werkt nog niet

Dependencies:   HIDScope MODSERIAL biquadFilter mbed QEI

Fork of Project_script_union by Marijke Zondag

Revision:
29:df10cb76ef26
Parent:
28:61d1372349c8
Child:
30:8191e8541a0a
diff -r 61d1372349c8 -r df10cb76ef26 main.cpp
--- a/main.cpp	Wed Oct 31 19:14:56 2018 +0000
+++ b/main.cpp	Thu Nov 01 08:21:31 2018 +0000
@@ -3,6 +3,7 @@
 #include "BiQuad.h"
 #include "HIDScope.h"
 #include <math.h>
+#include "QEI.h"
 
 //ATTENTION:    set mBed to version 151
 //              set QEI to version 0, (gebruiken wij (nog) niet, is voor encoder)
@@ -10,8 +11,8 @@
 //              set HIDScope to version 7
 //              set biquadFilter to version 7
 
-//AnalogIn potmeter1          (A0);                   //First raw EMG signal input
-//AnalogIn potmeter2          (A1);                   //Second raw EMG signal input
+AnalogIn potmeter1          (A0);                   //First raw EMG signal input
+AnalogIn potmeter2          (A1);                   //Second raw EMG signal input
 
 InterruptIn encoderA1       (D9);
 InterruptIn encoderB1       (D8);
@@ -33,17 +34,21 @@
 
 
 MODSERIAL pc(USBTX, USBRX);                       //Serial communication to see if the code works step by step, turn on if hidscope is off
+QEI encoder1 (D9, D8, NC, 8400,QEI::X4_ENCODING);
+QEI encoder2 (D12, D13, NC, 8400,QEI::X4_ENCODING);
 
 //HIDScope    scope( 6 );                             //HIDScope set to 3x2 channels for 3 muscles, raw data + filtered
 
 //Tickers
 Ticker      func_tick;  
 Ticker      engine_control1_tick;
-Ticker      engine_control2_tick;                      
+Ticker      engine_control2_tick; 
+Ticker      encoder1_read_tick;
+Ticker      encoder2_read_tick;                     
 
 //Global variables
 const float T   = 0.002f;                           //Ticker period             Deze wordt ook gebruikt in de PID, moet die niet anders???
-const float T2  = 0.01f;
+const float T2  = 0.1f;
 
 // Inverse Kinematica variables
 const double L1 = 0.208;                                  // Hoogte van tafel tot joint 1
@@ -54,280 +59,122 @@
 const double r_trans = 0.035;                             // Kan gebruikt worden om om te rekenen van translation naar shaft rotation 
 
 // Variërende variabelen inverse kinematics: 
-double q1ref = 0;                                   // Huidige motorhoek van joint 1 zoals bepaald uit referentiesignaal --> checken of het goede type is
-double q2ref = 0;                                   // Huidige motorhoek van joint 2 zoals bepaald uit referentiesignaal --> checken of het goede type is
-double v_x;                                         // Desired velocity end effector in x direction --> Determined by EMG signals
-double v_y;                                         // Desired velocity end effector in y direction --> Determined by EMG signals
+double q1ref = 0.0;                                   // Huidige motorhoek van joint 1 zoals bepaald uit referentiesignaal --> checken of het goede type is
+double q2ref = 0.0;                                   // Huidige motorhoek van joint 2 zoals bepaald uit referentiesignaal --> checken of het goede type is
+double v_x=0.0;                                         // Desired velocity end effector in x direction --> Determined by EMG signals
+double v_y=0.0;                                         // Desired velocity end effector in y direction --> Determined by EMG signals
 
 double Lq1;                                         // Translatieafstand als gevolg van motor rotation joint 1
 double Cq2;                                         // Joint angle of the system (corrected for gear ratio 1:5)
 
-double q1_dot;                                      // Benodigde hoeksnelheid van motor 1 om v_des te bereiken
-double q2_dot;                                      // Benodigde hoeksnelheid van motor 2 om v_des te bereiken 
+double q1_dot=0.0;                                      // Benodigde hoeksnelheid van motor 1 om v_des te bereiken
+double q2_dot=0.0;                                      // Benodigde hoeksnelheid van motor 2 om v_des te bereiken 
 
