The official mbed C/C SDK provides the software platform and libraries to build your applications.
Fork of mbed by
TARGET_LPC11U68/core_caFunc.h
- Committer:
- Kojto
- Date:
- 2015-03-04
- Revision:
- 95:7e07b6fb45cf
- Parent:
- 92:4fc01daae5a5
File content as of revision 95:7e07b6fb45cf:
/**************************************************************************//** * @file core_caFunc.h * @brief CMSIS Cortex-A Core Function Access Header File * @version V3.10 * @date 9 May 2013 * * @note * ******************************************************************************/ /* Copyright (c) 2009 - 2012 ARM LIMITED All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of ARM nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------*/ #ifndef __CORE_CAFUNC_H__ #define __CORE_CAFUNC_H__ /* ########################### Core Function Access ########################### */ /** \ingroup CMSIS_Core_FunctionInterface \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions @{ */ #if defined ( __CC_ARM ) /*------------------RealView Compiler -----------------*/ /* ARM armcc specific functions */ #if (__ARMCC_VERSION < 400677) #error "Please use ARM Compiler Toolchain V4.0.677 or later!" #endif #define MODE_USR 0x10 #define MODE_FIQ 0x11 #define MODE_IRQ 0x12 #define MODE_SVC 0x13 #define MODE_MON 0x16 #define MODE_ABT 0x17 #define MODE_HYP 0x1A #define MODE_UND 0x1B #define MODE_SYS 0x1F /** \brief Get APSR Register This function returns the content of the APSR Register. \return APSR Register value */ __STATIC_INLINE uint32_t __get_APSR(void) { register uint32_t __regAPSR __ASM("apsr"); return(__regAPSR); } /** \brief Get CPSR Register This function returns the content of the CPSR Register. \return CPSR Register value */ __STATIC_INLINE uint32_t __get_CPSR(void) { register uint32_t __regCPSR __ASM("cpsr"); return(__regCPSR); } /** \brief Set Stack Pointer This function assigns the given value to the current stack pointer. \param [in] topOfStack Stack Pointer value to set */ register uint32_t __regSP __ASM("sp"); __STATIC_INLINE void __set_SP(uint32_t topOfStack) { __regSP = topOfStack; } /** \brief Get link register This function returns the value of the link register \return Value of link register */ register uint32_t __reglr __ASM("lr"); __STATIC_INLINE uint32_t __get_LR(void) { return(__reglr); } /** \brief Set link register This function sets the value of the link register \param [in] lr LR value to set */ __STATIC_INLINE void __set_LR(uint32_t lr) { __reglr = lr; } /** \brief Set Process Stack Pointer This function assigns the given value to the USR/SYS Stack Pointer (PSP). \param [in] topOfProcStack USR/SYS Stack Pointer value to set */ __STATIC_ASM void __set_PSP(uint32_t topOfProcStack) { ARM PRESERVE8 BIC R0, R0, #7 ;ensure stack is 8-byte aligned MRS R1, CPSR CPS #MODE_SYS ;no effect in USR mode MOV SP, R0 MSR CPSR_c, R1 ;no effect in USR mode ISB BX LR } /** \brief Set User Mode This function changes the processor state to User Mode \param [in] topOfProcStack USR/SYS Stack Pointer value to set */ __STATIC_ASM void __set_CPS_USR(void) { ARM CPS #MODE_USR BX LR } /** \brief Enable FIQ This function enables FIQ interrupts by clearing the F-bit in the CPSR. Can only be executed in Privileged modes. */ #define __enable_fault_irq __enable_fiq /** \brief Disable FIQ This function disables FIQ interrupts by setting the F-bit in the CPSR. Can only be executed in Privileged modes. */ #define __disable_fault_irq __disable_fiq /** \brief Get FPSCR This function returns the current value of the Floating Point Status/Control register. \return Floating Point Status/Control register value */ __STATIC_INLINE uint32_t __get_FPSCR(void) { #if (__FPU_PRESENT == 1) && (__FPU_USED == 1) register uint32_t __regfpscr __ASM("fpscr"); return(__regfpscr); #else return(0); #endif } /** \brief Set FPSCR This function assigns the given value to