final version

Dependencies:   HIDScope MODSERIAL QEI biquadFilter mbed

Fork of Project_script_union_final by Jorine Oosting

main.cpp

Committer:
Esmee
Date:
2018-11-05
Revision:
34:b8b18ba0c336
Parent:
33:976be2825a23
Child:
35:63c890ac71ff

File content as of revision 34:b8b18ba0c336:

#include "mbed.h"
#include "MODSERIAL.h"
#include "BiQuad.h"
#include "HIDScope.h"
#include <math.h>
#include "QEI.h"

//ATTENTION:    set mBed to version 151
//              set QEI to version 0, (gebruiken wij (nog) niet, is voor encoder)
//              set MODSERIAL to version 44
//              set HIDScope to version 7
//              set biquadFilter to version 7

AnalogIn emg0_in            (A0);                   //First raw EMG signal input
AnalogIn emg1_in            (A1);                   //Second raw EMG signal input
AnalogIn emg2_in            (A2);                   //Third raw EMG signal input

InterruptIn button1         (D10);                  
InterruptIn button2         (D11);

DigitalOut directionpin1    (D4);
DigitalOut directionpin2    (D7);

PwmOut pwmpin1              (D5);
PwmOut pwmpin2              (D6);

DigitalOut ledr             (LED_RED);
DigitalOut ledb             (LED_BLUE);
DigitalOut ledg             (LED_GREEN);


MODSERIAL pc(USBTX, USBRX);                       //Serial communication to see if the code works step by step, turn on if hidscope is off
QEI encoder2 (D9, D8, NC, 8400,QEI::X4_ENCODING);
QEI encoder1 (D12, D13, NC, 8400,QEI::X4_ENCODING);

//HIDScope    scope( 6 );                             //HIDScope set to 3x2 channels for 3 muscles, raw data + filtered

//Tickers
Ticker      func_tick; 
Ticker      movag_tick;
Ticker      emg_tick; 
Ticker      print_tick;
                       

//Global variables
const float T   = 0.002f;                           //Ticker period EMG, engine control
const float T2  = 0.2f;                             //Ticker print function

//EMG filter
double emg0_filt, emg1_filt, emg2_filt;                                                          //Variables for filtered EMG data channel 0, 1 and 2
double emg0_raw, emg1_raw, emg2_raw;
double emg0_filt_x, emg1_filt_x, emg2_filt_x;
const int windowsize = 150;                                                                      //Size of the array over which the moving average (MovAg) is calculated. (random number)
double sum, sum1, sum2, sum3;                                                                    //variables used to sum elements in array
double StoreArray0[windowsize], StoreArray1[windowsize], StoreArray2[windowsize];                //Empty arrays to calculate MoveAg
double movAg0, movAg1, movAg2;                                                                   //outcome of MovAg (moet dit een array zijn??)

//Calibration variables
int x = -1;                                                                                      //Start switch, colour LED is blue.
int emg_cal = 0;                                                                                 //if emg_cal is set to 1, motors can begin to work in this code (!!)
const int sizeCal = 1500;                                                                        //size of the dataset used for calibration, eerst 2000
double StoreCal0[sizeCal], StoreCal1[sizeCal], StoreCal2[sizeCal];                               //arrays to put the dataset of the calibration in
double Mean0,Mean1,Mean2;                                                                        //average of maximum tightening
double Threshold0, Threshold1, Threshold2; 

//Biquad                                                                                         //Variables for the biquad band filters (alle 3 dezelfde maar je kan niet 3x 'emg0band' aanroepen ofzo)
BiQuadChain emg0filter;
BiQuad emg0band1( 7.29441e-01, -1.89276e-08, -7.29450e-01, -1.64507e-01, -7.26543e-01 );
BiQuad emg0band2( 1.00000e+00, 1.99999e+00, 9.99994e-01, 1.72349e+00, 7.79616e-01 );
BiQuad emg0band3( 1.00000e+00, -1.99999e+00, 9.99994e-01, -1.93552e+00, 9.39358e-01 );
BiQuad notch1( 9.91104e-01, -1.60364e+00, 9.91104e-01, -1.60364e+00, 9.82207e-01 );                //Notch filter biquad coefficients

BiQuadChain emg1filter;
BiQuad emg1band1( 7.29441e-01, -1.89276e-08, -7.29450e-01, -1.64507e-01, -7.26543e-01 );
BiQuad emg1band2( 1.00000e+00, 1.99999e+00, 9.99994e-01, 1.72349e+00, 7.79616e-01 );
BiQuad emg1band3( 1.00000e+00, -1.99999e+00, 9.99994e-01, -1.93552e+00, 9.39358e-01 );
BiQuad notch2( 9.91104e-01, -1.60364e+00, 9.91104e-01, -1.60364e+00, 9.82207e-01 );                //Notch filter

