Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: WizFi250_AP_HelloWorld
Fork of mbed-src by
targets/hal/TARGET_Freescale/TARGET_KPSDK_MCUS/TARGET_K64F/serial_api.c
- Committer:
- mbed_official
- Date:
- 2014-06-11
- Revision:
- 227:7bd0639b8911
- Parent:
- 188:e2558dbb5ee5
- Child:
- 265:9632ea190e16
File content as of revision 227:7bd0639b8911:
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "serial_api.h"
// math.h required for floating point operations for baud rate calculation
#include <math.h>
#include "mbed_assert.h"
#include <string.h>
#include "cmsis.h"
#include "pinmap.h"
#include "fsl_uart_hal.h"
#include "fsl_clock_manager.h"
#include "fsl_uart_features.h"
/* TODO:
putchar/getchar 9 and 10 bits support
*/
static const PinMap PinMap_UART_TX[] = {
{PTB17, UART_0, 3},
{PTC17, UART_3, 3},
{PTD7 , UART_0, 3},
{PTD3 , UART_2, 3},
{PTC4 , UART_1, 3},
{PTC15, UART_4, 3},
{PTB11, UART_3, 3},
{PTA14, UART_0, 3},
{PTE24, UART_4, 3},
{PTE4 , UART_3, 3},
{PTE0, UART_1, 3},
{NC , NC , 0}
};
static const PinMap PinMap_UART_RX[] = {
{PTB16, UART_0, 3},
{PTE1 , UART_1, 3},
{PTE5 , UART_3, 3},
{PTE25, UART_4, 3},
{PTA15, UART_0, 3},
{PTC16, UART_3, 3},
{PTB10, UART_3, 3},
{PTC3 , UART_1, 3},
{PTC14, UART_4, 3},
{PTD2 , UART_2, 3},
{PTC6 , UART_0, 3},
{NC , NC , 0}
};
#define UART_NUM 4
static uint32_t serial_irq_ids[UART_NUM] = {0};
static uart_irq_handler irq_handler;
int stdio_uart_inited = 0;
serial_t stdio_uart;
static uint32_t serial_get_clock(uint32_t uart_instance)
{
uint32_t uartSourceClock;
if ((uart_instance == 0) || (uart_instance == 1)) {
clock_manager_get_frequency(kSystemClock, &uartSourceClock);
} else {
clock_manager_get_frequency(kBusClock, &uartSourceClock);
}
return uartSourceClock;
}
void serial_init(serial_t *obj, PinName tx, PinName rx) {
uint32_t uart_tx = pinmap_peripheral(tx, PinMap_UART_TX);
uint32_t uart_rx = pinmap_peripheral(rx, PinMap_UART_RX);
obj->index = (UARTName)pinmap_merge(uart_tx, uart_rx);
MBED_ASSERT((int)obj->index != NC);
uart_config_t uart_config;
uart_config.baudRate = 9600;
uart_config.bitCountPerChar = kUart8BitsPerChar;
uart_config.parityMode = kUartParityDisabled;
uart_config.rxDataInvert = 0;
uart_config.stopBitCount = kUartOneStopBit;
uart_config.txDataInvert = 0;
uart_config.uartSourceClockInHz = serial_get_clock(obj->index);
clock_manager_set_gate(kClockModuleUART, obj->index, true);
uart_hal_init(obj->index, &uart_config);
pinmap_pinout(tx, PinMap_UART_TX);
pinmap_pinout(rx, PinMap_UART_RX);
pin_mode(tx, PullUp);
pin_mode(rx, PullUp);
if (obj->index == STDIO_UART) {
stdio_uart_inited = 1;
memcpy(&stdio_uart, obj, sizeof(serial_t));
}
}
void serial_free(serial_t *obj) {
serial_irq_ids[obj->index] = 0;
}
void serial_baud(serial_t *obj, int baudrate) {
uart_hal_set_baud_rate(obj->index, serial_get_clock(obj->index), (uint32_t)baudrate);
}
void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) {
uart_hal_configure_bit_count_per_char(obj->index, (uart_bit_count_per_char_t)data_bits);
uart_hal_configure_parity_mode(obj->index, (uart_parity_mode_t)parity);
uart_hal_configure_stop_bit_count(obj->index, (uart_stop_bit_count_t)stop_bits);
}
/******************************************************************************
* INTERRUPTS HANDLING
******************************************************************************/
static inline void uart_irq(uint32_t transmit_empty, uint32_t receive_full, uint32_t index) {