the Floating Point Status/Control register. \param [in] fpscr Floating Point Status/Control value to set */ __STATIC_INLINE void __set_FPSCR(uint32_t fpscr) { #if (__FPU_PRESENT == 1) && (__FPU_USED == 1) register uint32_t __regfpscr __ASM("fpscr"); __regfpscr = (fpscr); #endif } /** \brief Get FPEXC This function returns the current value of the Floating Point Exception Control register. \return Floating Point Exception Control register value */ __STATIC_INLINE uint32_t __get_FPEXC(void) { #if (__FPU_PRESENT == 1) register uint32_t __regfpexc __ASM("fpexc"); return(__regfpexc); #else return(0); #endif } /** \brief Set FPEXC This function assigns the given value to the Floating Point Exception Control register. \param [in] fpscr Floating Point Exception Control value to set */ __STATIC_INLINE void __set_FPEXC(uint32_t fpexc) { #if (__FPU_PRESENT == 1) register uint32_t __regfpexc __ASM("fpexc"); __regfpexc = (fpexc); #endif } /** \brief Get CPACR This function returns the current value of the Coprocessor Access Control register. \return Coprocessor Access Control register value */ __STATIC_INLINE uint32_t __get_CPACR(void) { register uint32_t __regCPACR __ASM("cp15:0:c1:c0:2"); return __regCPACR; } /** \brief Set CPACR This function assigns the given value to the Coprocessor Access Control register. \param [in] cpacr Coporcessor Acccess Control value to set */ __STATIC_INLINE void __set_CPACR(uint32_t cpacr) { register uint32_t __regCPACR __ASM("cp15:0:c1:c0:2"); __regCPACR = cpacr; __ISB(); } /** \brief Get CBAR This function returns the value of the Configuration Base Address register. \return Configuration Base Address register value */ __STATIC_INLINE uint32_t __get_CBAR() { register uint32_t __regCBAR __ASM("cp15:4:c15:c0:0"); return(__regCBAR); } /** \brief Get TTBR0 This function returns the value of the Configuration Base Address register. \return Translation Table Base Register 0 value */ __STATIC_INLINE uint32_t __get_TTBR0() { register uint32_t __regTTBR0 __ASM("cp15:0:c2:c0:0"); return(__regTTBR0); } /** \brief Set TTBR0 This function assigns the given value to the Coprocessor Access Control register. \param [in] ttbr0 Translation Table Base Register 0 value to set */ __STATIC_INLINE void __set_TTBR0(uint32_t ttbr0) { register uint32_t __regTTBR0 __ASM("cp15:0:c2:c0:0"); __regTTBR0 = ttbr0; __ISB(); } /** \brief Get DACR This function returns the value of the Domain Access Control Register. \return Domain Access Control Register value */ __STATIC_INLINE uint32_t __get_DACR() { register uint32_t __regDACR __ASM("cp15:0:c3:c0:0"); return(__regDACR); } /** \brief Set DACR This function assigns the given value to the Coprocessor Access Control register. \param [in] dacr Domain Access Control Register value to set */ __STATIC_INLINE void __set_DACR(uint32_t dacr) { register uint32_t __regDACR __ASM("cp15:0:c3:c0:0"); __regDACR = dacr; __ISB(); } /******************************** Cache and BTAC enable ****************************************************/ /** \brief Set SCTLR This function assigns the given value to the System Control Register. \param [in] sctlr System Control Register, value to set */ __STATIC_INLINE void __set_SCTLR(uint32_t sctlr) { register uint32_t __regSCTLR __ASM("cp15:0:c1:c0:0"); __regSCTLR = sctlr; } /** \brief Get SCTLR This function returns the value of the System Control Register. \return System Control Register value */ __STATIC_INLINE uint32_t __get_SCTLR() { register uint32_t __regSCTLR __ASM("cp15:0:c1:c0:0"); return(__regSCTLR); } /** \brief Enable Caches Enable Caches */ __STATIC_INLINE void __enable_caches(void) { // Set I bit 12 to enable I Cache // Set C bit 2 to enable D Cache __set_SCTLR( __get_SCTLR() | (1 << 12) | (1 << 2)); } /** \brief Disable Caches Disable Caches */ __STATIC_INLINE void __disable_caches(void) { // Clear I bit 12 to disable I Cache // Clear C bit 2 to