Fujitsu MB85RSxx serial FRAM test program
Dependencies: mbed MB85RSxx_SPI
Connectivity
MB82RSxx pin | mbed LPC1114FN28 pin | mbed LPC1768 pin | Arudino form factor |
---|---|---|---|
1 (_CS) | 9 (dp9) | 8 (p8) | D10 |
2 (SO) | 1 (dp1) | 6 (p6) | D12 |
3 (_WP) | 21 (VDD) | 40 (VOUT) | 3V3 |
4 (VSS) | 22 (GND) | 1 (GND) | GND |
5 (SI) | 2 (dp2) | 5 (p5) | D11 |
6 (SCK) | 6 (dp6) | 7 (p7) | D13 |
7 (_HOLD) | 21 (VDD) | 40 (VOUT) | 3V3 |
8 (VDD) | 21 (VDD) | 40 (VOUT) | 3V3 |
main.cpp
- Committer:
- MACRUM
- Date:
- 2017-04-16
- Revision:
- 0:20b32d13a758
- Child:
- 1:bdf8b378dbc9
File content as of revision 0:20b32d13a758:
#include "mbed.h" DigitalOut myled(LED1); Serial pc(USBTX, USBRX); #if defined(TARGET_LPC1768) SPI _spi(p5, p6, p7); // mosi, miso, sclk DigitalOut _cs(p8); #elif defined(TARGET_LPC1114) SPI _spi(dp2, dp1, dp6); // mosi, miso, sclk DigitalOut _cs(dp9); #else // Arduino R3 Shield form factor SPI _spi(D11, D12, D13); // mosi, miso, sclk DigitalOut _cs(D10); #endif #define MB85_WREN 0x06 #define MB85_WRDI 0x04 #define MB85_RDSR 0x05 #define MB85_WRSR 0x01 #define MB85_READ 0x03 #define MB85_WRITE 0x02 #define MB85_RDID 0x9F #define MB85_FSTRD 0x0B #define MB85_SLEEP 0xB9 #define MB85_DENSITY_64K 0x3 #define MB85_DENSITY_256K 0x5 #define MB85_DENSITY_512K 0x6 #define MB85_DENSITY_1M 0x7 #define MB85_DENSITY_2M 0x8 static int _address_bits = 0; int read_device_id(uint8_t* device_id) { _cs = 0; _spi.write(MB85_RDID); for (int i = 0; i < 4; i++) { *device_id++ = (uint8_t)_spi.write(0); } _cs = 1; return 0; } uint8_t read_status() { _cs = 0; _spi.write(MB85_RDSR); uint8_t st = (uint8_t)_spi.write(0); _cs = 1; return st; } int read(uint32_t address, uint8_t* data, uint32_t len) { _cs = 0; _spi.write(MB85_READ); if (_address_bits == 24) { _spi.write((uint8_t)((address >> 16) & 0xFF)); } _spi.write((uint8_t)((address >> 8) & 0xFF)); _spi.write((uint8_t)((address >> 0) & 0xFF)); for (uint32_t i = 0; i < len; i++) { *data++ = (uint8_t)_spi.write(0); } _cs = 1; return 0; } uint8_t read(uint32_t address) { uint8_t data; _cs = 0; _spi.write(MB85_READ); if (_address_bits == 24) { _spi.write((uint8_t)((address >> 16) & 0xFF)); } _spi.write((uint8_t)((address >> 8) & 0xFF)); _spi.write((uint8_t)((address >> 0) & 0xFF)); data = (uint8_t)_spi.write(0); _cs = 1; return data; } int write(uint32_t address, uint8_t* data, uint32_t len) { _cs = 0; _spi.write(MB85_WRITE); if (_address_bits == 24) { _spi.write((uint8_t)((address >> 16) & 0xFF)); } _spi.write((uint8_t)((address >> 8) & 0xFF)); _spi.write((uint8_t)((address >> 0) & 0xFF)); for (uint32_t i = 0; i < len; i++) { _spi.write(*data++); } _cs = 1; return 0; } int write(uint32_t address, uint8_t data) { _cs = 0; _spi.write(MB85_WRITE); if (_address_bits == 24) { _spi.write((uint8_t)((address >> 16) & 0xFF)); } _spi.write((uint8_t)((address >> 8) & 0xFF)); _spi.write((uint8_t)((address >> 0) & 0xFF)); _spi.write(data); _cs = 1; return 0; } int fill(uint32_t address, uint8_t data, uint32_t len) { _cs = 0; _spi.write(MB85_WRITE); if (_address_bits == 24) { _spi.write((uint8_t)((address >> 16) & 0xFF)); } _spi.write((uint8_t)((address >> 8) & 0xFF)); _spi.write((uint8_t)((address >> 0) & 0xFF)); for (uint32_t i = 0; i < len; i++) { _spi.write(data); } _cs = 1; return 0; } void write_enable() { _cs = 0; _spi.write(MB85_WREN); _cs = 1; } void write_disable() { _cs = 0; _spi.write(MB85_WRDI); _cs = 1; } int main() { uint8_t buf[16]; uint32_t address; pc.baud(115200); pc.printf("\nFujitsu MB85RSxxx FRAM test program\n\n"); // Initialize SPI _spi.format(8, 0); _cs = 1; // Read device ID and detect memory density for addressing read_device_id(buf); if ((buf[2] & 0x1F) > MB85_DENSITY_512K) { _address_bits = 24; } else { _address_bits = 16; } pc.printf("read device ID = 0x%x 0x%x 0x%x 0x%x\n", buf[0], buf[1], buf[2], buf[3]); write_enable(); pc.printf("read status (WREN) = 0x%x\n", read_status()); write_disable(); pc.printf("read status (WRDI) = 0x%x\n", read_status()); // Write 0 data write_enable(); fill(0, 0, 256); // Prepare write data for (int i = 0; i < 16; i++) { buf[i] = i; } // Write data with write enable write_enable(); write(0x00, buf, 16); // Attempt to write data (not written) write(0x10, buf, 16); // Write data with write enable write_enable(); write(0x20, buf, 16); // Read data for (address = 0; address < 0x80; address += 16) { read(address, buf, 16); pc.printf("%08X : ", address); for (int i = 0; i < 16; i++) { pc.printf("%02X ", buf[i]); } pc.printf("\n"); } // Write number from 0 to 255 pc.printf("\n"); for (address = 0; address < 0x100; address++) { write_enable(); write(address, (uint8_t)address); } // Read data for (address = 0; address < 0x100; address += 16) { read(address, buf, 16); pc.printf("%08X : ", address); for (int i = 0; i < 16; i++) { pc.printf("%02X ", buf[i]); } pc.printf("\n"); } while(1) { myled = 1; wait(0.2); myled = 0; wait(0.2); } }