Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
FOC/foc.cpp
- Committer:
- benkatz
- Date:
- 2018-07-12
- Revision:
- 46:2d4b1dafcfe3
- Parent:
- 45:26801179208e
- Child:
- 47:e1196a851f76
File content as of revision 46:2d4b1dafcfe3:
#include "foc.h"
using namespace FastMath;
void abc( float theta, float d, float q, float *a, float *b, float *c){
/// Inverse DQ0 Transform ///
///Phase current amplitude = lengh of dq vector///
///i.e. iq = 1, id = 0, peak phase current of 1///
float cf = FastCos(theta);
float sf = FastSin(theta);
*a = cf*d - sf*q; // Faster Inverse DQ0 transform
*b = (0.86602540378f*sf-.5f*cf)*d - (-0.86602540378f*cf-.5f*sf)*q;
*c = (-0.86602540378f*sf-.5f*cf)*d - (0.86602540378f*cf-.5f*sf)*q;
}
void dq0(float theta, float a, float b, float c, float *d, float *q){
/// DQ0 Transform ///
///Phase current amplitude = lengh of dq vector///
///i.e. iq = 1, id = 0, peak phase current of 1///
float cf = FastCos(theta);
float sf = FastSin(theta);
*d = 0.6666667f*(cf*a + (0.86602540378f*sf-.5f*cf)*b + (-0.86602540378f*sf-.5f*cf)*c); ///Faster DQ0 Transform
*q = 0.6666667f*(-sf*a - (-0.86602540378f*cf-.5f*sf)*b - (0.86602540378f*cf-.5f*sf)*c);
}
void svm(float v_bus, float u, float v, float w, float *dtc_u, float *dtc_v, float *dtc_w){
/// Space Vector Modulation ///
/// u,v,w amplitude = v_bus for full modulation depth ///
float v_offset = (fminf3(u, v, w) + fmaxf3(u, v, w))/2.0f;
*dtc_u = fminf(fmaxf(((u -v_offset)/v_bus + .5f), DTC_MIN), DTC_MAX);
*dtc_v = fminf(fmaxf(((v -v_offset)/v_bus + .5f), DTC_MIN), DTC_MAX);
*dtc_w = fminf(fmaxf(((w -v_offset)/v_bus + .5f), DTC_MIN), DTC_MAX);
}
void zero_current(int *offset_1, int *offset_2){ // Measure zero-offset of the current sensors
int adc1_offset = 0;
int adc2_offset = 0;
int n = 1024;
for (int i = 0; i<n; i++){ // Average n samples of the ADC
TIM1->CCR3 = (PWM_ARR>>1)*(1.0f); // Write duty cycles
TIM1->CCR2 = (PWM_ARR>>1)*(1.0f);
TIM1->CCR1 = (PWM_ARR>>1)*(1.0f);
ADC1->CR2 |= 0x40000000; // Begin sample and conversion
wait(.001);
adc2_offset += ADC2->DR;
adc1_offset += ADC1->DR;
}
*offset_1 = adc1_offset/n;
*offset_2 = adc2_offset/n;
}
void init_controller_params(ControllerStruct *controller){
controller->ki_d = KI_D;
controller->ki_q = KI_Q;
controller->k_d = K_SCALE*I_BW;
controller->k_q = K_SCALE*I_BW;
controller->alpha = 1.0f - 1.0f/(1.0f - DT*I_BW*2.0f*PI);
}
void reset_foc(ControllerStruct *controller){
TIM1->CCR3 = (PWM_ARR>>1)*(0.5f);
TIM1->CCR1 = (PWM_ARR>>1)*(0.5f);
TIM1->CCR2 = (PWM_ARR>>1)*(0.5f);
controller->i_d_ref = 0;
controller->i_q_ref = 0;
controller->i_d = 0;
controller->i_q = 0;
controller->i_q_filt = 0;
controller->q_int = 0;
controller->d_int = 0;
controller->v_q = 0;
controller->v_d = 0;
}
void limit_current_ref (ControllerStruct *controller){
float i_q_max_limit = (0.5774f*controller->v_bus - controller->dtheta_elec*WB)/R_PHASE;
float i_q_min_limit = (-0.5774f*controller->v_bus - controller->dtheta_elec*WB)/R_PHASE;
controller->i_q_ref = fmaxf(fminf(i_q_max_limit, controller->i_q_ref), i_q_min_limit);
}
void commutate(ControllerStruct *controller, ObserverStruct *observer, GPIOStruct *gpio, float theta){
/// Observer Prediction ///
observer->i_d_est += DT*(observer->i_d_dot);
observer->i_q_est += DT*(observer->i_q_dot);
/// Commutation Loop ///
controller->loop_count ++;
if(PHASE_ORDER){ // Check current sensor ordering
controller->i_b = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset); // Calculate phase currents from ADC readings
controller->i_c = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset);
}
else{
controller->i_b = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset);
controller->i_c = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset);
}
controller->i_a = -controller->i_b - controller->i_c;
float s = FastSin(theta);
float c = FastCos(theta);
dq0(controller->theta_elec, controller->i_a, controller->i_b, controller->i_c, &controller->i_d, &controller->i_q); //dq0 transform on currents
//controller->i_d = 0.6666667f*(c*controller->i_a + (0.86602540378f*s-.5f*c)*controller->i_b + (-0.86602540378f*s-.5f*c)*controller->i_c); ///Faster DQ0 Transform
//controller->i_q = 0.6666667f*(-s*controller->i_a - (-0.86602540378f*c-.5f*s)*controller->i_b - (0.86602540378f*c-.5f*s)*controller->i_c);
