Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: HIDScope MODSERIAL QEI biquadFilter mbed
Fork of Project_script_union_final by
main.cpp
- Committer:
- MarijkeZondag
- Date:
- 2018-11-06
- Revision:
- 38:f45aa515f625
- Parent:
- 37:c7ca9bc29d20
File content as of revision 38:f45aa515f625:
#include "mbed.h"
#include "MODSERIAL.h"
#include "BiQuad.h"
#include "HIDScope.h"
#include <math.h>
#include "QEI.h"
//
//ATTENTION: set mBed to version 151
// set QEI to version 0
// set MODSERIAL to version 44
// set HIDScope to version 7
// set biquadFilter to version 7
AnalogIn emg0_in (A0); //First raw EMG signal input: calve muscle
AnalogIn emg1_in (A1); //Second raw EMG signal input: biceps muscle 1
AnalogIn emg2_in (A2); //Third raw EMG signal input: biceps muscle 2
InterruptIn button1 (D10);
InterruptIn button2 (D11);
DigitalOut directionpin1 (D4);
DigitalOut directionpin2 (D7);
PwmOut pwmpin1 (D5);
PwmOut pwmpin2 (D6);
DigitalOut ledr (LED_RED);
DigitalOut ledb (LED_BLUE);
DigitalOut ledg (LED_GREEN);
MODSERIAL pc(USBTX, USBRX); //Serial communication to see if the code works step by step, turn on if hidscope is off
QEI encoder2 (D9, D8, NC, 8400,QEI::X4_ENCODING);
QEI encoder1 (D12, D13, NC, 8400,QEI::X4_ENCODING);
//--------------Tickers------------------------------------------------------------------------------------------------------------------------------//
Ticker func_tick;
Ticker movag_tick;
Ticker emg_tick;
Ticker print_tick;
//--------------Global Variables---------------------------------------------------------------------------------------------------------------------//
//Ticker frequencies
const float T = 0.002f; //Ticker period EMG, engine control
const float T2 = 0.2f; //Ticker print function
//EMG filter
double emg0_filt, emg1_filt, emg2_filt; //Variables for filtered EMG data channel 0, 1 and 2
double emg0_raw, emg1_raw, emg2_raw;
double emg0_filt_x, emg1_filt_x, emg2_filt_x;
const int windowsize = 150; //Size of the array over which the moving average (MovAg) is calculated
double sum, sum1, sum2, sum3; //Variables used to sum elements in array
double StoreArray0[windowsize], StoreArray1[windowsize], StoreArray2[windowsize]; //Empty arrays to calculate MovAg
double movAg0, movAg1, movAg2; //Outcome of MovAg
//Calibration variables
int x = -1; //Start switch, colour LED is blue.
int emg_cal = 0; //If emg_cal is set to 1, motors can begin to work in this code
const int sizeCal = 1500; //Size of the dataset used for calibration
double StoreCal0[sizeCal], StoreCal1[sizeCal], StoreCal2[sizeCal]; //Arrays to put the dataset of the calibration in
double Mean0,Mean1,Mean2; //Average of maximum contraction: Threshold values
double Threshold0, Threshold1, Threshold2;
//Biquad //Variables for the biquad band filters
BiQuadChain emg0filter;
BiQuad emg0band1( 7.29441e-01, -1.89276e-08, -7.29450e-01, -1.64507e-01, -7.26543e-01 );
BiQuad emg0band2( 1.00000e+00, 1.99999e+00, 9.99994e-01, 1.72349e+00, 7.79616e-01 );
BiQuad emg0band3( 1.00000e+00, -1.99999e+00, 9.99994e-01, -1.93552e+00, 9.39358e-01 );
BiQuad notch1( 9.91104e-01, -1.60364e+00, 9.91104e-01, -1.60364e+00, 9.82207e-01 ); //Notch filter biquad coefficients
BiQuadChain emg1filter;
BiQuad emg1band1( 7.29441e-01, -1.89276e-08, -7.29450e-01, -1.64507e-01, -7.26543e-01 );
BiQuad emg1band2( 1.00000e+00, 1.99999e+00, 9.99994e-01, 1.72349e+00, 7.79616e-01 );
BiQuad emg1band3( 1.00000e+00, -1.99999e+00, 9.99994e-01, -1.93552e+00, 9.39358e-01 );
BiQuad notch2( 9.91104e-01, -1.60364e+00, 9.91104e-01, -1.60364e+00, 9.82207e-01 );
BiQuadChain emg2filter;