-double q1_ii;                                       // Reference signal for motorangle q1ref 
-double q2_ii;                                       // Reference signal for motorangle q2ref
+double q1_ii=0.0;                                       // Reference signal for motorangle q1ref 
+double q2_ii=0.0;                                       // Reference signal for motorangle q2ref
 
 //Variables PID controller
 double PI = 3.14159;
-double Kp1 = 5.0;                                  //Motor 1           eerst 17.5 , nu 5
+double Kp1 = 1.0;                                  //Motor 1           eerst 17.5 , nu 1
 double Ki1 = 1.02;
 double Kd1 = 23.2;
-double encoder1 = 0;
 double encoder_radians1=0;
+double err_integral1 = 0;
+double err_prev1 = 0;
 
-double Kp2 = 5.0;                                  //Motor 2            eerst 17.5, nu 5
+
+double Kp2 = 1.0;                                  //Motor 2            eerst 17.5, nu 1
 double Ki2 = 1.02;
 double Kd2 = 23.2;
-double encoder2 = 0;
 double encoder_radians2=0;
+double err_integral2 = 0;
+double err_prev2 = 0;
 
 int start_control = 0;
-
-//double potmeter1s = (potmeter1*2)-1.0f;
-//double potmeter2s = (potmeter2*2)-1.0f;
 double emg_cal = 1;
 
 
 //--------------Functions----------------------------------------------------------------------------------------------------------------------------//
 
 
-//------------------ Encoder motor 1 --------------------------------//
-
-void encoderA1_rise()       
-{
-    if(encoderB1==false)
-    {
-        encoder1++;
-    }
-    else
-    {
-        encoder1--;
-    }
-}
-
-void encoderA1_fall()      
-{
-    if(encoderB1==true)
-    {
-        encoder1++;
-    }
-    else
-    {
-        encoder1--;
-    }
-}
-
-void encoderB1_rise()       
-{
-    if(encoderA1==true)
-    {
-        encoder1++;
-    }
-    else
-    {
-        encoder1--;
-    }
-}
-
-void encoderB1_fall()      
-{
-    if(encoderA1==false)
-    {
-        encoder1++;
-    }
-    else
-    {
-        encoder1--;
-    }
-}
-
-void encoder_count1()
-{
-    encoderA1.rise(&encoderA1_rise);
-    encoderA1.fall(&encoderA1_fall);
-    encoderB1.rise(&encoderB1_rise);
-    encoderB1.fall(&encoderB1_fall);
-}
-
-//------------------ Encoder motor 2 --------------------------------//
-
-void encoderA2_rise()       
-{
-    if(encoderB2==false)
-    {
-        encoder2++;
-    }
-    else
-    {
-        encoder2--;
-    }
-}
-
-void encoderA2_fall()      
-{
-    if(encoderB2==true)
-    {
-        encoder2++;
-    }
-    else
-    {
-        encoder2--;
-    }
-}
-
-void encoderB2_rise()       
-{
-    if(encoderA2==true)
-    {
-        encoder2++;
-    }
-    else
-    {
-        encoder2--;
-    }
-}
-
-void encoderB2_fall()      
-{
-    if(encoderA2==false)
-    {
-        encoder2++;
-    }
-    else
-    {
-        encoder2--;
-    }
-}
-
-void encoder_count2()
-{
-    encoderA2.rise(&encoderA2_rise);
-    encoderA2.fall(&encoderA2_fall);
-    encoderB2.rise(&encoderB2_rise);
-    encoderB2.fall(&encoderB2_fall);
-}
-
 //------------------ Filter EMG + Calibration EMG --------------------------------//
 
 
-//------------------ Inversed Kinematics --------------------------------//
-
-
-//---------PID controller motor 1 + start motor 1 -----------------------------------------------------------//
-double PID_controller1(double err1)
+//---------PID controller motor 1 + motor control 1 & 2-----------------------------------------------------------//
+double PID_control(double err, const double Kp, const double Ki, const double Kd, double &err_integral, double &err_prev)
 {
     pc.printf("ik doe het, PDI 1\n\r");
 
-  static double err_integral1 = 0;
-  static double err_prev1 = err1; // initialization with this value only done once!
+  err_integral = 0;
+  err_prev = err; // initialization with this value only done once!
   
