #define __LDREXW(ptr) ((uint32_t ) __ldrex(ptr)) /** \brief STR Exclusive (8 bit) This function performs a exclusive STR command for 8 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ #define __STREXB(value, ptr) __strex(value, ptr) /** \brief STR Exclusive (16 bit) This function performs a exclusive STR command for 16 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ #define __STREXH(value, ptr) __strex(value, ptr) /** \brief STR Exclusive (32 bit) This function performs a exclusive STR command for 32 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ #define __STREXW(value, ptr) __strex(value, ptr) /** \brief Remove the exclusive lock This function removes the exclusive lock which is created by LDREX. */ #define __CLREX __clrex /** \brief Signed Saturate This function saturates a signed value. \param [in] value Value to be saturated \param [in] sat Bit position to saturate to (1..32) \return Saturated value */ #define __SSAT __ssat /** \brief Unsigned Saturate This function saturates an unsigned value. \param [in] value Value to be saturated \param [in] sat Bit position to saturate to (0..31) \return Saturated value */ #define __USAT __usat /** \brief Count leading zeros This function counts the number of leading zeros of a data value. \param [in] value Value to count the leading zeros \return number of leading zeros in value */ #define __CLZ __clz #endif /* (__CORTEX_M >= 0x03) */ #elif defined ( __ICCARM__ ) /*------------------ ICC Compiler -------------------*/ /* IAR iccarm specific functions */ #include <cmsis_iar.h> #elif defined ( __TMS470__ ) /*---------------- TI CCS Compiler ------------------*/ /* TI CCS specific functions */ #include <cmsis_ccs.h> #elif defined ( __GNUC__ ) /*------------------ GNU Compiler ---------------------*/ /* GNU gcc specific functions */ /* Define macros for porting to both thumb1 and thumb2. * For thumb1, use low register (r0-r7), specified by constrant "l" * Otherwise, use general registers, specified by constrant "r" */ #if defined (__thumb__) && !defined (__thumb2__) #define __CMSIS_GCC_OUT_REG(r) "=l" (r) #define __CMSIS_GCC_USE_REG(r) "l" (r) #else #define __CMSIS_GCC_OUT_REG(r) "=r" (r) #define __CMSIS_GCC_USE_REG(r) "r" (r) #endif /** \brief No Operation No Operation does nothing. This instruction can be used for code alignment purposes. */ __attribute__( ( always_inline ) ) __STATIC_INLINE void __NOP(void) { __ASM volatile ("nop"); } /** \brief Wait For Interrupt Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs. */ __attribute__( ( always_inline ) ) __STATIC_INLINE void __WFI(void) { __ASM volatile ("wfi"); } /** \brief Wait For Event Wait For Event is a hint instruction that permits the processor to enter a low-power state until one of a number of events occurs. */ __attribute__( ( always_inline ) ) __STATIC_INLINE void __WFE(void) { __ASM volatile ("wfe"); } /** \brief Send Event Send Event is a hint instruction. It causes an event to be signaled to the CPU. */ __attribute__( ( always_inline ) ) __STATIC_INLINE void __SEV(void) { __ASM volatile ("sev"); } /** \brief Instruction Synchronization Barrier Instruction Synchronization Barrier flushes the pipeline in the processor, so that all instructions following the ISB are fetched from cache or memory, after the instruction has been completed. */ __attribute__( ( always_inline ) ) __STATIC_INLINE void __ISB(void) { __ASM volatile ("isb"); } /** \brief Data Synchronization Barrier This function acts as a special kind of Data Memory Barrier. It completes when all explicit memory accesses before this instruction complete. */ __attribute__( ( always_inline ) ) __STATIC_INLINE void __DSB(void) { __ASM volatile ("dsb"); } /** \brief Data Memory Barrier This function ensures the apparent order of the explicit memory operations before and after the instruction, without ensuring their completion. */ __attribute__( ( always_inline ) ) __STATIC_INLINE void __DMB(void) { __ASM volatile ("dmb"); } /** \brief Reverse byte order (32 bit) This function reverses the byte order in integer value. \param [in] value Value to reverse \return Reversed value */ __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __REV(uint32_t value) { #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5) return __builtin_bswap32(value); #else uint32_t result; __ASM volatile ("rev %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); return(result); #endif } /** \brief Reverse byte order (16 bit) This function reverses the byte order in two unsigned short values. \param [in] value Value to reverse \return Reversed value */ __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __REV16(uint32_t value) { uint32_t result; __ASM volatile ("rev16 %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); return(result); } /** \brief Reverse byte order in signed short value This function reverses the byte order in a signed short value with sign extension to integer. \param [in] value Value to reverse \return Reversed value */ __attribute__( ( always_inline ) ) __STATIC_INLINE int32_t __REVSH(int32_t value) { #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) return (short)__builtin_bswap16(value); #else uint32_t result; __ASM volatile ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); return(result); #endif } /** \brief Rotate Right in unsigned value (32 bit) This function Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits. \param [in] value Value to rotate \param [in] value Number of Bits to rotate \return Rotated value */ __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __ROR(uint32_t op1, uint32_t op2) { return (op1 >> op2) | (op1 << (32 - op2)); } /** \brief Breakpoint This function causes the processor to enter Debug state. Debug tools can use this to investigate system state when the instruction at a particular address is reached. \param [in] value is ignored by the processor. If required, a debugger can use it to store additional information about the breakpoint. */ #define __BKPT(value) __ASM volatile ("bkpt "#value) #if (__CORTEX_M >= 0x03) /** \brief Reverse bit order of value This function reverses the bit order of the given value. \param [in] value Value to reverse \return Reversed value */ __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __RBIT(uint32_t value) { uint32_t result; __ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) ); return(result); } /** \brief LDR Exclusive (8 bit) This function performs a exclusive LDR command for 8 bit value. \param [in] ptr Pointer to data \return value of type uint8_t at (*ptr) */ __attribute__( ( always_inline ) ) __STATIC_INLINE uint8_t __LDREXB(volatile uint8_t *addr) { uint32_t result; #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) __ASM volatile ("ldrexb %0, %1" : "=r" (result) : "Q" (*addr) ); #else /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not accepted by assembler. So has to use following less efficient pattern. */ __ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) : "memory" ); #endif return(result); } /** \brief LDR Exclusive (16 bit) This function performs a exclusive LDR command for 16 bit values. \param [in] ptr Pointer to data \return value of type uint16_t at (*ptr) */ __attribute__( ( always_inline ) ) __STATIC_INLINE uint16_t __LDREXH(volatile uint16_t *addr) { uint32_t result; #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) __ASM volatile ("ldrexh %0, %1" : "=r" (result) : "Q" (*addr) ); #else /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not accepted by assembler. So has to use following less efficient pattern. */ __ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) : "memory" ); #endif return(result); } /** \brief LDR Exclusive (32 bit) This function performs a exclusive LDR command for 32 bit values. \param [in] ptr Pointer to data \return value of type uint32_t at (*ptr) */ __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __LDREXW(volatile uint32_t *addr) { uint32_t result; __ASM volatile ("ldrex %0, %1" : "=r" (result) : "Q" (*addr) ); return(result); } /** \brief STR Exclusive (8 bit) This function performs a exclusive STR command for 8 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr) { uint32_t result; __ASM volatile ("strexb %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) ); return(result); } /** \brief STR Exclusive (16 bit) This function performs a exclusive STR command for 16 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr) { uint32_t result; __ASM volatile ("strexh %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) ); return(result); } /** \brief STR Exclusive (32 bit) This function performs a exclusive STR command for 32 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr) { uint32_t result; __ASM volatile ("strex %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) ); return(result); } /** \brief Remove the exclusive lock This function removes the exclusive lock which is created by LDREX. */ __attribute__( ( always_inline ) ) __STATIC_INLINE void __CLREX(void) { __ASM volatile ("clrex" ::: "memory"); } /** \brief Signed Saturate This function saturates a signed value. \param [in] value Value to be saturated \param [in] sat Bit position to saturate to (1..32) \return Saturated value */ #define __SSAT(ARG1,ARG2) \ ({ \ uint32_t __RES, __ARG1 = (ARG1); \ __ASM ("ssat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \ __RES; \ }) /** \brief Unsigned Saturate This function saturates an unsigned value. \param [in] value Value to be saturated \param [in] sat Bit position to saturate to (0..31) \return Saturated value */ #define __USAT(ARG1,ARG2) \ ({ \ uint32_t __RES, __ARG1 = (ARG1); \ __ASM ("usat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \ __RES; \ }) /** \brief Count leading zeros This function counts the number of leading zeros of a data value. \param [in] value Value to count the leading zeros \return number of leading zeros in value */ __attribute__( ( always_inline ) ) __STATIC_INLINE uint8_t __CLZ(uint32_t value) { uint32_t result; __ASM volatile ("clz %0, %1" : "=r" (result) : "r" (value) ); return(result); } #endif /* (__CORTEX_M >= 0x03) */ #elif defined ( __TASKING__ ) /*------------------ TASKING Compiler --------------*/ /* TASKING carm specific functions */ /* * The CMSIS functions have been implemented as intrinsics in the compiler. * Please use "carm -?i" to get an up to date list of all intrinsics, * Including the CMSIS ones. */ #endif /*@}*/ /* end of group CMSIS_Core_InstructionInterface */ #endif /* __CORE_CMINSTR_H */