disable D Cache __set_SCTLR( __get_SCTLR() & ~(1 << 12) & ~(1 << 2)); __ISB(); } /** \brief Enable BTAC Enable BTAC */ __STATIC_INLINE void __enable_btac(void) { // Set Z bit 11 to enable branch prediction __set_SCTLR( __get_SCTLR() | (1 << 11)); __ISB(); } /** \brief Disable BTAC Disable BTAC */ __STATIC_INLINE void __disable_btac(void) { // Clear Z bit 11 to disable branch prediction __set_SCTLR( __get_SCTLR() & ~(1 << 11)); } /** \brief Enable MMU Enable MMU */ __STATIC_INLINE void __enable_mmu(void) { // Set M bit 0 to enable the MMU // Set AFE bit to enable simplified access permissions model // Clear TRE bit to disable TEX remap and A bit to disable strict alignment fault checking __set_SCTLR( (__get_SCTLR() & ~(1 << 28) & ~(1 << 1)) | 1 | (1 << 29)); __ISB(); } /** \brief Enable MMU Enable MMU */ __STATIC_INLINE void __disable_mmu(void) { // Clear M bit 0 to disable the MMU __set_SCTLR( __get_SCTLR() & ~1); __ISB(); } /******************************** TLB maintenance operations ************************************************/ /** \brief Invalidate the whole tlb TLBIALL. Invalidate the whole tlb */ __STATIC_INLINE void __ca9u_inv_tlb_all(void) { register uint32_t __TLBIALL __ASM("cp15:0:c8:c7:0"); __TLBIALL = 0; __DSB(); __ISB(); } /******************************** BTB maintenance operations ************************************************/ /** \brief Invalidate entire branch predictor array BPIALL. Branch Predictor Invalidate All. */ __STATIC_INLINE void __v7_inv_btac(void) { register uint32_t __BPIALL __ASM("cp15:0:c7:c5:6"); __BPIALL = 0; __DSB(); //ensure completion of the invalidation __ISB(); //ensure instruction fetch path sees new state } /******************************** L1 cache operations ******************************************************/ /** \brief Invalidate the whole I$ ICIALLU. Instruction Cache Invalidate All to PoU */ __STATIC_INLINE void __v7_inv_icache_all(void) { register uint32_t __ICIALLU __ASM("cp15:0:c7:c5:0"); __ICIALLU = 0; __DSB(); //ensure completion of the invalidation __ISB(); //ensure instruction fetch path sees new I cache state } /** \brief Clean D$ by MVA DCCMVAC. Data cache clean by MVA to PoC */ __STATIC_INLINE void __v7_clean_dcache_mva(void *va) { register uint32_t __DCCMVAC __ASM("cp15:0:c7:c10:1"); __DCCMVAC = (uint32_t)va; __DMB(); //ensure the ordering of data cache maintenance operations and their effects } /** \brief Invalidate D$ by MVA DCIMVAC. Data cache invalidate by MVA to PoC */ __STATIC_INLINE void __v7_inv_dcache_mva(void *va) { register uint32_t __DCIMVAC __ASM("cp15:0:c7:c6:1"); __DCIMVAC = (uint32_t)va; __DMB(); //ensure the ordering of data cache maintenance operations and their effects } /** \brief Clean and Invalidate D$ by MVA DCCIMVAC. Data cache clean and invalidate by MVA to PoC */ __STATIC_INLINE void __v7_clean_inv_dcache_mva(void *va) { register uint32_t __DCCIMVAC __ASM("cp15:0:c7:c14:1"); __DCCIMVAC = (uint32_t)va; __DMB(); //ensure the ordering of data cache maintenance operations and their effects } /** \brief * Generic mechanism for cleaning/invalidating the entire data or unified cache to the point of coherency. */ #pragma push #pragma arm __STATIC_ASM void __v7_all_cache(uint32_t op) { ARM PUSH {R4-R11} MRC p15, 1, R6, c0, c0, 1 // Read CLIDR ANDS R3, R6, #0x07000000 // Extract coherency level MOV R3, R3, LSR #23 // Total cache levels << 1 BEQ Finished // If 0, no need to clean MOV R10, #0 // R10 holds current cache level << 1 Loop1 ADD R2, R10, R10, LSR #1 // R2 holds cache "Set" position MOV R1, R6, LSR R2 // Bottom 3 bits are the Cache-type for this level AND R1, R1, #7 // Isolate those lower 3 bits CMP R1, #2 BLT Skip // No cache or only instruction cache at this level MCR p15, 2, R10, c0, c0, 0 // Write the Cache Size selection register ISB // ISB to sync the change to the CacheSizeID reg MRC p15, 1, R1, c0, c0, 0 // Reads current