-  static BiQuad LowPassFilter1(0.0640, 0.1279, 0.0640, -1.1683, 0.4241);
+  static BiQuad LowPassFilter(0.0640, 0.1279, 0.0640, -1.1683, 0.4241);
 
   // Proportional part:
-  double u_k1 = Kp1 * err1;
+  double u_k = Kp * err;
 
   /* Integral part  
-  err_integral1 = err_integral1 + err1 * T;
-  double u_i1 = Ki1 * err_integral1;
+  err_integral = err_integral + err * T;
+  double u_i = Ki * err_integral;
 
   // Derivative part
-  double err_derivative1 = (err1 - err_prev1)/T;
-  double filtered_err_derivative1 = LowPassFilter1.step(err_derivative1);
-  double u_d1 = Kd1 * filtered_err_derivative1;
-  err_prev1 = err1;
+  double err_derivative = (err - err_prev)/T;
+  double filtered_err_derivative = LowPassFilter.step(err_derivative);
+  double u_d = Kd * filtered_err_derivative;
+  err_prev = err;
   */
 
   // Sum all parts and return it
-  return u_k1+0; //+ u_i1 + u_d1;  
+  return u_k; //+ u_i + u_d;  
 }
 
-void start_your_engines1(double u1)
-{
-    pc.printf("ik doe het, engine start 1\n\r");
-
-    if(encoder1<5250 && encoder1>-5250)                              //limits rotation, in counts                
-    {
-         pwmpin1 = 1;                                         //u_total moet nog geschaald worden om in de motor gevoerd te worden!!!
-         directionpin1.write(0);
-    }
-    else
-    {
-        pwmpin1 = 0;
-    }
-}  
-
 void engine_control1()                                           //Engine 1 is rotational engine, connected with left side pins
 {
     //while(start_control == 1)
     //{
         pc.printf("ik doe het, engine control 1\n\r");
-        encoder_radians1 = encoder1*(2*PI)/8400;
+        encoder_radians1 = encoder1.getPulses()*(2*PI)/8400.0;
         double err1 = q1ref - encoder_radians1;
-        double u1 = PID_controller1(err1);                               //PID controller function call
-        start_your_engines1(u1);  
+        double u1 = PID_control(err1, Kp1, Ki1, Kd1, err_integral1, err_prev1);                               //PID controller function call
+        
+        if(encoder1.getPulses()<5250 && encoder1.getPulses()>-5250)                              //limits rotation, in counts                
+            {
+                 pwmpin1 = 0.5;                                         //u_total moet nog geschaald worden om in de motor gevoerd te worden!!!
+                 directionpin1.write(0);
+            }
+        else
+            {
+                pwmpin1 = 0;
+            }  
 
     //   break;
     //}
 }
 
-
-
-//---------PID controller motor 2 + start motor 2 -----------------------------------------------------------//
-double PID_controller2(double err2)
-{
-  pc.printf("ik doe het, PDI 2\n\r");
-
-  static double err_integral2 = 0;
-  static double err_prev2 = err2; // initialization with this value only done once!
-  
-  static BiQuad LowPassFilter2(0.0640, 0.1279, 0.0640, -1.1683, 0.4241);
-
-  // Proportional part:
-  double u_k2 = Kp2 * err2;
-
-  /* Integral part
-  err_integral2 = err_integral2 + err2 * T;
-  double u_i2 = Ki2 * err_integral2;
-
-  // Derivative part
-  double err_derivative2 = (err2 - err_prev2)/T;
-  double filtered_err_derivative2 = LowPassFilter2.step(err_derivative2);
-  double u_d2 = Kd2 * filtered_err_derivative2;
-  err_prev2 = err2;
-  */
-
-  // Sum all parts and return it
-  return u_k2+0; //+ u_i2 + u_d2;  
-}
-
-void start_your_engines2(double u2)
-{
-    pc.printf("ik doe het, engine start 2\n\r");
-
-     if(encoder2<12600 && encoder2>-1)                              //limits translation in counts
-     {
-        pwmpin2 = 1;                                       //u_total moet nog geschaald worden om in de motor gevoerd te worden!!!
-        directionpin2.write(0);
-     }
-    else
-     {
-        pwmpin2 = 0;
-     }
-    
-}  
-
 void engine_control2()                                             //Engine 2 is translational engine, connected with right side wires
 {
         pc.printf("ik doe het, engine control 2\n\r");
 