BiQuadChain emg2filter;
BiQuad emg2band1( 7.29441e-01, -1.89276e-08, -7.29450e-01, -1.64507e-01, -7.26543e-01 );
BiQuad emg2band2( 1.00000e+00, 1.99999e+00, 9.99994e-01, 1.72349e+00, 7.79616e-01 );
BiQuad emg2band3( 1.00000e+00, -1.99999e+00, 9.99994e-01, -1.93552e+00, 9.39358e-01 );
BiQuad notch3( 9.91104e-01, -1.60364e+00, 9.91104e-01, -1.60364e+00, 9.82207e-01 );                //Notch filter


//Variables PID controller
double PI = 3.14159;
double Kp1 = 20.0;                                  //Motor 1  
double Ki1 = 1.02;
double Kd1 = 1.0;
double encoder_radians1=0;
double err_integral1 = 0;
double err_prev1, err_prev2;
double err1, err2;
BiQuad LowPassFilterDer1( 1.12160e-01, 1.12160e-01, 0.00000e+00, -7.75680e-01, 0.00000e+00 );  //sample frequency 500 Hz, cutoff 20Hz low pass

double Kp2 = 20.0;                                  //Motor 2
double Ki2 = 1.02;
double Kd2 = 1.0;
double encoder_radians2=0;
double err_integral2 = 0;
double u1, u2;
BiQuad LowPassFilterDer2( 1.12160e-01, 1.12160e-01, 0.00000e+00, -7.75680e-01, 0.00000e+00 );

// Inverse Kinematica variables
//const double L1 = 0.208;                                  // Hoogte van tafel tot joint 1
//const double L2 = 0.288;                                  // Hoogte van tafel tot joint 2
const double L3 = 0.212;                                  // Lengte van de arm
//const double L4 = 0.089;                                  // Afstand van achterkant base tot joint 1
//const double L5 = 0.030;                                  // Afstand van joint 1 naar joint 2
const double r_trans = 0.035;                             // Kan gebruikt worden om om te rekenen van translation naar shaft rotation 

// Variërende variabelen inverse kinematics: 
double q1ref = 0.0;                                   // Huidige motorhoek van joint 1 zoals bepaald uit referentiesignaal --> checken of het goede type is
double q2ref = 0.0;                                   // Huidige motorhoek van joint 2 zoals bepaald uit referentiesignaal --> checken of het goede type is
double v_x;                                         // Desired velocity end effector in x direction --> Determined by EMG signals
double v_y;                                         // Desired velocity end effector in y direction --> Determined by EMG signals

//double Lq1;                                         // Translatieafstand als gevolg van motor rotation joint 1
//double Cq2;                                         // Joint angle of the system (corrected for gear ratio 1:5)

double q1_dot=0.0;                                      // Benodigde hoeksnelheid van motor 1 om v_des te bereiken
double q2_dot=0.0;                                      // Benodigde hoeksnelheid van motor 2 om v_des te bereiken 

double q1_ii=0.0;                                       // Reference signal for motorangle q1ref 
double q2_ii=0.0;                                       // Reference signal for motorangle q2ref

double q1_motor;
double q2_motor; 

//--------------Functions----------------------------------------------------------------------------------------------------------------------------//


//------------------ Filter EMG + Calibration EMG --------------------------------//

void switch_to_calibrate()
{
    x++;                        //Every time function gets called, x increases. Every button press --> new calibration state.
                                //Starts with x = -1. So when function gets called 1 time, x = 0.  In the end, x = 4 will reset to -1.

    if(x==0)                    //If x = 0, led is red
    {
        ledr = 0;
        ledb = 1;
        ledg = 1;
    }
    else if (x==1)              //If x = 1, led is blue
    {
        ledr = 1;
        ledb = 0;
        ledg = 1;
    }
    else if (x==2)            //If x = 2, led is green
    {
        ledr = 1;
        ledb = 1;
        ledg = 0;
    }
    else                        //If x = 3 or 4, led is white
    {
        ledr = 0;
        ledb = 0;
        ledg = 0;
    }
   
    if(x==4)                    //Reset back to x = -1
    {
        x = -1;
        emg_cal=0;              //reset, motors off
    }
}
    