Cache Size ID register AND R2, R1, #7 // Extract the line length field ADD R2, R2, #4 // Add 4 for the line length offset (log2 16 bytes) LDR R4, =0x3FF ANDS R4, R4, R1, LSR #3 // R4 is the max number on the way size (right aligned) CLZ R5, R4 // R5 is the bit position of the way size increment LDR R7, =0x7FFF ANDS R7, R7, R1, LSR #13 // R7 is the max number of the index size (right aligned) Loop2 MOV R9, R4 // R9 working copy of the max way size (right aligned) Loop3 ORR R11, R10, R9, LSL R5 // Factor in the Way number and cache number into R11 ORR R11, R11, R7, LSL R2 // Factor in the Set number CMP R0, #0 BNE Dccsw MCR p15, 0, R11, c7, c6, 2 // DCISW. Invalidate by Set/Way B cont Dccsw CMP R0, #1 BNE Dccisw MCR p15, 0, R11, c7, c10, 2 // DCCSW. Clean by Set/Way B cont Dccisw MCR p15, 0, R11, c7, c14, 2 // DCCISW, Clean and Invalidate by Set/Way cont SUBS R9, R9, #1 // Decrement the Way number BGE Loop3 SUBS R7, R7, #1 // Decrement the Set number BGE Loop2 Skip ADD R10, R10, #2 // increment the cache number CMP R3, R10 BGT Loop1 Finished DSB POP {R4-R11} BX lr } #pragma pop /** \brief __v7_all_cache - helper function */ /** \brief Invalidate the whole D$ DCISW. Invalidate by Set/Way */ __STATIC_INLINE void __v7_inv_dcache_all(void) { __v7_all_cache(0); } /** \brief Clean the whole D$ DCCSW. Clean by Set/Way */ __STATIC_INLINE void __v7_clean_dcache_all(void) { __v7_all_cache(1); } /** \brief Clean and invalidate the whole D$ DCCISW. Clean and Invalidate by Set/Way */ __STATIC_INLINE void __v7_clean_inv_dcache_all(void) { __v7_all_cache(2); } #include "core_ca_mmu.h" #elif (defined (__ICCARM__)) /*---------------- ICC Compiler ---------------------*/ #error IAR Compiler support not implemented for Cortex-A #elif (defined (__GNUC__)) /*------------------ GNU Compiler ---------------------*/ /* GNU gcc specific functions */ #define MODE_USR 0x10 #define MODE_FIQ 0x11 #define MODE_IRQ 0x12 #define MODE_SVC 0x13 #define MODE_MON 0x16 #define MODE_ABT 0x17 #define MODE_HYP 0x1A #define MODE_UND 0x1B #define MODE_SYS 0x1F __attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_irq(void) { __ASM volatile ("cpsie i"); } /** \brief Disable IRQ Interrupts This function disables IRQ interrupts by setting the I-bit in the CPSR. Can only be executed in Privileged modes. */ __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __disable_irq(void) { uint32_t result; __ASM volatile ("mrs %0, cpsr" : "=r" (result)); __ASM volatile ("cpsid i"); return(result & 0x80); } /** \brief Get APSR Register This function returns the content of the APSR Register. \return APSR Register value */ __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_APSR(void) { #if 1 uint32_t result; __ASM volatile ("mrs %0, apsr" : "=r" (result) ); return (result); #else register uint32_t __regAPSR __ASM("apsr"); return(__regAPSR); #endif } /** \brief Get CPSR Register This function returns the content of the CPSR Register. \return CPSR Register value */ __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_CPSR(void) { #if 1 register uint32_t __regCPSR; __ASM volatile ("mrs %0, cpsr" : "=r" (__regCPSR)); #else register uint32_t __regCPSR __ASM("cpsr"); #endif return(__regCPSR); } #if 0 /** \brief Set Stack Pointer This function assigns the given value to the current stack pointer. \param [in] topOfStack Stack Pointer value to set */ __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_SP(uint32_t topOfStack) { register uint32_t __regSP __ASM("sp"); __regSP = topOfStack; } #endif /** \brief Get link register This function returns the value of the link register \return Value of link register */ __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_LR(void) { register uint32_t __reglr __ASM("lr"); return(__reglr); } #if 0 /** \brief Set link register This function sets the value of the link register \param [in] lr LR value to set */ __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_LR(uint32_t lr) { register uint32_t __reglr __ASM("lr"); __reglr = lr; } #endif /** \brief Set Process Stack Pointer This function assigns the given value to the USR/SYS Stack Pointer (PSP). \param [in] topOfProcStack USR/SYS Stack Pointer value to set */ extern void __set_PSP(uint32_t topOfProcStack); /** \brief Set User Mode This function changes the processor state to User Mode \param [in] topOfProcStack USR/SYS Stack Pointer value to set */ extern void __set_CPS_USR(void); /** \brief Enable FIQ This function enables FIQ interrupts by clearing the F-bit in the CPSR. Can only be executed in Privileged modes. */ #define __enable_fault_irq __enable_fiq /** \brief Disable FIQ This function disables FIQ interrupts by setting the F-bit in the CPSR. Can only be executed in Privileged modes. */ #define __disable_fault_irq __disable_fiq /** \brief Get FPSCR This function returns the current value of the Floating Point Status/Control register. \return Floating Point Status/Control register value */ __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FPSCR(void) { #if (__FPU_PRESENT == 1) && (__FPU_USED == 1) #if 1 uint32_t result; __ASM volatile ("vmrs %0, fpscr" : "=r" (result) ); return (result); #else register uint32_t __regfpscr __ASM("fpscr"); return(__regfpscr); #endif #else return(0); #endif } /** \brief Set FPSCR This function assigns the given value to the Floating Point Status/Control register. \param [in] fpscr Floating Point Status/Control value to set */ __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FPSCR(uint32_t fpscr) { #if (__FPU_PRESENT == 1) && (__FPU_USED == 1) #if 1 __ASM volatile ("vmsr fpscr, %0" : : "r" (fpscr) ); #else register uint32_t __regfpscr __ASM("fpscr"); __regfpscr = (fpscr); #endif #endif } /** \brief Get FPEXC This function returns the current value of the Floating Point Exception Control register. \return Floating Point Exception Control register value */ __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FPEXC(void) { #if (__FPU_PRESENT == 1) #if 1 uint32_t result; __ASM volatile ("vmrs %0, fpexc" : "=r" (result)); return (result); #else register uint32_t __regfpexc __ASM("fpexc"); return(__regfpexc); #endif #else return(0); #endif } /** \brief Set FPEXC This function assigns the given value to the Floating Point Exception Control register. \param [in] fpscr Floating Point Exception Control value to set */ __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FPEXC(uint32_t fpexc) { #if (__FPU_PRESENT == 1) #if 1 __ASM volatile ("vmsr fpexc, %0" : : "r" (fpexc)); #else register uint32_t __regfpexc __ASM("fpexc"); __regfpexc = (fpexc); #endif #endif } /** \brief Get CPACR This function returns the current value of the Coprocessor Access Control register. \return Coprocessor Access Control register value */ __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_CPACR(void) { #if 1 register uint32_t __regCPACR; __ASM volatile ("mrc p15, 0, %0, c1, c0, 2" : "=r" (__regCPACR)); #else register uint32_t __regCPACR __ASM("cp15:0:c1:c0:2"); #endif return __regCPACR; } /** \brief Set CPACR This function assigns the given value to the Coprocessor Access Control register. \param [in] cpacr Coporcessor Acccess Control value to set */ __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_CPACR(uint32_t cpacr) { #if 1 __ASM volatile ("mcr p15, 0, %0, c1, c0, 2" : : "r" (cpacr)); #else register uint32_t __regCPACR __ASM("cp15:0:c1:c0:2"); __regCPACR = cpacr; #endif __ISB(); } /** \brief Get CBAR This function returns the value of the Configuration Base Address register. \return Configuration Base Address register value */ __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_CBAR() { #if 1 register uint32_t __regCBAR; __ASM volatile ("mrc p15, 4, %0, c15, c0, 0" : "=r" (__regCBAR)); #else register uint32_t __regCBAR __ASM("cp15:4:c15:c0:0"); #endif