if (serial_irq_ids[index] != 0) {
if (transmit_empty)
irq_handler(serial_irq_ids[index], TxIrq);
if (receive_full)
irq_handler(serial_irq_ids[index], RxIrq);
}
}
void uart0_irq() {
uart_irq(uart_hal_is_transmit_data_register_empty(0), uart_hal_is_receive_data_register_full(0), 0);
if (uart_hal_is_receive_overrun_detected(0))
uart_hal_clear_status_flag(0, kUartReceiveOverrun);
}
void uart1_irq() {
uart_irq(uart_hal_is_transmit_data_register_empty(1), uart_hal_is_receive_data_register_full(1), 1);
}
void uart2_irq() {
uart_irq(uart_hal_is_transmit_data_register_empty(2), uart_hal_is_receive_data_register_full(2), 2);
}
void uart3_irq() {
uart_irq(uart_hal_is_transmit_data_register_empty(3), uart_hal_is_receive_data_register_full(3), 3);
}
void uart4_irq() {
uart_irq(uart_hal_is_transmit_data_register_empty(4), uart_hal_is_receive_data_register_full(4), 4);
}
void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) {
irq_handler = handler;
serial_irq_ids[obj->index] = id;
}
void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) {
IRQn_Type irq_n = (IRQn_Type)0;
uint32_t vector = 0;
switch (obj->index) {
case 0: irq_n=UART0_RX_TX_IRQn; vector = (uint32_t)&uart0_irq; break;
case 1: irq_n=UART1_RX_TX_IRQn; vector = (uint32_t)&uart1_irq; break;
case 2: irq_n=UART2_RX_TX_IRQn; vector = (uint32_t)&uart2_irq; break;
case 3: irq_n=UART3_RX_TX_IRQn; vector = (uint32_t)&uart3_irq; break;
case 4: irq_n=UART4_RX_TX_IRQn; vector = (uint32_t)&uart4_irq; break;
}
if (enable) {
switch (irq) {
case RxIrq: uart_hal_enable_rx_data_register_full_interrupt(obj->index); break;
case TxIrq: uart_hal_enable_tx_data_register_empty_interrupt(obj->index); break;
}
NVIC_SetVector(irq_n, vector);
NVIC_EnableIRQ(irq_n);
} else { // disable
int all_disabled = 0;
SerialIrq other_irq = (irq == RxIrq) ? (TxIrq) : (RxIrq);
switch (irq) {
case RxIrq: uart_hal_disable_rx_data_register_full_interrupt(obj->index); break;
case TxIrq: uart_hal_disable_tx_data_register_empty_interrupt(obj->index); break;
}
switch (other_irq) {
case RxIrq: all_disabled = uart_hal_is_receive_data_full_interrupt_enabled(obj->index) == 0; break;
case TxIrq: all_disabled = uart_hal_is_tx_data_register_empty_interrupt_enabled(obj->index) == 0; break;
}
if (all_disabled)
NVIC_DisableIRQ(irq_n);
}
}
int serial_getc(serial_t *obj) {
while (!serial_readable(obj));
uint8_t data;
uart_hal_getchar(obj->index, &data);
return data;
}
void serial_putc(serial_t *obj, int c) {
while (!serial_writable(obj));
uart_hal_putchar(obj->index, (uint8_t)c);
}
int serial_readable(serial_t *obj) {
if (uart_hal_is_receive_overrun_detected(obj->index))
uart_hal_clear_status_flag(obj->index, kUartReceiveOverrun);
return uart_hal_is_receive_data_register_full(obj->index);
}
int serial_writable(serial_t *obj) {
if (uart_hal_is_receive_overrun_detected(obj->index))
uart_hal_clear_status_flag(obj->index, kUartReceiveOverrun);
return uart_hal_is_transmit_data_register_empty(obj->index);
}
void serial_clear(serial_t *obj) {
}
void serial_pinout_tx(PinName tx) {
pinmap_pinout(tx, PinMap_UART_TX);
}
void serial_break_set(serial_t *obj) {
uart_hal_queue_break_char_to_send(obj->index, true);
}
void serial_break_clear(serial_t *obj) {
uart_hal_queue_break_char_to_send(obj->index, false);
}
