fancy lampje

Dependencies:   mbed QEI HIDScope biquadFilter MODSERIAL FXOS8700Q FastPWM

main.cpp

Committer:
MatthewMaat
Date:
2019-10-21
Revision:
19:fb3d570a115e
Parent:
18:8002c75b8e20
Child:
21:a316452da8cd

File content as of revision 19:fb3d570a115e:

#include "mbed.h"
#include "HIDScope.h"
#include "QEI.h"
#include "MODSERIAL.h"
#include "BiQuad.h"
#include "FastPWM.h"
#include <iostream>
MODSERIAL pc(USBTX, USBRX);
QEI motor2_pos (D8, D9, NC, 32);
QEI motor1_pos (D12, D13, NC, 32);
AnalogIn ain2(A2);
AnalogIn ain1(A3);
DigitalOut dir2(D4);
DigitalOut dir1(D7);
//D4,D7 direction of motors 2,1 on board, D5,D6- PWM of motors 2,1 on board
PwmOut motor2_pwm(D5);
PwmOut motor1_pwm(D6);
AnalogIn    emg0( A0 );
AnalogIn    emg1( A1 );

Ticker ticktick;
Timer state_time;
Timeout EMG_peak;
Timeout turn;
Ticker      sample_timer;
HIDScope    scope( 4);
DigitalOut  ledred(LED_RED);
DigitalOut  ledblue(LED_BLUE);
DigitalOut  ledgreen(LED_GREEN);
InterruptIn err(SW2);
InterruptIn button(SW3);

volatile float P0;
volatile float P1;
volatile float EMG_min0=1;
volatile float EMG_max0=0;
volatile float EMG_min1=1;
volatile float EMG_max1=0;
volatile bool ignore_peaks=false;
volatile bool ignore_turn=true;
enum states{Waiting,Position_calibration,EMG_calibration,Homing,Operating,Demo,Failure};
states currentState=Waiting;
const float angle2_offset=asin(0.2);
const float angle1_offset=asin(3.8/35.0);
const double pi=3.1415926535897932384626;
volatile float theta1;
volatile float theta2;

void read_emg()
{
    //EMG signal 0
    static int count0=0;
    static float RMS_value0=0;
    static float HighPass_value0=0;
    count0+=1;
    static float RMS0[150];
    static float HighPass0[30];
    static BiQuad Notch0(0.9695f,-1.5695f,0.9695f,-1.5695f,0.9391f);
    static BiQuad Notch1(0.9695f,-1.5695f,0.9695f,-1.5695f,0.9391f);
    float I0;
    float If0;
    //signal 1
    static int count1=0;
    static float RMS_value1=0;
    static float HighPass_value1=0;
    count1+=1;
    static float RMS1[150];
    static float HighPass1[30];
    float I1;
    float If1;
    I0=emg0.read(); //read signal
    double notched0=Notch0.step(I0);
    HighPass_value0+=(notched0-HighPass0[count0%30])/30.0;
    HighPass0[count0%30]=notched0;
    If0=pow(I0-HighPass_value0,2.0f); // Highpass-filtered value squared
    RMS_value0+=(If0-RMS0[count0%150])/150.0;
    RMS0[count0%150]=If0;
    /* Set the sampled emg values in channel 0 (the first channel) and 1 (the second channel) in the 'HIDScope' instance named 'scope' */
    P0=sqrt(RMS_value0);
    I1=emg1.read(); //read signal
    double notched1=Notch1.step(I1);
    HighPass_value1+=(notched1-HighPass1[count1%30])/30.0;
    HighPass1[count1%30]=notched1;
    If1=pow(I1-HighPass_value1,2.0f); // Highpass-filtered value squared
    RMS_value1+=(If1-RMS1[count1%150])/150.0;
    RMS1[count1%150]=If1;
    /* Set the sampled emg values in channel 0 (the first channel) and 1 (the second channel) in the 'HIDScope' instance named 'scope' */
    P1=sqrt(RMS_value1);
    /* Repeat the step above if required for more channels of required (channel 0 up to 5 = 6 channels) 
    *  Ensure that enough channels are available (HIDScope scope( 2 ))
    *  Finally, send all channels to the PC at once */
    /* To indicate that the function is working, the LED is toggled */
    ledred=1;
    ledgreen=0;
    ledblue=1;
}

void get_angles(void)
{
    float pulses1=motor1_pos.getPulses();
    float pulses2=motor2_pos.getPulses();
    theta1=angle1_offset+pulses1*17.0/16.0*2*pi/131.0/32.0;
    theta2=angle2_offset+pulses2*17.0/16.0*2*pi/131.0/32.0; 
}

void pos_cal(void)
{
    float t=state_time.read();
    static int pos_time_counter=0;
    static int last_ticks=10000;
    static bool motor1_calibrated=false;
    float pulses;
    pos_time_counter+=1;
    if(!motor1_calibrated&&t>1.0f)
    {
        dir1=1; //???
        motor1_pwm.write(0.6f);
        pulses=motor1_pos.getPulses();
        if(pos_time_counter%500==0&&fabs(pulses-last_ticks)<1)
        {
            motor1_pos.reset();
            motor1_calibrated=true;
            last_ticks=10000;
            state_time.reset();
            dir1=!dir1;
        }
        else if(pos_time_counter%500==0)
        {
            last_ticks=motor1_pos.getPulses();
        }
        
