The official mbed C/C SDK provides the software platform and libraries to build your applications.
Fork of mbed by
TARGET_RZ_A1H/TOOLCHAIN_GCC_ARM/RZA1H.ld
- Committer:
- Kojto
- Date:
- 2015-03-04
- Revision:
- 95:7e07b6fb45cf
File content as of revision 95:7e07b6fb45cf:
/* Linker script for mbed RZ_A1H */ /* Linker script to configure memory regions. */ MEMORY { ROM (rx) : ORIGIN = 0x00000000, LENGTH = 0x02000000 BOOT_LOADER (rx) : ORIGIN = 0x18000000, LENGTH = 0x00004000 SFLASH (rx) : ORIGIN = 0x18004000, LENGTH = 0x07FFC000 L_TTB (rw) : ORIGIN = 0x20000000, LENGTH = 0x00004000 RAM (rwx) : ORIGIN = 0x20020000, LENGTH = 0x00700000 RAM_NC (rwx) : ORIGIN = 0x20900000, LENGTH = 0x00100000 } /* Linker script to place sections and symbol values. Should be used together * with other linker script that defines memory regions FLASH and RAM. * It references following symbols, which must be defined in code: * Reset_Handler : Entry of reset handler * * It defines following symbols, which code can use without definition: * __exidx_start * __exidx_end * __etext * __data_start__ * __preinit_array_start * __preinit_array_end * __init_array_start * __init_array_end * __fini_array_start * __fini_array_end * __data_end__ * __bss_start__ * __bss_end__ * __end__ * end * __HeapLimit * __StackLimit * __StackTop * __stack */ ENTRY(Reset_Handler) SECTIONS { .boot : { KEEP(*(.boot_loader)) } > BOOT_LOADER .text : { Image$$VECTORS$$Base = .; * (RESET) Image$$VECTORS$$Limit = .; . += 0x00000400; KEEP(*(.isr_vector)) *(SVC_TABLE) *(.text*) KEEP(*(.init)) KEEP(*(.fini)) /* .ctors */ *crtbegin.o(.ctors) *crtbegin?.o(.ctors) *(EXCLUDE_FILE(*crtend?.o *crtend.o) .ctors) *(SORT(.ctors.*)) *(.ctors) /* .dtors */ *crtbegin.o(.dtors) *crtbegin?.o(.dtors) *(EXCLUDE_FILE(*crtend?.o *crtend.o) .dtors) *(SORT(.dtors.*)) *(.dtors) Image$$RO_DATA$$Base = .; *(.rodata*) Image$$RO_DATA$$Limit = .; KEEP(*(.eh_frame*)) } > SFLASH .ARM.extab : { *(.ARM.extab* .gnu.linkonce.armextab.*) } > SFLASH __exidx_start = .; .ARM.exidx : { *(.ARM.exidx* .gnu.linkonce.armexidx.*) } > SFLASH __exidx_end = .; .copy.table : { . = ALIGN(4); __copy_table_start__ = .; LONG (__etext) LONG (__data_start__) LONG (__data_end__ - __data_start__) LONG (__etext2) LONG (__nc_data_start) LONG (__nc_data_end - __nc_data_start) __copy_table_end__ = .; } > SFLASH .zero.table : { . = ALIGN(4); __zero_table_start__ = .; LONG (__bss_start__) LONG (__bss_end__ - __bss_start__) LONG (__nc_bss_start) LONG (__nc_bss_end - __nc_bss_start) __zero_table_end__ = .; } > SFLASH __etext = .; .ttb : { Image$$TTB$$ZI$$Base = .; . += 0x00004000; Image$$TTB$$ZI$$Limit = .; } > L_TTB .data : AT (__etext) { Image$$RW_DATA$$Base = .; __data_start__ = .; *(vtable) *(.data*) Image$$RW_DATA$$Limit = .; . = ALIGN(4); /* preinit data */ PROVIDE (__preinit_array_start = .); KEEP(*(.preinit_array)) PROVIDE (__preinit_array_end = .); . = ALIGN(4); /* init data */ PROVIDE (__init_array_start = .); KEEP(*(SORT(.init_array.*))) KEEP(*(.init_array)) PROVIDE (__init_array_end = .); . = ALIGN(4); /* finit data */ PROVIDE (__fini_array_start = .); KEEP(*(SORT(.fini_array.*))) KEEP(*(.fini_array)) PROVIDE (__fini_array_end = .); . = ALIGN(4); /* All data end */ __data_end__ = .; } > RAM .bss ALIGN(0x400): { Image$$ZI_DATA$$Base = .; __bss_start__ = .; *(.bss*) *(COMMON) __bss_end__ = .; Image$$ZI_DATA$$Limit = .; } > RAM .heap : { __end__ = .; end = __end__; *(.heap*) __HeapLimit = .; } > RAM /* .stack_dummy section doesn't contains any symbols. It is only * used for linker to calculate size of stack sections, and assign * values to stack symbols later */ .stack_dummy : { *(.stack) } > RAM __etext2 = __etext + SIZEOF(.data); .nc_data : AT (__etext2) { Image$$RW_DATA_NC$$Base = .; __nc_data_start = .; *(NC_DATA) . = ALIGN(4); __nc_data_end = .; Image$$RW_DATA_NC$$Limit = .; } > RAM_NC .nc_bss (NOLOAD) : { Image$$ZI_DATA_NC$$Base = .; __nc_bss_start = .; *(NC_BSS) . = ALIGN(4); __nc_bss_end = .; Image$$ZI_DATA_NC$$Limit = .; } > RAM_NC /* Set stack top to end of RAM, and stack limit move down by * size of stack_dummy section */ __StackTop = ORIGIN(RAM) + LENGTH(RAM); __StackLimit = __StackTop - SIZEOF(.stack_dummy); PROVIDE(__stack = __StackTop); /* Check if data + heap + stack exceeds RAM limit */ ASSERT(__StackLimit >= __HeapLimit, "region RAM overflowed with stack") }