Motor programma met EMG

Dependencies:   HIDScope MODSERIAL QEI biquadFilter mbed

Fork of frdm_Motor_V2_3 by Margreeth de Breij

main.cpp

Committer:
Margreeth95
Date:
2015-10-12
Revision:
28:a40884792e0a
Parent:
27:3392f03bfada
Child:
29:c34c2c3d30a9

File content as of revision 28:a40884792e0a:

 //--------------------------------------------------------------------------------------------------------------------------//
 // Motorscript voor 2 motoren voor de "SJOEL ROBOT", Groep 7
 //--------------------------------------------------------------------------------------------------------------------------//
 // Libraries
 //--------------------------------------------------------------------------------------------------------------------------//
#include "mbed.h"
#include "MODSERIAL.h"
#include "HIDScope.h"
#include "QEI.h"
#include "biquadFilter.h"

//--------------------------------------------------------------------------------------------------------------------------//
// Constanten/Inputs/Outputs
//--------------------------------------------------------------------------------------------------------------------------//
    MODSERIAL pc(USBTX, USBRX);             // To/From PC
    QEI Encoder2(D3, D2, NC, 32);           // Encoder Motor 2
    QEI Encoder1(D13,D12,NC, 32);           // Encoder Motor 1
    HIDScope scope(5);                      // Scope, 4 channels
    DigitalIn Button1(SW3);
    DigitalIn Button2(SW2);
// LEDs
    DigitalOut LedR(LED_RED);
    DigitalOut LedG(LED_GREEN);
    DigitalOut LedB(LED_BLUE);

// Motor
    DigitalOut motor1direction(D7);         // Motor 1, Direction & Speed
    PwmOut motor1speed(D6);
    DigitalOut motor2direction(D4);         // Motor 2, Direction & Speed
    PwmOut motor2speed(D5);

//EMG
    AnalogIn    EMG_left(A0);               //Analog input
    AnalogIn    EMG_right(A1);   

// Tickers
    Ticker      ScopeTime;
    Ticker      myControllerTicker2;
    Ticker      myControllerTicker1;
    Ticker      SampleEMG;
    Ticker      ScopeTimer;
    Ticker      serial;
    Ticker      MovingAverage;

// Constants
    double reference2, reference1;
    double position2 = 0, position1 = 0;
    double m2_ref = 0, m1_ref = 0;
    int count = 0;
    double Grens2 = 90, Grens1 = 90;
    double Stapgrootte = 5;
    
    double EMG_L_f_v1 = 0, EMG_L_f_v2 = 0;
    double EMG_L_fh=0;
    double EMG_left_value;
    double EMG_left_f1;
    double EMG_left_f2;
    double EMG_left_f3;
    double EMG_left_f4;
    double EMG_left_f5;
    double EMG_left_f6;
    double EMG_left_abs;
    double EMG_right_value;
    double EMG_right_f1;
    double EMG_right_f2;
    double EMG_right_abs;
    double Threshold1 = 0.02;
    double Threshold2 = 0.06;
    
    int N = 50;
    double MAF_left[50];
    double EMG_left_MAF;

//Sample time (motor-step)
    const double m2_Ts = 0.01, m1_Ts = 0.01;

//Controller gain Motor 2 & 1
    const double m2_Kp = 5,m2_Ki = 0.01, m2_Kd = 20;
    const double m1_Kp = 5,m1_Ki = 0.01, m1_Kd = 20;
    double m2_err_int = 0, m2_prev_err = 0;
    double m1_err_int = 0, m1_prev_err = 0;

//Derivative filter coeffs Motor 2 & 1
    const double BiGain2 = 0.012, BiGain1 = 0.016955;
    const double m2_f_a1 = -0.96608908283*BiGain2, m2_f_a2 = 0.0*BiGain2, m2_f_b0 = 1.0*BiGain2, m2_f_b1 = 1.0*BiGain2, m2_f_b2 = 0.0*BiGain2;
    const double m1_f_a1 = -0.96608908283*BiGain1, m1_f_a2 = 0.0*BiGain1, m1_f_b0 = 1.0*BiGain1, m1_f_b1 = 1.0*BiGain1, m1_f_b2 = 0.0*BiGain1;
    