return(__regCBAR); } /** \brief Get TTBR0 This function returns the value of the Configuration Base Address register. \return Translation Table Base Register 0 value */ __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_TTBR0() { #if 1 register uint32_t __regTTBR0; __ASM volatile ("mrc p15, 0, %0, c2, c0, 0" : "=r" (__regTTBR0)); #else register uint32_t __regTTBR0 __ASM("cp15:0:c2:c0:0"); #endif return(__regTTBR0); } /** \brief Set TTBR0 This function assigns the given value to the Coprocessor Access Control register. \param [in] ttbr0 Translation Table Base Register 0 value to set */ __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_TTBR0(uint32_t ttbr0) { #if 1 __ASM volatile ("mcr p15, 0, %0, c2, c0, 0" : : "r" (ttbr0)); #else register uint32_t __regTTBR0 __ASM("cp15:0:c2:c0:0"); __regTTBR0 = ttbr0; #endif __ISB(); } /** \brief Get DACR This function returns the value of the Domain Access Control Register. \return Domain Access Control Register value */ __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_DACR() { #if 1 register uint32_t __regDACR; __ASM volatile ("mrc p15, 0, %0, c3, c0, 0" : "=r" (__regDACR)); #else register uint32_t __regDACR __ASM("cp15:0:c3:c0:0"); #endif return(__regDACR); } /** \brief Set DACR This function assigns the given value to the Coprocessor Access Control register. \param [in] dacr Domain Access Control Register value to set */ __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_DACR(uint32_t dacr) { #if 1 __ASM volatile ("mcr p15, 0, %0, c3, c0, 0" : : "r" (dacr)); #else register uint32_t __regDACR __ASM("cp15:0:c3:c0:0"); __regDACR = dacr; #endif __ISB(); } /******************************** Cache and BTAC enable ****************************************************/ /** \brief Set SCTLR This function assigns the given value to the System Control Register. \param [in] sctlr System Control Register, value to set */ __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_SCTLR(uint32_t sctlr) { #if 1 __ASM volatile ("mcr p15, 0, %0, c1, c0, 0" : : "r" (sctlr)); #else register uint32_t __regSCTLR __ASM("cp15:0:c1:c0:0"); __regSCTLR = sctlr; #endif } /** \brief Get SCTLR This function returns the value of the System Control Register. \return System Control Register value */ __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_SCTLR() { #if 1 register uint32_t __regSCTLR; __ASM volatile ("mrc p15, 0, %0, c1, c0, 0" : "=r" (__regSCTLR)); #else register uint32_t __regSCTLR __ASM("cp15:0:c1:c0:0"); #endif return(__regSCTLR); } /** \brief Enable Caches Enable Caches */ __attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_caches(void) { // Set I bit 12 to enable I Cache // Set C bit 2 to enable D Cache __set_SCTLR( __get_SCTLR() | (1 << 12) | (1 << 2)); } /** \brief Disable Caches Disable Caches */ __attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_caches(void) { // Clear I bit 12 to disable I Cache // Clear C bit 2 to disable D Cache __set_SCTLR( __get_SCTLR() & ~(1 << 12) & ~(1 << 2)); __ISB(); } /** \brief Enable BTAC Enable BTAC */ __attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_btac(void) { // Set Z bit 11 to enable branch prediction __set_SCTLR( __get_SCTLR() | (1 << 11)); __ISB(); } /** \brief Disable BTAC Disable BTAC */ __attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_btac(void) { // Clear Z bit 11 to disable branch prediction __set_SCTLR( __get_SCTLR() & ~(1 << 11)); } /** \brief Enable MMU Enable MMU */ __attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_mmu(void) { // Set M bit 0 to enable the MMU // Set AFE bit to enable simplified access permissions model // Clear TRE bit to disable TEX remap and A bit to disable strict alignment fault checking __set_SCTLR( (__get_SCTLR() & ~(1 << 28) & ~(1 << 1)) | 1 | (1 << 29)); __ISB(); } /** \brief Enable MMU Enable MMU */ __attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_mmu(void) { // Clear