        
void calibrate(void)
{
    switch(x)
    {
        case 0:                                         //If calibration state 0:
        {
            sum = 0.0;
            for(int j = 0; j<=sizeCal-1; j++)           //Array filled with datapoints from the EMGfilter signal of muscle 0
            {
                StoreCal0[j] = emg0_filt;
                sum+=StoreCal0[j];
                wait(0.001f);                           //Does there need to be a wait?
            }
            Mean0       = sum/sizeCal;                  //Calculate mean of the datapoints in the calibration set (2000 samples)
            Threshold0  = Mean0*0.5;                    //Threshold calculation calve = 0.8*mean                                         
            break;                                      //Stop. Threshold is calculated, we will use this further in the code
        }
        case 1:                                         //If calibration state 1:
        {
            sum = 0.0;                                  
            for(int j = 0; j<=sizeCal-1; j++)           //Array filled with datapoints from the EMGfilter signal of muscle 1
            {
                StoreCal1[j] = emg1_filt;
                sum+=StoreCal1[j];
                wait(0.001f);
            }
            Mean1       = sum/sizeCal;
            Threshold1  = Mean1/2;                      
            break;
        }
        case 2:                                         //If calibration state 2:
        {
            sum = 0.0;
            for(int j = 0; j<=sizeCal-1; j++)           //Array filled with datapoints from the EMGfilter signal of muscle 2
            {
                StoreCal2[j] = emg2_filt;
                sum+=StoreCal2[j];
                wait(0.001f);
            }
            Mean2       = sum/sizeCal;
            Threshold2  = Mean2/2;                    
            break;
        }
        case 3:                                         //EMG is calibrated, robot can be set to Home position.
        {
            emg_cal = 1;                                //This is the setting for which the motors can begin turning in this code (!!)
            
            wait(0.001f);
            break;
        }
        default:                                        //Ensures nothing happens if x is not 0,1 or 2.
        {
            break;
        }
    }
}

void EMGFilter0()
{   
    emg0_raw      = emg0_in.read();                      //give name to raw EMG0 data
    emg0_filt_x   = emg0filter.step(emg0_raw);           //Use biquad chain to filter raw EMG data
    emg0_filt     = abs(emg0_filt_x);                    //rectifier. LET OP: volgorde filter: band-notch-rectifier. Eerst band-rect-notch, stel er komt iets raars uit, dan Notch uit de biquad chain halen en aparte chain voor aanmaken.
}

void EMGFilter1()
{
    emg1_raw      = emg1_in.read();                      //give name to raw EMG1 data
    emg1_filt_x   = emg1filter.step(emg1_raw);           //Use biquad chain to filter raw EMG data
    emg1_filt     = abs(emg1_filt_x);                    //rectifier. LET OP: volgorde filter: band-notch-rectifier. Eerst band-rect-notch.
}

void EMGFilter2()
{
    emg2_raw      = emg2_in.read();                      //Give name to raw EMG1 data
    emg2_filt_x   = emg2filter.step(emg2_raw);           //Use biquad chain to filter raw EMG data
    emg2_filt     = abs(emg2_filt_x);                    //Rectifier. LET OP: volgorde filter: band-notch-rectifier.
}
 
void MovAg()                                         //Calculate moving average (MovAg), klopt nog niet!!
{
    for (int i = windowsize-1; i>=0; i--)            //Make arrays for the last datapoints of the filtered signals
    {
        StoreArray0[i] = StoreArray0[i-1];           //Shifts the i'th element one place to the right, this makes it "rolling or moving" average.
        StoreArray1[i] = StoreArray1[i-1];
        StoreArray2[i] = StoreArray2[i-1];
    }
    
    StoreArray0[0] = emg0_filt;                      //Stores the latest datapoint of the filtered signal in the first element of the array
    StoreArray1[0] = emg1_filt;
    StoreArray2[0] = emg2_filt;
    
    sum1 = 0.0;
    sum2 = 0.0;
    sum3 = 0.0;
    
    for(int a = 0; a<= windowsize-1; a++)            //Sums the elements in the arrays
    {
        sum1 += StoreArray0[a];
        sum2 += StoreArray1[a];
        sum3 += StoreArray2[a];
    }
    
    movAg0 = sum1/windowsize;                        //calculates an average in the array
    movAg1 = sum2/windowsize;
    movAg2 = sum3/windowsize;
    //serial getallen sturen, als het 1 getal is gaat hier wat fout, als het een reeks is dan gaat er bij de input naar HIDscope wat fout.
}

void emg_filtered()             //Call all filter functions
{
    EMGFilter0();
    EMGFilter1();
    EMGFilter2();
}