controller->i_q_filt = 0.95f*controller->i_q_filt + 0.05f*controller->i_q;
observer->i_d_m = controller->i_d;
observer->i_q_m = controller->i_q;
observer->e_d = observer->i_d_m - observer->i_d_est;
observer->e_q = observer->i_q_m - observer->i_q_est;
observer->e_d_int += observer->e_d;
observer->e_q_int += observer->e_q;
observer->i_d_est += K_O*observer->e_d + .001f*observer->e_d_int;
observer->i_q_est += K_O*observer->e_q + .001f*observer->e_q_int;
//float scog12 = FastSin(12.0f*theta);
//float scog1 = s;
//float cogging_current = 0.25f*scog1 - 0.3f*scog12;
// Filter the current references to the desired closed-loopbandwidth
// Allows calculation of desired di/dt for inductance, etc
controller->did_dt = controller->i_d_ref_filt;
controller->diq_dt = controller->i_q_ref_filt;
controller->i_d_ref_filt = (1.0f-controller->alpha)*controller->i_d_ref_filt + controller->alpha*controller->i_d_ref;
controller->i_q_ref_filt = (1.0f-controller->alpha)*controller->i_q_ref_filt + controller->alpha*controller->i_q_ref;
controller->did_dt = (controller->i_d_ref_filt - controller->did_dt)/DT;
controller->diq_dt = (controller->i_q_ref_filt - controller->diq_dt)/DT;
/// PI Controller ///
float i_d_error = controller->i_d_ref - controller->i_d;
float i_q_error = controller->i_q_ref - controller->i_q;// + cogging_current;
// Calculate feed-forward voltages //
float v_d_ff = 2.0f*(0.0f*controller->i_d_ref*R_PHASE + 0.0f*L_D*controller->did_dt - controller->dtheta_elec*L_Q*controller->i_q); //feed-forward voltages
float v_q_ff = 2.0f*(0.0f*controller->i_q_ref*R_PHASE + 0.0f*L_Q*controller->diq_dt + controller->dtheta_elec*(L_D*controller->i_d + 0.0f*WB));
// Integrate Error //
controller->d_int += i_d_error;
controller->q_int += i_q_error;
limit_norm(&controller->d_int, &controller->q_int, V_BUS/(controller->k_q*controller->ki_q));
controller->v_d = controller->k_d*(i_d_error + controller->ki_d*controller->d_int) + v_d_ff;
controller->v_q = controller->k_q*(i_q_error + controller->ki_q*controller->q_int) + v_q_ff;
limit_norm(&controller->v_d, &controller->v_q, OVERMODULATION*controller->v_bus); // Normalize voltage vector to lie within curcle of radius v_bus
abc(controller->theta_elec + 0.5f*DT*controller->dtheta_elec, controller->v_d, controller->v_q, &controller->v_u, &controller->v_v, &controller->v_w); //inverse dq0 transform on voltages
svm(controller->v_bus, controller->v_u, controller->v_v, controller->v_w, &controller->dtc_u, &controller->dtc_v, &controller->dtc_w); //space vector modulation
observer->i_d_dot = 0.5f*(controller->v_d - 2.0f*(observer->i_d_est*R_PHASE - controller->dtheta_elec*L_Q*observer->i_q_est))/L_D; //feed-forward voltage
observer->i_q_dot = 0.5f*(controller->v_q - 2.0f*(observer->i_q_est*R_PHASE + controller->dtheta_elec*(L_D*observer->i_d_est + WB)))/L_Q;
//controller->dtc_u = 0.5f;
//controller->dtc_v = 0.6f;
//controller->dtc_w = 0.5f;
if(PHASE_ORDER){ // Check which phase order to use,
TIM1->CCR3 = (PWM_ARR)*(1.0f-controller->dtc_u); // Write duty cycles
TIM1->CCR2 = (PWM_ARR)*(1.0f-controller->dtc_v);
TIM1->CCR1 = (PWM_ARR)*(1.0f-controller->dtc_w);
}
else{
TIM1->CCR3 = (PWM_ARR)*(1.0f-controller->dtc_u);
TIM1->CCR1 = (PWM_ARR)*(1.0f-controller->dtc_v);
TIM1->CCR2 = (PWM_ARR)*(1.0f-controller->dtc_w);
}
controller->theta_elec = theta; //For some reason putting this at the front breaks thins
if(controller->loop_count >400){
//controller->i_q_ref = -controller->i_q_ref;
controller->loop_count = 0;
//printf("%.2f %.2f %.2f\n\r", controller->i_a, controller->i_b, controller->i_c);
//printf("%f\n\r", controller->dtheta_mech*GR);
//pc.printf("%f %f %f\n\r", controller->i_a, controller->i_b, controller->i_c);
printf("%f %f\n\r", v_q_ff, v_d_ff);
//pc.printf("%d %d\n\r", controller->adc1_raw, controller->adc2_raw);
}
}
void torque_control(ControllerStruct *controller){
float torque_ref = controller->kp*(controller->p_des - controller->theta_mech) + controller->t_ff + controller->kd*(controller->v_des - controller->dtheta_mech);
//float torque_ref = -.1*(controller->p_des - controller->theta_mech);
controller->i_q_ref = torque_ref/KT_OUT;
controller->i_d_ref = 0.0f;
}
/*
void zero_encoder(ControllerStruct *controller, GPIOStruct *gpio, ){
}
*/