// coëfficiënten
    const double BiGainEMG_H1 = 0.795375, BiGainEMG_H2 = 0.895763;
    const double EMGH1_a1 = -1.56308931068*BiGainEMG_H1, EMGH1_a2 = 0.61765749583*BiGainEMG_H1, EMGH1_b0 = 1.0*BiGainEMG_H1, EMGH1_b1 = -1.99909075151*BiGainEMG_H1, EMGH1_b2 = 1.0*BiGainEMG_H1; //coefficients for high-pass filter
    const double EMGH2_a1 = -1.75651417587*BiGainEMG_H2, EMGH2_a2 = 0.82183182692*BiGainEMG_H2, EMGH2_b0 = 1.0*BiGainEMG_H2, EMGH2_b1 = -1.99470632157*BiGainEMG_H2, EMGH2_b2 = 1.0*BiGainEMG_H2; //coefficients for high-pass filter
    
    const double BiGainEMG_L1=0.959332, BiGainEMG_L2 = 0.223396;
    const double EMGL1_a1 = -1.55576653052*BiGainEMG_L1, EMGL1_a2 = 0.61374320375*BiGainEMG_L1, EMGL1_b0 = 1.0*BiGainEMG_L1, EMGL1_b1 = -0.90928276835*BiGainEMG_L1, EMGL1_b2 = 1.0*BiGainEMG_L1; // coefficients for low-pass filter
    const double EMGL2_a1 = -1.79696141922*BiGainEMG_L2, EMGL2_a2 = 0.85096669383*BiGainEMG_L2, EMGL2_b0 = 1.0*BiGainEMG_L2, EMGL2_b1 = -1.75825311060*BiGainEMG_L2, EMGL2_b2 = 1.0*BiGainEMG_L2; // coefficients for low-pass filter

    const double BiGainEMG_N1 = 1.0, BiGainEMG_N2 = 0.965081;
    const double EMGN1_a1 = -1.56858163035*BiGainEMG_N1, EMGN1_a2 = 0.96424138362*BiGainEMG_N1, EMGN1_b0 = 1.0*BiGainEMG_N1, EMGN1_b1 = -1.61854514265*BiGainEMG_N1, EMGN1_b2 = 1.0*BiGainEMG_N1; //coefficients for high-pass filter
    const double EMGN2_a1 = -1.61100357722*BiGainEMG_N2, EMGN2_a2 = 0.96592170538*BiGainEMG_N2, EMGN2_b0 = 1.0*BiGainEMG_N2, EMGN2_b1 = -1.61854514265*BiGainEMG_N2, EMGN2_b2 = 1.0*BiGainEMG_N2; //coefficients for high-pass filter
   
// Filter variables
    double m2_f_v1 = 0, m2_f_v2 = 0;
    double m1_f_v1 = 0, m1_f_v2 = 0;
    
// Creating the filters
    biquadFilter EMG_highpass1 (EMGH1_a1, EMGH1_a2, EMGH1_b0, EMGH1_b1, EMGH1_b2);        // creates the high pass filter
    biquadFilter EMG_highpass2 (EMGH2_a1, EMGH2_a2, EMGH2_b0, EMGH2_b1, EMGH2_b2);
    biquadFilter EMG_lowpass1 (EMGL1_a1, EMGL1_a2, EMGL1_b0, EMGL1_b1, EMGL1_b2);         // creates the low pass filter
    biquadFilter EMG_lowpass2 (EMGL2_a1, EMGL2_a2, EMGL2_b0, EMGL2_b1, EMGL2_b2);  
    biquadFilter EMG_notch1 (EMGN1_a1, EMGN1_a2, EMGN1_b0, EMGN1_b1, EMGN1_b2);           // creates the notch filter
    biquadFilter EMG_notch2 (EMGN2_a1, EMGN2_a2, EMGN2_b0, EMGN2_b1, EMGN2_b2);
    