BiQuad emg2band1( 7.29441e-01, -1.89276e-08, -7.29450e-01, -1.64507e-01, -7.26543e-01 );
BiQuad emg2band2( 1.00000e+00, 1.99999e+00, 9.99994e-01, 1.72349e+00, 7.79616e-01 );
BiQuad emg2band3( 1.00000e+00, -1.99999e+00, 9.99994e-01, -1.93552e+00, 9.39358e-01 );
BiQuad notch3( 9.91104e-01, -1.60364e+00, 9.91104e-01, -1.60364e+00, 9.82207e-01 );
//Variables PID controller
double PI = 3.14159; //Pi value
double Kp1 = 20.0; //Proportional gain motor 1
double Ki1 = 1.02; //Integrative term motor 1
double Kd1 = 1.0; //Differential term motor 1
double encoder_radians1=0; //Inital encoder value motor 1
double err_integral1 = 0; //Initial error integral value motor 1
double err_prev1, err_prev2; //Variables called previous error motor 1 and motor 2
double err1, err2; //Variables called current error motor 1 and motor 2
BiQuad LowPassFilterDer1( 1.12160e-01, 1.12160e-01, 0.00000e+00, -7.75680e-01, 0.00000e+00 ); //Lowpass differential term: Sample frequency 500 Hz, cutoff 20Hz low pass
double Kp2 = 20.0; / //Motor 2
double Ki2 = 1.02;
double Kd2 = 1.0;
double encoder_radians2=0;
double err_integral2 = 0;
double u1, u2;
BiQuad LowPassFilterDer2( 1.12160e-01, 1.12160e-01, 0.00000e+00, -7.75680e-01, 0.00000e+00 );
// Inverse Kinematica variables
//const double L1 = 0.208; //Height of the base assembly
//const double L2 = 0.288; //Height of joint 2
const double L3 = 0.212; //Length of the rotating arm
const double r_trans = 0.035; //Radius of translational gear
// Variërende variabelen inverse kinematics:
double q1ref = 0.0; //Current motor angle of joint 1, initial value = 0
double q2ref = 0.0; //Current motor angle of joint 2, initial value = 0
double v_x; //Desired velocity of end effector in x direction --> Determined by EMG signals
double v_y; //Desired velocity of end effector in y direction --> Determined by EMG signals
double q1_dot=0.0; //Required angular velocity of motor 1 to reach v_des
double q2_dot=0.0; //Required angular velocity of motor 2 to reach v_des
double q1_ii=0.0; //New reference angle for joint 1, becomes new q1ref
double q2_ii=0.0; //New reference angke for joint 2, becomes new q2ref
double q1_motor; //Reference motor angle 1, input PID control
double q2_motor; //Reference motor angle 2, input PID control
//--------------Functions----------------------------------------------------------------------------------------------------------------------------//
//------------------ Filter EMG + Calibration EMG --------------------------------------------------------------------------------------------------//
void switch_to_calibrate()
{
//Every time function gets called, x increases. Every button press --> new calibration state.
//Starts with x = -1. So when function gets called 1 time, x = 0. In the end, x = 4 will reset to -1.
x++;
if(x==0) //If x = 0, led is red
{
ledr = 0;
ledb = 1;
ledg = 1;
}
else if (x==1) //If x = 1, led is blue
{
ledr = 1;
ledb = 0;
ledg = 1;
}
else if (x==2) //If x = 2, led is green
{
ledr = 1;
ledb = 1;
ledg = 0;
}
else //If x = 3 or 4, led is white
{
ledr = 0;
ledb = 0;
ledg = 0;
}
if(x==4) //Reset back to x = -1
{
x = -1;
emg_cal=0; //Reset, motors off
}
}
void calibrate(void)
{
switch(x)
{
case 0: //If calibration state 0:
{
sum = 0.0;
for(int j = 0; j<=sizeCal-1; j++) //Array filled with datapoints from the EMGfilter signal of muscle 0
{
StoreCal0[j] = emg0_filt;
sum+=StoreCal0[j];
wait(0.001f);
}
Mean0 = sum/sizeCal; //Calculate mean of the datapoints in the calibration set
Threshold0 = Mean0*0.5; //Threshold calculation calve = 0.5*mean
break; //Stop. Threshold is calculated.
