Luka Danilovic
/
ELEC351_10497267_SUBMISSION
ELEC351 SUBMISSION - Same as on the DLE
Diff: sd-driver/SDBlockDevice.h
- Revision:
- 0:c66224a27cf8
diff -r 000000000000 -r c66224a27cf8 sd-driver/SDBlockDevice.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/sd-driver/SDBlockDevice.h Wed Jan 10 09:49:43 2018 +0000 @@ -0,0 +1,232 @@ +/* mbed Microcontroller Library + * Copyright (c) 2006-2013 ARM Limited + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MBED_SD_BLOCK_DEVICE_H +#define MBED_SD_BLOCK_DEVICE_H + +/* If the target has no SPI support then SDCard is not supported */ +#ifdef DEVICE_SPI + +#include "BlockDevice.h" +#include "mbed.h" +#include "platform/PlatformMutex.h" + +/** Access an SD Card using SPI + * + * @code + * #include "mbed.h" + * #include "SDBlockDevice.h" + * + * SDBlockDevice sd(p5, p6, p7, p12); // mosi, miso, sclk, cs + * uint8_t block[512] = "Hello World!\n"; + * + * int main() { + * sd.init(); + * sd.write(block, 0, 512); + * sd.read(block, 0, 512); + * printf("%s", block); + * sd.deinit(); + * } + */ +class SDBlockDevice : public BlockDevice { +public: + /** Lifetime of an SD card + */ + SDBlockDevice(PinName mosi, PinName miso, PinName sclk, PinName cs, uint64_t hz=1000000); + virtual ~SDBlockDevice(); + + /** Initialize a block device + * + * @return 0 on success or a negative error code on failure + */ + virtual int init(); + + /** Deinitialize a block device + * + * @return 0 on success or a negative error code on failure + */ + virtual int deinit(); + + /** Read blocks from a block device + * + * @param buffer Buffer to write blocks to + * @param addr Address of block to begin reading from + * @param size Size to read in bytes, must be a multiple of read block size + * @return 0 on success, negative error code on failure + */ + virtual int read(void *buffer, bd_addr_t addr, bd_size_t size); + + /** Program blocks to a block device + * + * The blocks must have been erased prior to being programmed + * + * @param buffer Buffer of data to write to blocks + * @param addr Address of block to begin writing to + * @param size Size to write in bytes, must be a multiple of program block size + * @return 0 on success, negative error code on failure + */ + virtual int program(const void *buffer, bd_addr_t addr, bd_size_t size); + + /** Mark blocks as no longer in use + * + * This function provides a hint to the underlying block device that a region of blocks + * is no longer in use and may be erased without side effects. Erase must still be called + * before programming, but trimming allows flash-translation-layers to schedule erases when + * the device is not busy. + * + * @param addr Address of block to mark as unused + * @param size Size to mark as unused in bytes, must be a multiple of erase block size + * @return 0 on success, negative error code on failure + */ + virtual int trim(bd_addr_t addr, bd_size_t size); + + /** Get the size of a readable block + * + * @return Size of a readable block in bytes + */ + virtual bd_size_t get_read_size() const; + + /** Get the size of a programable block + * + * @return Size of a programable block in bytes + * @note Must be a multiple of the read size + */ + virtual bd_size_t get_program_size() const; + + /** Get the total size of the underlying device + * + * @return Size of the underlying device in bytes + */ + virtual bd_size_t size() const; + + /** Enable or disable debugging + * + * @param State of debugging + */ + virtual void debug(bool dbg); + + /** Set the transfer frequency + * + * @param Transfer frequency + * @note Max frequency supported is 25MHZ + */ + virtual int frequency(uint64_t freq); + + +private: + /* Commands : Listed below are commands supported + * in SPI mode for SD card : Only Mandatory ones + */ + enum cmdSupported { + CMD_NOT_SUPPORTED = -1, /**< Command not supported error */ + CMD0_GO_IDLE_STATE = 0, /**< Resets the SD Memory Card */ + CMD1_SEND_OP_COND = 1, /**< Sends host capacity support */ + CMD6_SWITCH_FUNC = 6, /**< Check and Switches card function */ + CMD8_SEND_IF_COND = 8, /**< Supply voltage info */ + CMD9_SEND_CSD = 9, /**< Provides Card Specific data */ + CMD10_SEND_CID = 10, /**< Provides Card Identification */ + CMD12_STOP_TRANSMISSION = 12, /**< Forces the card to stop transmission */ + CMD13_SEND_STATUS = 13, /**< Card responds with status */ + CMD16_SET_BLOCKLEN = 16, /**< Length for SC card is set */ + CMD17_READ_SINGLE_BLOCK = 17, /**< Read single block of data */ + CMD18_READ_MULTIPLE_BLOCK = 18, /**< Card transfers data blocks to host until interrupted + by a STOP_TRANSMISSION command */ + CMD24_WRITE_BLOCK = 24, /**< Write single block of data */ + CMD25_WRITE_MULTIPLE_BLOCK = 25, /**< Continuously writes blocks of data until + 'Stop Tran' token is sent */ + CMD27_PROGRAM_CSD = 27, /**< Programming bits of CSD */ + CMD32_ERASE_WR_BLK_START_ADDR = 32, /**< Sets the address of the first write + block to be erased. */ + CMD33_ERASE_WR_BLK_END_ADDR = 33, /**< Sets the address of the last write + block of the continuous range to be erased.*/ + CMD38_ERASE = 38, /**< Erases all previously selected write blocks */ + CMD55_APP_CMD = 55, /**< Extend to Applications specific commands */ + CMD56_GEN_CMD = 56, /**< General Purpose Command */ + CMD58_READ_OCR = 58, /**< Read OCR register of card */ + CMD59_CRC_ON_OFF = 59, /**< Turns the CRC option on or off*/ + // App Commands + ACMD6_SET_BUS_WIDTH = 6, + ACMD13_SD_STATUS = 13, + ACMD22_SEND_NUM_WR_BLOCKS = 22, + ACMD23_SET_WR_BLK_ERASE_COUNT = 23, + ACMD41_SD_SEND_OP_COND = 41, + ACMD42_SET_CLR_CARD_DETECT = 42, + ACMD51_SEND_SCR = 51, + }; + + uint8_t _card_type; + int _cmd(SDBlockDevice::cmdSupported cmd, uint32_t arg, bool isAcmd=0, uint32_t *resp=NULL); + int _cmd8(); + + /* Move the SDCard into the SPI Mode idle state + * + * The card is transitioned from SDCard mode to SPI mode by sending the + * CMD0 (GO_IDLE_STATE) command with CS asserted. See the notes in the + * "SPI Startup" section of the comments at the head of the + * implementation file for further details and specification references. + * + * @return Response form the card. R1_IDLE_STATE (0x1), the successful + * response from CMD0. R1_XXX_XXX for more response + */ + uint32_t _go_idle_state(); + int _initialise_card(); + + bd_size_t _sectors; + bd_size_t _sd_sectors(); + + bool _is_valid_trim(bd_addr_t addr, bd_size_t size); + + /* SPI functions */ + Timer _spi_timer; /**< Timer Class object used for busy wait */ + uint32_t _init_sck; /**< Intial SPI frequency */ + uint32_t _transfer_sck; /**< SPI frequency during data transfer/after initialization */ + SPI _spi; /**< SPI Class object */ + + /* SPI initialization function */ + void _spi_init(); + uint8_t _cmd_spi(SDBlockDevice::cmdSupported cmd, uint32_t arg); + void _spi_wait(uint8_t count); + + bool _wait_token(uint8_t token); /**< Wait for token */ + bool _wait_ready(uint16_t ms=300); /**< 300ms default wait for card to be ready */ + int _read(uint8_t * buffer, uint32_t length); + int _read_bytes(uint8_t * buffer, uint32_t length); + uint8_t _write(const uint8_t *buffer,uint8_t token, uint32_t length); + int _freq(void); + + /* Chip Select and SPI mode select */ + DigitalOut _cs; + void _select(); + void _deselect(); + + virtual void lock() { + _mutex.lock(); + } + + virtual void unlock() { + _mutex.unlock(); + } + + PlatformMutex _mutex; + bd_size_t _block_size; + bd_size_t _erase_size; + bool _is_initialized; + bool _dbg; +}; + +#endif /* DEVICE_SPI */ + +#endif /* MBED_SD_BLOCK_DEVICE_H */