//--------------------------------------------------------------------------------------------------------------------------//
// General Functions
//--------------------------------------------------------------------------------------------------------------------------//

//HIDScope
    void ScopeSend()//Functie die de gegevens voor de scope uitleest en doorstuurt
    {
        scope.set(0, reference2 - position2);
        scope.set(1, position2);
        scope.set(2, reference1 - position1);    
        scope.set(3, position1);
        scope.set(4, EMG_left_MAF);
        scope.send();
    
    }

// Biquad filter
    double biquad( double u, double &v1, double &v2, const double a1, const double a2, const double b0, const double b1, const double b2 )
    {
        double v = u - a1*v1 - a2*v2;
        double y = b0*v + b1*v1 + b2*v2;
        v2 = v1; v1 = v;
        return y;
    }    


// Reusable PID controller
    double PID( double e, const double Kp, const double Ki, const double Kd, double Ts, double &e_int, double &e_prev, double &f_v1, double &f_v2,
        const double f_a1,const double f_a2, const double f_b0, const double f_b1, const double f_b2)
    {
    // Derivative
        double e_der = (e-e_prev)/Ts;
        e_der = biquad(e_der,f_v1,f_v2,f_a1,f_a2,f_b0,f_b1,f_b2);
        e_prev = e;
    // Integral
        e_int = e_int + Ts*e;
    // PID
        return Kp * e + Ki*e_int + Kd*e_der;
    }
    
// Movingaverage Filter
    void MovingAverageFilter()
    {
        EMG_left_MAF = (MAF_left[0]+MAF_left[1]+MAF_left[2]+MAF_left[3]+MAF_left[4]+MAF_left[5]+MAF_left[6]+MAF_left[7]+MAF_left[8]+MAF_left[9]+MAF_left[10]+MAF_left[11]+MAF_left[12]+MAF_left[13]+MAF_left[14]+MAF_left[15]+MAF_left[16]+MAF_left[17]+MAF_left[18]+MAF_left[19]+MAF_left[20]+MAF_left[21]+MAF_left[22]+MAF_left[23]+MAF_left[24]+MAF_left[25]+MAF_left[26]+MAF_left[27]+MAF_left[28]+MAF_left[29]+MAF_left[30]+MAF_left[31]+MAF_left[32]+MAF_left[33]+MAF_left[34]+MAF_left[35]+MAF_left[36]+MAF_left[37]+MAF_left[38]+MAF_left[39]+MAF_left[40]+MAF_left[41]+MAF_left[42]+MAF_left[43]+MAF_left[44]+MAF_left[45]+MAF_left[46]+MAF_left[47]+MAF_left[48]+MAF_left[49])/N;
        MAF_left[49] = MAF_left[48];
        MAF_left[48] = MAF_left[47];
        MAF_left[47] = MAF_left[46];
        MAF_left[46] = MAF_left[45];
        MAF_left[45] = MAF_left[44];
        MAF_left[44] = MAF_left[43];
        MAF_left[43] = MAF_left[42];
        MAF_left[42] = MAF_left[41];
        MAF_left[41] = MAF_left[40];
        MAF_left[40] = MAF_left[39];
        MAF_left[39] = MAF_left[38];
        MAF_left[38] = MAF_left[37];
        MAF_left[37] = MAF_left[36];
        MAF_left[36] = MAF_left[35];
        MAF_left[35] = MAF_left[34];
        MAF_left[34] = MAF_left[33];
        MAF_left[33] = MAF_left[32];
        MAF_left[32] = MAF_left[31];
        MAF_left[31] = MAF_left[30];
        MAF_left[30] = MAF_left[29];
        MAF_left[29] = MAF_left[28];
        MAF_left[28] = MAF_left[27];
        MAF_left[27] = MAF_left[26];
        MAF_left[26] = MAF_left[25];
        MAF_left[25] = MAF_left[24];
        MAF_left[24] = MAF_left[23];
        MAF_left[23] = MAF_left[22];
        MAF_left[22] = MAF_left[21];
        MAF_left[21] = MAF_left[20];
        MAF_left[20] = MAF_left[19];
        MAF_left[19] = MAF_left[18];
        MAF_left[18] = MAF_left[17];
        MAF_left[17] = MAF_left[16];
        MAF_left[16] = MAF_left[15];
        MAF_left[15] = MAF_left[14];
        MAF_left[14] = MAF_left[13];
        MAF_left[13] = MAF_left[12];
        MAF_left[12] = MAF_left[11];
        MAF_left[11] = MAF_left[10];
        MAF_left[10] = MAF_left[9];
        MAF_left[9] = MAF_left[8];
        MAF_left[8] = MAF_left[7];
        MAF_left[7] = MAF_left[6];
        MAF_left[6] = MAF_left[5];
        MAF_left[5] = MAF_left[4];
        MAF_left[4] = MAF_left[3];
        MAF_left[3] = MAF_left[2];
        MAF_left[2] = MAF_left[1];
        MAF_left[1] = MAF_left[0];
        MAF_left[0] = EMG_left_f6;
    }
//--------------------------------------------------------------------------------------------------------------------------//
//EMG functions
//--------------------------------------------------------------------------------------------------------------------------//