/*
void HIDScope_sample()
{    
    scope.set(0,emg0_raw);
    scope.set(1,emg0_filt);
    scope.set(1,movAg0);          //als moving average werkt
    scope.set(2,emg1_raw);
    scope.set(3,emg1_filt);
    scope.set(3,movAg1);          //als moving average werkt
    scope.set(4,emg2_raw);
    scope.set(5,emg2_filt);
    scope.set(5,movAg2);          //als moving average werkt

    scope.send();                   //Send data to HIDScope server
}
*/


//---------PID controller 1 + 2 + motor control 1 & 2-----------------------------------------------------------//
void PID_control1()
{
    //pc.printf("ik doe het, PDI \n\r");

    // Proportional part:
    double u_k1 = Kp1 * err1;

    //Integral part  
      err_integral1 = err_integral1 + err1 * T;
      double u_i1 = Ki1 * err_integral1;
    
    // Derivative part
      double err_derivative1 = (err1 - err_prev1)/T;
      double filtered_err_derivative1 = LowPassFilterDer1.step(err_derivative1);
      double u_d1 = Kd1 * filtered_err_derivative1;
      err_prev1 = err1;
      
    
      // Sum all parts and return it
      u1 = u_k1 + u_i1 + u_d1;  
}

void PID_control2()
{
    //pc.printf("ik doe het, PDI \n\r");

    // Proportional part:
    double u_k2 = Kp2 * err2;

    //Integral part  
      err_integral2 = err_integral2 + err2 * T;
      double u_i2 = Ki2 * err_integral2;
    
    // Derivative part
      double err_derivative2 = (err2 - err_prev2)/T;
      double filtered_err_derivative2 = LowPassFilterDer2.step(err_derivative2);
      double u_d2 = Kd2 * filtered_err_derivative2;
      err_prev2 = err2;
      
    
      // Sum all parts and return it
      u2 = u_k2 + u_i2 + u_d2;  
}
void engine_control1()                                           //Engine 1 is translational engine, connected with left side pins
{
        encoder_radians1 = (double)encoder1.getPulses()*(2.0*PI)/8400.0;
        err1 = q1_motor - encoder_radians1;
        PID_control1();                               //PID controller function call
                
        //if(encoder1.getPulses()<12000 && encoder1.getPulses()>-1)                              //limits translation in counts, eerst 12600
            //{
                 pwmpin1 = fabs(u1);                                         //u_total moet nog geschaald worden om in de motor gevoerd te worden!!!
                 directionpin1.write(u1<0);
            //}
        //else
           // {
               // pwmpin1 = 0;
           // }  
}

void engine_control2()                                             //Engine 2 is rotational engine, connected with right side wires
{
        encoder_radians2 = (float)encoder2.getPulses()*(2.0*PI)/8400.0;
            //pc.printf("encoder2 %f \n\r",(float)encoder2.getPulses());
            //pc.printf("encoder_radians2 %f \n\r",(float)encoder_radians2);
        err2 = q2_motor - encoder_radians2;
            //pc.printf("err2 = %f\n\r",err2);
        PID_control2();                            //PID controller function call
             //pc.printf("u2 = %f\n\r",u2);

        //if(encoder2.getPulses()<-5250 && encoder2.getPulses()>5250)                              //limits rotation, in counts                
        // {
            pwmpin2 = fabs(u2);                                       //u_total moet nog geschaald worden om in de motor gevoerd te worden!!!
            directionpin2.write(u2>0);
        // }
        //else
        // {
        //    pwmpin2 = 0;
        // }
}


/*void engine_control1()                                           //Engine 1 is translational engine, connected with left side pins
{
        encoder_radians1 = (double)encoder1.getPulses()*(2.0*PI)/8400.0;
        err1 = q1_motor - encoder_radians1;
        PID_control1();                               //PID controller function call
               
        if(encoder1.getPulses()<12000 && encoder1.getPulses()>-1)                              //limits translation in counts, eerst 12600
            {
                 pwmpin1 = fabs(u1);                                         
                 directionpin1.write(u1<0);
            }
        else
            {
             pwmpin1 = fabs(u1);                                         
             directionpin1.write(u1>0);   
            } 
}

void engine_control2()                                             //Engine 2 is rotational engine, connected with right side wires
{
        encoder_radians2 = (float)encoder2.getPulses()*(2.0*PI)/8400.0;
        err2 = q2_motor - encoder_radians2;
        PID_control2();                            //PID controller function call
            
        if(encoder2.getPulses()<-5250 && encoder2.getPulses()>5250)                              //limits rotation, in counts                
            {
                pwmpin2 = fabs(u2);                                       //u_total moet nog geschaald worden om in de motor gevoerd te worden!!!
                directionpin2.write(u2>0);
            }
            else
            {
                pwmpin2 = fabs(u2);                                       //u_total moet nog geschaald worden om in de motor gevoerd te worden!!!
                directionpin2.write(u2<0);
            }
}
*/