-        encoder_radians2 = encoder2*(2*PI)/8400;
+        encoder_radians2 = encoder2.getPulses()*(2*PI)/8400.0;
         double err2 = q2ref - encoder_radians2;
-        double u2 = PID_controller2(err2);                             //PID controller function call
-        start_your_engines2(u2);                                       //Call start_your_engines function
+        double u2 = PID_control(err2, Kp2, Ki2, Kd2, err_integral2, err_prev2);                             //PID controller function call
+    
+        if(encoder2.getPulses()<12600 && encoder2.getPulses()>-1)                              //limits translation in counts
+         {
+            pwmpin2 = 1;                                       //u_total moet nog geschaald worden om in de motor gevoerd te worden!!!
+            directionpin2.write(0);
+         }
+        else
+         {
+            pwmpin2 = 0;
+         }
+
 }
 
 
+//------------------ Inversed Kinematics --------------------------------//
+
+
 void inverse_kinematics()
 {
     
@@ -338,43 +185,55 @@
     q1_dot = v_x + (v_y*(L1 + L3*sin(Cq2)))/(L4 + Lq1 + L3*cos(Cq2));     
     q2_dot = v_y/(L4 + Lq1 + L3*cos(Cq2));                                       
 
-    q1_ii = q1ref + q1_dot*T;                       
-    q2_ii = q2ref + q2_dot*T; 
+    q1_ii = q1ref + (q1_dot/r_trans)*T;                       
+    q2_ii = q2ref + (q2_dot*5.0)*T; 
         
     q1ref = q1_ii;
     q2ref = q2_ii; 
     
     //start_control = 1;
-    engine_control1();
+    engine_control1();                           
     engine_control2();
 }
 
 void v_des_calculate_qref()
 {
-                if(button1==0)                   //If the filtered EMG signal of muscle 1 is higher than the threshold, motor 1 will turn
+    double m1 = (potmeter1*2.0)-1.0;
+    double m2 = (potmeter2*2.0)-1.0;
+    
+                if(m1>0.5)                   //If the filtered EMG signal of muscle 1 is higher than the threshold, motor 1 will turn
                 {
                     v_x = 0.5f;                          //beweging in +x direction
                     ledr = 0;                           //red
                     ledb = 1;
                     ledg = 1;
                 }
-                else if(button2==0)              //If the filtered EMG signal of muscle 2 is higher than the threshold, motor 1 and 2 will turn
+                else if(m2>0.5)              //If the filtered EMG signal of muscle 2 is higher than the threshold, motor 1 and 2 will turn
                 {
                     v_y = 0.5f;                          //beweging in +y direction
                     ledr = 1;                           //green
                     ledb = 1;
                     ledg = 0;
                 }
-               /*
-                else if(button1==0 && button2==0)              //If the filtered EMG signal of muscle 0 is higher than the threshold, motor1 will turn in 1 direction
+               
+                else if(m1 < -0.5)              //If the filtered EMG signal of muscle 0 is higher than the threshold, motor1 will turn in 1 direction
                 {
                     v_x = -0.5f;
+                    v_y = 0;
+                    ledr = 1;                           //Blue
+                    ledb = 0;
+                    ledg = 1;  
+                }             
+                
+                else if(m2 < -0.5)              //If the filtered EMG signal of muscle 0 is higher than the threshold, motor1 will turn in 1 direction
+                {
+                    v_x = 0;
                     v_y = -0.5f;
                     ledr = 1;                           //Blue
                     ledb = 0;
                     ledg = 1;  
-                }             
-                */
+                }  
+                
                 else                                    //If not higher than the threshold, motors will not turn at all
                 {                    
                     v_x = 0;
@@ -394,7 +253,8 @@
 
 
 int main()
-{         
+{        
+        wait(1.0f); 
         pc.baud(115200);
         pc.printf("Hello World!\r\n");                            //Serial communication only works if hidscope is turned off.
         pwmpin1.period_us(60);                                    //60 microseconds PWM period, 16.7 kHz 
@@ -405,7 +265,9 @@
         
            // HIDScope_tick.attach(&HIDScope_sample,T);             //EMG signals raw + filtered to HIDScope every T sec.
         
-        
     while(true)
-    {;}      
+    {  
+        pc.printf("encoder1 %d\n\r",encoder1.getPulses());
+        pc.printf("Encoder2 %d\n\r",encoder2.getPulses());
+    }      
 }