// EMG filtering function
void EMGfilter() // Both EMG signals are filtered in one function and with the same filters
{
    EMG_left_value = EMG_left.read();
    EMG_left_f1 = EMG_highpass1.step(EMG_left_value);
    EMG_left_f2 = EMG_highpass2.step(EMG_left_f1);
    EMG_left_abs = fabs(EMG_left_f2);
    EMG_left_f3 = EMG_lowpass1.step(EMG_left_abs);
    EMG_left_f4 = EMG_lowpass2.step(EMG_left_f3);
    EMG_left_f5 = EMG_notch1.step(EMG_left_f4);
    EMG_left_f6 = EMG_notch1.step(EMG_left_f5);
        
//    EMG_right_value = EMG_right.read();
//    EMG_right_f1 = EMG_highpass.step(EMG_right_value);
//    EMG_right_f1 = EMG_lowpass.step(EMG_right_f1);
//    EMG_right_abs = fabs(EMG_right_f2);
}

//--------------------------------------------------------------------------------------------------------------------------//
// Motor control functions
//--------------------------------------------------------------------------------------------------------------------------//

// Motor2 control
    void motor2_Controller() 
    {
        // Setpoint motor 2
            reference2 = m2_ref;                           // Reference in degrees
            position2 = Encoder2.getPulses()*360/(32*131); // Position in degrees
        // Speed control
            double m2_P1 = PID( reference2 - position2, m2_Kp, m2_Ki, m2_Kd, m2_Ts, m2_err_int, m2_prev_err, m2_f_v1, m2_f_v2, m2_f_a1, m2_f_a2, 
                m2_f_b0, m2_f_b1, m2_f_b2);
            double m2_P2 = biquad(m2_P1, m2_f_v1, m2_f_v2, m2_f_a1, m2_f_a2,m2_f_b0, m2_f_b1, m2_f_b2); // Filter of motorspeed input
            motor2speed = abs(m2_P2); 
        // Direction control
            if(m2_P2 > 0) 
            {    
                motor2direction = 0;
            }
            else
            {
                motor2direction = 1;
            }
    }   

// Motor1 control
    void motor1_Controller() 
    {
        // Setpoint Motor 1
            reference1 = m1_ref;                           // Reference in degrees
            position1 = Encoder1.getPulses()*360/(32*131); // Position in degrees
        // Speed control
            double m1_P1 = PID( reference1 - position1, m1_Kp, m1_Ki, m1_Kd, m1_Ts, m1_err_int, m1_prev_err, m1_f_v1, m1_f_v2, m1_f_a1, m1_f_a2, 
                m1_f_b0, m1_f_b1, m1_f_b2); 
            double m1_P2 = biquad(m1_P1, m1_f_v1, m1_f_v2, m1_f_a1, m1_f_a2, m1_f_b0, m1_f_b1, m1_f_b2); 
            motor1speed = abs(m1_P2); 
        // Direction control    
            if(m1_P2 > 0)
            {  
                motor1direction = 1;
            }
            else
            {
                motor1direction = 0;
            }
    }