//------------------ Inversed Kinematics --------------------------------//

void inverse_kinematics()
{                              

    q1_dot = (v_x*cos(q2ref) + v_y*sin(q2ref))/cos(q2ref);               //RKI systeem  
    q2_dot = v_y/(L3*cos(q2ref));                                          //

    q1_ii = q1ref + q1_dot*T;                         //Omgezet naar motorhoeken
    q2_ii = q2ref + q2_dot*T; 
        
    q1ref = q1_ii;
    q2ref = q2_ii;
    
    q1_motor = -q1ref/r_trans;
    q2_motor = q2ref*5.0;      
    
    engine_control1();                           
    engine_control2();

}

void v_des_calculate_qref()
{
    while(emg_cal==1)                                                   //After calibration is finished, emg_cal will be 1. Otherwise 0. 
    { 
                if(movAg1>Threshold1 && movAg0<Threshold0)              //If the filtered EMG signal of muscle 1 is higher than the threshold and the switch is off (movAg0)
                {
                    v_x = 0.05;                                          //movement in +x direction
                    v_y = 0.0;
                    
                    ledr = 0;                                           //red
                    ledb = 1;
                    ledg = 1;
                }
                else if(movAg2>Threshold2 && movAg0<Threshold0)         //If the filtered EMG signal of muscle 2 is higher than the threshold and the switch is off (movAg0)
                {
                    v_y = 0.05;                                          //Movement in +y direction
                    v_x = 0.0;
                    
                    ledr = 1;                                           //Green
                    ledb = 1;
                    ledg = 0;
                }
               
                else if(movAg0>Threshold0 && movAg1>Threshold1)         //If the filtered EMG signal of muscle 1 is higher than the threshold and the switch is on (movAg0)
                {
                    v_y = 0.0;                                          //Movement in -x direction
                    v_x = -0.05;
                    
                    ledr = 0;                                           //Purple
                    ledb = 0;
                    ledg = 1;
                }
                
                else if(movAg0>Threshold0 && movAg2>Threshold2)         //If the filtered EMG signal of muscle 2 is higher than the threshold and the switch is on (movAg0)
                {
                    v_y = -0.05;                                         //Movement in -y direction
                    v_x = 0.0;
                    
                    ledr = 1;                                           //Blue
                    ledb = 0;
                    ledg = 1;
                }
                else                                                    //If not higher than any threshold, motors will not turn at all
                {                    
                    v_x = 0;
                    v_y = 0;
                    
                    ledr = 0;                                           //White
                    ledb = 0;
                    ledg = 0;
                }
                
        inverse_kinematics();                                           //Call inverse kinematics function
        
        break;
        }
}

void printFunction()
{
    pc.printf("Movag0 = %f , Movag1 = %f, Movag2 = %f \n\r",movAg0, movAg1, movAg2);
    pc.printf("Thresh0 = %f , Thresh1 = %f, Thresh2 = %f \n\r",Threshold0, Threshold1, Threshold2);    
}



//------------------ Start main function --------------------------//


int main()
{         
        pc.baud(115200);
        pc.printf("Hello World!\r\n");                                                          //Serial communication only works if hidscope is turned off.
        pwmpin1.period_us(60);                                                                  //60 microseconds PWM period, 16.7 kHz 

        emg0filter.add( &emg0band1 ).add( &emg0band2 ).add( &emg0band3 ).add( &notch1 );        //attach biquad elements to chain
        emg1filter.add( &emg1band1 ).add( &emg1band2 ).add( &emg1band3 ).add( &notch2 );
        emg2filter.add( &emg2band1 ).add( &emg2band2 ).add( &emg2band3 ).add( &notch3 );
        
        emg_tick.attach(&emg_filtered,T);                                                       //EMG signals filtered + moving average every T sec.
        movag_tick.attach(&MovAg,T);
        func_tick.attach(&v_des_calculate_qref,T);                                              //v_des determined every T
        print_tick.attach(&printFunction,T2);
        
        button1.rise(switch_to_calibrate);                                                      //Switch state of calibration (which muscle)
        //wait(0.2f);                                                                           //Wait to avoid bouncing of button
        button2.rise(calibrate);                                                                //Calibrate threshold for 3 muscles
        //wait(0.2f);                                                                           //Wait to avoid bouncing of button
        
    while(true)
    {
        ;    
    }      
}