No photo version of "F746_SpectralAnalysis_Example".
Dependencies: BSP_DISCO_F746NG BUTTON_GROUP LCD_DISCO_F746NG TS_DISCO_F746NG UIT_FFT_Real mbed
SpactrumAnalysisClasses/LPC_Analysis.cpp
- Committer:
- MikamiUitOpen
- Date:
- 2015-11-24
- Revision:
- 0:9d7f931c704a
File content as of revision 0:9d7f931c704a:
//------------------------------------------------------- // Class for spectrum analysis using linear prediction // Copyright (c) 2015 MIKAMI, Naoki, 2015/10/26 //------------------------------------------------------- #include "LPC_Analysis.hpp" namespace Mikami { LpcAnalyzer::LpcAnalyzer(int nData, int order, int nFft) : N_DATA_(nData), ORDER_(order), N_FFT_(nFft), hm_(nData-1, nData-1), lp_(nData-1, order), fft_(nFft) { xData_ = new float[nData]; // Data to be analyzed an_ = new float[order]; // Linear-predictive coefficients xFft_ = new float[nFft]; // Input for FFT yFft_ = new Complex[nFft/2+1]; // Output of FFT normY_ = new float[nFft/2+1]; // Powerspectrum } LpcAnalyzer::~LpcAnalyzer() { delete[] xData_; delete[] an_; delete[] xFft_; delete[] yFft_; delete[] normY_; } void LpcAnalyzer::Execute(float xn[], float db[]) { // Differencing for (int n=0; n<N_DATA_-1; n++) xData_[n] = xn[n+1] - xn[n]; hm_.Execute(xData_, xData_); // Windowing float em; lp_.Execute(xData_, an_, em); // To spectrum xFft_[0] = 1.0f; for (int n=0; n<ORDER_; n++) xFft_[n+1] = -an_[n]; for (int n=ORDER_+1; n<N_FFT_; n++) xFft_[n] = 0.0f; fft_.Execute(xFft_, yFft_); // Execute FFT // Squared magnitude for (int n=0; n<=N_FFT_/2; n++) normY_[n] = 1.0f/(Sqr(yFft_[n].real()) + Sqr(yFft_[n].imag())); // Search maximum float max = 0; for (int n=0; n<=N_FFT_/2; n++) max = (max > normY_[n]) ? max : normY_[n]; float invMax = 1.0f/max; // Translate to dB for (int n=0; n<=N_FFT_/2; n++) db[n] = 10.0f*log10f(invMax*normY_[n]); } }