    }
    else if(t>1.0f)
    {
        motor1_pwm.write(0.0f);
        dir2=1; //???
        motor2_pwm.write(0.6f);
        pulses=motor2_pos.getPulses();
        if(pos_time_counter%500==0&&fabs(pulses-last_ticks)<1)
        {
            motor2_pos.reset();
            motor2_pwm.write(0.0f);
            currentState=EMG_calibration;
        }
        else if(pos_time_counter%500==0)
        {
            last_ticks=motor2_pos.getPulses();
        }
    }   
    
}

void record_min_max(void)
{
    float t=state_time.read();
    if(t>0.4)
    {
        if(P0<EMG_min0)
        {
            EMG_min0=P0;
        }
        else if(P0>EMG_max0)
        {
            EMG_max0=P0;
        }
        if(P1<EMG_min1)
        {
            EMG_min1=P1;
        }
        else if(P1>EMG_max1)
        {
            EMG_max1=P1;
        }
    }
}

void unignore_peaks(void)
{
    ignore_peaks=false;
}
void start_ignore_turn(void)
{
    ignore_turn=true;
}

void set_PWM(void)
{
   static bool motor_on=false;
   float Q0;
   Q0=2.0f*(P0-(EMG_min0+EMG_max0)/2.0f)/(EMG_max0-EMG_min0);
   if (Q0>-0.2f && !ignore_peaks)
   {
        if (motor_on)
        {
            motor1_pwm.write(0.0f);
            EMG_peak.attach(unignore_peaks,0.8);
            turn.attach(start_ignore_turn,1);
            ignore_turn=false;
            ignore_peaks=true;
            motor_on=false;
        }
        else if(ignore_turn)
        {
            motor1_pwm.write(1.0f);
            EMG_peak.attach(unignore_peaks,0.8);
            turn.attach(start_ignore_turn,1);
            ignore_turn=false;
            ignore_peaks=true;
            motor_on=true;
        }
        else
        {
            motor1_pwm.write(1.0f);
            dir1=!dir1;
            EMG_peak.attach(unignore_peaks,1.5);
            ignore_peaks=true;
            motor_on=true;
        } 
    }
   motor2_pwm.write(ain1.read());
}

void sample()
{
    get_angles();
    scope.set(0,P0);
    scope.set(1,P1);
    scope.set(2,theta1);
    scope.set(3,theta2);
    scope.send(); 
    switch(currentState)
    {
        case Waiting:
            ledred=0;
            ledgreen=0;
            ledblue=1;
            break;
        case Position_calibration:
            ledred=1;
            ledgreen=1;
            ledblue=0;
            pos_cal();
            break;
        case EMG_calibration:
            ledred=1;
            ledgreen=0;
            ledblue=0;
            read_emg();
            record_min_max();
            break;
        case Homing:
            ledred=0;
            ledgreen=1;
            ledblue=0;
            break;
        case Operating:
            read_emg();
            set_PWM();
            ledred=1;
            ledgreen=0;
            ledblue=1;
            break;
        case Demo:
            ledred=0;
            ledgreen=0;
            ledblue=0;
            break;
        case Failure:
            ledred=0;
            ledgreen=1;
            ledblue=1;
            motor1_pwm.write(0.0);
            motor2_pwm.write(0.0);
            break;
    }
}

void error_occur()
{
    currentState=Failure;
}

void button_press(void) 
//Press button to change state
{
    state_time.reset();
    switch(currentState)
    {
        case Waiting:
            currentState=Position_calibration;
            wait(1);
            break;
        case Position_calibration:
            currentState=EMG_calibration;
            wait(1);
            break;
        case EMG_calibration:
            currentState=Homing;
            wait(1);
            break;
        case Homing:
            currentState=Operating;
            wait(1);
            break;
        case Operating:
            currentState=Demo;
            wait(1);
            break;
        case Demo:
            currentState=Operating;
            wait(1);
            break;
    }
}

int main()
{
    pc.baud(115200);
    pc.printf("Starting...");
    ledred=0;
    sample_timer.attach(&sample, 0.002);
    err.fall(error_occur);
    button.fall(button_press);
    int frequency_pwm=10000;
    motor1_pwm.period(1.0/frequency_pwm);
    motor2_pwm.period(1.0/frequency_pwm);
    state_time.start();
    while (true) {
        wait(10);
    }
}