M bit 0 to disable the MMU __set_SCTLR( __get_SCTLR() & ~1); __ISB(); } /******************************** TLB maintenance operations ************************************************/ /** \brief Invalidate the whole tlb TLBIALL. Invalidate the whole tlb */ __attribute__( ( always_inline ) ) __STATIC_INLINE void __ca9u_inv_tlb_all(void) { #if 1 __ASM volatile ("mcr p15, 0, %0, c8, c7, 0" : : "r" (0)); #else register uint32_t __TLBIALL __ASM("cp15:0:c8:c7:0"); __TLBIALL = 0; #endif __DSB(); __ISB(); } /******************************** BTB maintenance operations ************************************************/ /** \brief Invalidate entire branch predictor array BPIALL. Branch Predictor Invalidate All. */ __attribute__( ( always_inline ) ) __STATIC_INLINE void __v7_inv_btac(void) { #if 1 __ASM volatile ("mcr p15, 0, %0, c7, c5, 6" : : "r" (0)); #else register uint32_t __BPIALL __ASM("cp15:0:c7:c5:6"); __BPIALL = 0; #endif __DSB(); //ensure completion of the invalidation __ISB(); //ensure instruction fetch path sees new state } /******************************** L1 cache operations ******************************************************/ /** \brief Invalidate the whole I$ ICIALLU. Instruction Cache Invalidate All to PoU */ __attribute__( ( always_inline ) ) __STATIC_INLINE void __v7_inv_icache_all(void) { #if 1 __ASM volatile ("mcr p15, 0, %0, c7, c5, 0" : : "r" (0)); #else register uint32_t __ICIALLU __ASM("cp15:0:c7:c5:0"); __ICIALLU = 0; #endif __DSB(); //ensure completion of the invalidation __ISB(); //ensure instruction fetch path sees new I cache state } /** \brief Clean D$ by MVA DCCMVAC. Data cache clean by MVA to PoC */ __attribute__( ( always_inline ) ) __STATIC_INLINE void __v7_clean_dcache_mva(void *va) { #if 1 __ASM volatile ("mcr p15, 0, %0, c7, c10, 1" : : "r" ((uint32_t)va)); #else register uint32_t __DCCMVAC __ASM("cp15:0:c7:c10:1"); __DCCMVAC = (uint32_t)va; #endif __DMB(); //ensure the ordering of data cache maintenance operations and their effects } /** \brief Invalidate D$ by MVA DCIMVAC. Data cache invalidate by MVA to PoC */ __attribute__( ( always_inline ) ) __STATIC_INLINE void __v7_inv_dcache_mva(void *va) { #if 1 __ASM volatile ("mcr p15, 0, %0, c7, c6, 1" : : "r" ((uint32_t)va)); #else register uint32_t __DCIMVAC __ASM("cp15:0:c7:c6:1"); __DCIMVAC = (uint32_t)va; #endif __DMB(); //ensure the ordering of data cache maintenance operations and their effects } /** \brief Clean and Invalidate D$ by MVA DCCIMVAC. Data cache clean and invalidate by MVA to PoC */ __attribute__( ( always_inline ) ) __STATIC_INLINE void __v7_clean_inv_dcache_mva(void *va) { #if 1 __ASM volatile ("mcr p15, 0, %0, c7, c14, 1" : : "r" ((uint32_t)va)); #else register uint32_t __DCCIMVAC __ASM("cp15:0:c7:c14:1"); __DCCIMVAC = (uint32_t)va; #endif __DMB(); //ensure the ordering of data cache maintenance operations and their effects } /** \brief * Generic mechanism for cleaning/invalidating the entire data or unified cache to the point of coherency. */ /** \brief __v7_all_cache - helper function */ extern void __v7_all_cache(uint32_t op); /** \brief Invalidate the whole D$ DCISW. Invalidate by Set/Way */ __attribute__( ( always_inline ) ) __STATIC_INLINE void __v7_inv_dcache_all(void) { __v7_all_cache(0); } /** \brief Clean the whole D$ DCCSW. Clean by Set/Way */ __attribute__( ( always_inline ) ) __STATIC_INLINE void __v7_clean_dcache_all(void) { __v7_all_cache(1); } /** \brief Clean and invalidate the whole D$ DCCISW. Clean and Invalidate by Set/Way */ __attribute__( ( always_inline ) ) __STATIC_INLINE void __v7_clean_inv_dcache_all(void) { __v7_all_cache(2); } #include "core_ca_mmu.h" #elif (defined (__TASKING__)) /*--------------- TASKING Compiler -----------------*/ #error TASKING Compiler support not implemented for Cortex-A #endif /*@} end of CMSIS_Core_RegAccFunctions */ #endif /* __CORE_CAFUNC_H__ */