}
case 1: //If calibration state 1:
{
sum = 0.0;
for(int j = 0; j<=sizeCal-1; j++) //Array filled with datapoints from the EMGfilter signal of muscle 1
{
StoreCal1[j] = emg1_filt;
sum+=StoreCal1[j];
wait(0.001f);
}
Mean1 = sum/sizeCal;
Threshold1 = Mean1/2;
break;
}
case 2: //If calibration state 2:
{
sum = 0.0;
for(int j = 0; j<=sizeCal-1; j++) //Array filled with datapoints from the EMGfilter signal of muscle 2
{
StoreCal2[j] = emg2_filt;
sum+=StoreCal2[j];
wait(0.001f);
}
Mean2 = sum/sizeCal;
Threshold2 = Mean2/2;
break;
}
case 3: //EMG is calibrated, robot can be set to Home position.
{
emg_cal = 1; //This is the setting for which the motors can begin turning in this code
wait(0.001f);
break;
}
default: //Ensures nothing happens if x is not 0,1 or 2
{
break;
}
}
}
void EMGFilter0()
{
emg0_raw = emg0_in.read(); //Give name to raw EMG0 data
emg0_filt_x = emg0filter.step(emg0_raw); //Use biquad chain to filter raw EMG data
emg0_filt = abs(emg0_filt_x); //Rectifier
}
void EMGFilter1()
{
emg1_raw = emg1_in.read(); //Give name to raw EMG1 data
emg1_filt_x = emg1filter.step(emg1_raw); //Use biquad chain to filter raw EMG data
emg1_filt = abs(emg1_filt_x); //Rectifier
}
void EMGFilter2()
{
emg2_raw = emg2_in.read(); //Give name to raw EMG1 data
emg2_filt_x = emg2filter.step(emg2_raw); //Use biquad chain to filter raw EMG data
emg2_filt = abs(emg2_filt_x); //Rectifier
}
void MovAg() //Calculate moving average (MovAg)
{
for (int i = windowsize-1; i>=0; i--) //Make arrays for the last datapoints of the filtered signals
{
StoreArray0[i] = StoreArray0[i-1]; //Shifts the i'th element one place to the right, this makes it "rolling or moving" average.
StoreArray1[i] = StoreArray1[i-1];
StoreArray2[i] = StoreArray2[i-1];
}
StoreArray0[0] = emg0_filt; //Stores the latest datapoint of the filtered signal in the first element of the array
StoreArray1[0] = emg1_filt;
StoreArray2[0] = emg2_filt;
sum1 = 0.0;
sum2 = 0.0;
sum3 = 0.0;
for(int a = 0; a<= windowsize-1; a++) //Sums the elements in the arrays
{
sum1 += StoreArray0[a];
sum2 += StoreArray1[a];
sum3 += StoreArray2[a];
}
movAg0 = sum1/windowsize; //Calculates an average in the array
movAg1 = sum2/windowsize;
movAg2 = sum3/windowsize;
}
void emg_filtered() //Call all filter functions
{
EMGFilter0();
EMGFilter1();
EMGFilter2();
}
//---------PID controller 1 + 2 + motor control 1 & 2-----------------------------------------------------------------------------------------------//
void PID_control1()
{
// Proportional part:
double u_k1 = Kp1 * err1; //Proportional gain times calculated error
//Integral part
err_integral1 = err_integral1 + err1 * T; //Adds the error*T
double u_i1 = Ki1 * err_integral1; //Integral term times the integral
// Derivative part
double err_derivative1 = (err1 - err_prev1)/T; //Error - previous error /T
double filtered_err_derivative1 = LowPassFilterDer1.step(err_derivative1); //Filter the derivative term for stabilization
double u_d1 = Kd1 * filtered_err_derivative1; //Derivative term times the derivative error
err_prev1 = err1; //Sets the current error to previous error (remember)
// Sum all parts and return it
u1 = u_k1 + u_i1 + u_d1;
}
void PID_control2()
{
// Proportional part:
double u_k2 = Kp2 * err2;
//Integral part
err_integral2 = err_integral2 + err2 * T;
double u_i2 = Ki2 * err_integral2;
// Derivative part
double err_derivative2 = (err2 - err_prev2)/T;
double filtered_err_derivative2 = LowPassFilterDer2.step(err_derivative2);
double u_d2 = Kd2 * filtered_err_derivative2;
err_prev2 = err2;
// Sum all parts and return it
u2 = u_k2 + u_i2 + u_d2;
}
void engine_control1() //Engine 1 is translational joint, connected with left side pins
{
encoder_radians1 = (double)encoder1.getPulses()*(2.0*PI)/8400.0;