//--------------------------------------------------------------------------------------------------------------------------//
// Main function
//--------------------------------------------------------------------------------------------------------------------------//
int main()
{  
//--------------------------------------------------------------------------------------------------------------------------//
// Initalizing
//--------------------------------------------------------------------------------------------------------------------------// 
    //LEDs OFF
        LedR = LedB = LedG = 1;
    
    //PC connection & check
        pc.baud(115200);
        pc.printf("Tot aan loop werkt\n");
    
    // Tickers
        ScopeTime.attach(&ScopeSend, 0.01f);                    // 100 Hz, Scope
        myControllerTicker2.attach(&motor2_Controller, 0.01f ); // 100 Hz, Motor 2
        myControllerTicker1.attach(&motor1_Controller, 0.01f ); // 100 Hz, Motor 1
        SampleEMG.attach(&EMGfilter, 0.01f);
        MovingAverage.attach(&MovingAverageFilter, 0.01f);
//--------------------------------------------------------------------------------------------------------------------------//
// Control Program
//--------------------------------------------------------------------------------------------------------------------------//
    while(true)
    {
        char c = pc.getc();
    // 1 Program UP
       if(c == 'e') //if ((EMG_right_abs >= Threshold1) && (EMG_left_abs >= Threshold1)) 
        {
            count = count + 1;
            if(count > 2)
                {
                    count = 2;
                }

        }
     // 1 Program DOWN
        if(c == 'd') // Hoe gaat dit aangestuurd worden?
        {
            count = count - 1;
            if(count < 0)
                {
                    count = 0;
                }
        }
    // PROGRAM 0: Motor 2 control and indirect control of motor 1, Green LED      
        if(count == 0)
        {
                
                LedR = LedB = 1;
                LedG = 0;
                if(c == 'r') //if ((EMG_right_abs >= Threshold1) && (EMG_left_abs <= Threshold1)) //
                {
                    m2_ref = m2_ref + Stapgrootte;
                    m1_ref = m1_ref - Stapgrootte;
                    if (m2_ref > Grens2)
                    {
                        m2_ref = Grens2;
                        m1_ref = -1*Grens1;
                    }
                }
                if (c == 'f') //&& (EMG_right_abs < Threshold1))  
                {
                    m2_ref = m2_ref - Stapgrootte;
                    m1_ref = m1_ref + Stapgrootte;
                    if (m2_ref < -1*Grens2)
                    {
                        m2_ref = -1*Grens2;
                        m1_ref = Grens1;
                    }
                }
        }
    // PROGRAM 1: Motor 1 control, Red LED
        if(count == 1) 
        {
                LedG = LedB = 1;
                LedR = 0;
                if(c == 't') //if ((EMG_right_abs >= Threshold1) && (EMG_left_abs <= Threshold1)) // 
                {
                    m1_ref = m1_ref + Stapgrootte;
                    if (m1_ref > Grens1)
                    {
                        m1_ref = Grens1;
                    }
                }
                if(c == 'g') //if ((EMG_left_abs > Threshold1) && (EMG_right_abs < Threshold1)) 
                {
                    m1_ref = m1_ref - Stapgrootte;
                    if (m1_ref < -1*Grens1)
                    {
                        m1_ref = -1*Grens1;
                    }
                }
        }
    // PROGRAM 2: Firing mechanism & Reset, Blue LED
        if(count == 2) 
        {

                LedR = LedG = 1;
                LedB = 0;
                //VUUUUR!! (To Do)
                wait(1);
                m2_ref = 0;
                m1_ref = 0;
                count = 0;   
        }
    }

}