err1 = q1_motor - encoder_radians1; //Calculate error between reference angle 1 and current angle 1
PID_control1(); //PID 1 controller function call
pwmpin1 = fabs(u1); //Set speed motor 1
directionpin1.write(u1<0); //Set direction motor 1
}
void engine_control2() //Engine 2 is rotational joint, connected with right side wires
{
encoder_radians2 = (float)encoder2.getPulses()*(2.0*PI)/8400.0;
err2 = q2_motor - encoder_radians2; //Calculate error between reference angle 2 and current angle 2
PID_control2(); //PID 2 controller function call
pwmpin2 = fabs(u2); //Set speed motor 2
directionpin2.write(u2>0); //Set direction motor 2
}
//------------------ Inversed Kinematics -----------------------------------------------------------------------------------------------------------//
void inverse_kinematics()
{
q1_dot = (v_x*cos(q2ref) + v_y*sin(q2ref))/cos(q2ref); //Calculate desired angular velocity of motor 1
q2_dot = v_y/(L3*cos(q2ref)); //Calculate desired angular velocity of motor 2
q1_ii = q1ref + q1_dot*T; //Calculate new reference angle of joint 1, from current angle and desired angular velocity times ticker time
q2_ii = q2ref + q2_dot*T; //Calculate new reference angle of joint 2, from current angle and desired angular velocity times ticker time
q1ref = q1_ii; //Replace qref by newly calculated reference angle
q2ref = q2_ii;
q1_motor = -q1ref/r_trans; //Calculate reference motor angle 1, corrected for translational joint --> input PID control
q2_motor = q2ref*5.0; //Calculate reference motor angle 2, corrected for gear ratio 1:5 ---> input PID control
engine_control1(); //Call engine_control 1 function
engine_control2(); //Call engine_control 2 function
}
void v_des_calculate_qref()
{
while(emg_cal==1) //After calibration is finished, emg_cal will be 1. Otherwise 0.
{
if(movAg1>Threshold1 && movAg0<Threshold0) //If the filtered EMG signal of muscle 1 is higher than the threshold and the switch is off (movAg0)
{
v_y = 0.0;
v_x = 0.05; //Movement in +x direction
ledr = 0; //Led is red
ledb = 1;
ledg = 1;
}
else if(movAg2>Threshold2 && movAg0<Threshold0) //If the filtered EMG signal of muscle 2 is higher than the threshold and the switch is off (movAg0)
{
v_y = 0.05; //Movement in +y direction
v_x = 0.0;
ledr = 1; //Led is green
ledb = 1;
ledg = 0;
}
else if(movAg0>Threshold0 && movAg1>Threshold1) //If the filtered EMG signal of muscle 1 is higher than the threshold and the switch is on (movAg0)
{
v_y = 0.0; //Movement in -x direction
v_x = -0.05;
ledr = 0; //Led is purple
ledb = 0;
ledg = 1;
}
else if(movAg0>Threshold0 && movAg2>Threshold2) //If the filtered EMG signal of muscle 2 is higher than the threshold and the switch is on (movAg0)
{
v_y = -0.05; //Movement in -y direction
v_x = 0.0;
ledr = 1; //Led is blue
ledb = 0;
ledg = 1;
}
else //If not higher than any threshold, motors will not turn at all
{
v_x = 0;
v_y = 0;
ledr = 0; //Led is white
ledb = 0;
ledg = 0;
}
inverse_kinematics(); //Call inverse kinematics function
break;
}
}
//------------------ Start main function -----------------------------------------------------------------------------------------------------------//
int main()
{
pwmpin1.period_us(60); //60 microseconds PWM period, 16.7 kHz
emg0filter.add( &emg0band1 ).add( &emg0band2 ).add( &emg0band3 ).add( ¬ch1 ); //Attach biquad elements to chain
emg1filter.add( &emg1band1 ).add( &emg1band2 ).add( &emg1band3 ).add( ¬ch2 );
emg2filter.add( &emg2band1 ).add( &emg2band2 ).add( &emg2band3 ).add( ¬ch3 );
emg_tick.attach(&emg_filtered,T); //EMG signals filtered + moving average every T sec.
movag_tick.attach(&MovAg,T);
func_tick.attach(&v_des_calculate_qref,T); //v_des determined every T
button1.rise(switch_to_calibrate); //Switch state of calibration (which muscle)
button2.rise(calibrate); //Calibrate threshold for 3 muscles
while(true)
{
;
}
}
