for learning

Dependencies:   mbed FastPWM

main.cpp

Committer:
Lightvalve
Date:
2020-02-19
Revision:
51:b46bed7fec80
Parent:
50:3c630b5eba9f
Child:
52:8ea76864368a

File content as of revision 51:b46bed7fec80:

#include "mbed.h"
#include "FastPWM.h"
#include "INIT_HW.h"
#include "function_CAN.h"
#include "SPI_EEP_ENC.h"
#include "I2C_AS5510.h"
#include "setting.h"
#include "function_utilities.h"
#include "stm32f4xx_flash.h"
#include "FlashWriter.h"

///191008////

// dac & check ///////////////////////////////////////////
DigitalOut check(PC_2);
DigitalOut check_2(PC_3);
AnalogOut dac_1(PA_4);
AnalogOut dac_2(PA_5);
AnalogIn adc1(PC_4); //pressure_1
AnalogIn adc2(PB_0); //pressure_2
AnalogIn adc3(PC_1); //current


// PWM ///////////////////////////////////////////
float dtc_v=0.0f;
float dtc_w=0.0f;

// I2C ///////////////////////////////////////////
I2C i2c(PC_9,PA_8); // SDA, SCL (for K22F)
const int i2c_slave_addr1 =  0x56;
unsigned int value; // 10bit output of reading sensor AS5510

// SPI ///////////////////////////////////////////
//SPI eeprom(PB_15, PB_14, PB_13); // EEPROM //(SPI_MOSI, SPI_MISO, SPI_SCK);
//DigitalOut eeprom_cs(PB_12);
//FlashWriter writer(6);//2부터 7까지 되는듯 아마 sector
SPI enc(PC_12,PC_11,PC_10);
DigitalOut enc_cs(PD_2);
DigitalOut LED(PA_15);

// UART ///////////////////////////////////////////
Serial pc(PA_9,PA_10); //  _ UART

// CAN ///////////////////////////////////////////
CAN can(PB_8, PB_9, 1000000);
CANMessage msg;
void onMsgReceived()
{
    CAN_RX_HANDLER();
}

// Variables ///////////////////////////////////////////
State pos;
State vel;
State Vout;
State torq;
State pres_A;
State pres_B;
State cur;
State valve_pos;

State INIT_Vout;
State INIT_Valve_Pos;
State INIT_Pos;
State INIT_torq;

float V_out=0.0f;
float V_rem=0.0f; // for anti-windup
float V_MAX = 12000.0f; // Maximum Voltage : 12V = 12000mV

float PWM_out=0.0f;

int timer_while = 0;
int while_index = 0;

extern int CID_RX_CMD;
extern int CID_RX_REF_POSITION;
extern int CID_RX_REF_VALVE_POS;
extern int CID_RX_REF_PWM;

extern int CID_TX_INFO;
extern int CID_TX_POSITION;
extern int CID_TX_TORQUE;
extern int CID_TX_PRES;
extern int CID_TX_VOUT;
extern int CID_TX_VALVE_POSITION;

// =============================================================================
// =============================================================================
// =============================================================================

/*******************************************************************************
 *  REFERENCE MODE
 ******************************************************************************/
enum _REFERENCE_MODE {
    MODE_REF_NO_ACT = 0,                                //0
    MODE_REF_DIRECT,                                //1
    MODE_REF_COS_INC,                                  //2
    MODE_REF_LINE_INC,                                 //3
    MODE_REF_SIN_WAVE,                                  //4
    MODE_REF_SQUARE_WAVE,                                  //5
};

/*******************************************************************************
 *  CONTROL MODE
 ******************************************************************************/
enum _CONTROL_MODE {
    //control mode
    MODE_NO_ACT = 0,                                    //0
    MODE_VALVE_POSITION_CONTROL,                        //1
    MODE_JOINT_CONTROL,                                 //2

    MODE_VALVE_OPEN_LOOP,                               //3
    MODE_JOINT_POSITION_TORQUE_CONTROL_VALVE_POSITION,  //4
    MODE_VALVE_POSITION_TORQUE_CONTROL_LEARNING,        //5

    MODE_JOINT_POSITION_PRES_CONTROL_PWM,               //6
    MODE_JOINT_POSITION_PRES_CONTROL_VALVE_POSITION,    //7
    MODE_VALVE_POSITION_PRES_CONTROL_LEARNING,          //8

    MODE_TEST_CURRENT_CONTROL,                          //9
    MODE_TEST_PWM_CONTROL,                              //10

    MODE_CURRENT_CONTROL,                               //11
    MODE_JOINT_POSITION_TORQUE_CONTROL_CURRENT,         //12
    MODE_JOINT_POSITION_PRES_CONTROL_CURRENT,           //13

    //utility
    MODE_TORQUE_SENSOR_NULLING = 20,                    //20
    MODE_VALVE_NULLING_AND_DEADZONE_SETTING,            //21
    MODE_FIND_HOME,                                     //22
    MODE_VALVE_GAIN_SETTING,                        //23
    MODE_PRESSURE_SENSOR_NULLING,                       //24
    MODE_PRESSURE_SENSOR_CALIB,                         //25
    MODE_ROTARY_FRICTION_TUNING,                        //26

    MODE_DDV_POS_VS_PWM_ID = 30,                           //30
    MODE_DDV_DEADZONE_AND_CENTER,                       //31
    MODE_DDV_POS_VS_FLOWRATE,                           //32
};

int main()
{
    /*********************************
    ***     Initialization
    *********************************/
    //LED = 1;
    //pc.baud(9600);

    // i2c init
    i2c.frequency(400 * 1000);          // 0.4 mHz
    wait_ms(2);                         // Power Up wait
    look_for_hardware_i2c();            // Hardware present
    init_as5510(i2c_slave_addr1);
    make_delay();

//    // spi init
    //eeprom.format(8,3);
    //eeprom.frequency(5000000); //5M
    enc.format(8,0);
    enc.frequency(5000000); //5M
    make_delay();

    //rom
    ROM_CALL_DATA();
    make_delay();

    // ADC init
    Init_ADC();
    make_delay();

    // Pwm init
    Init_PWM();
    TIM4->CR1 ^= TIM_CR1_UDIS;
    make_delay();

    // TMR3 init
    Init_TMR3();
    TIM3->CR1 ^= TIM_CR1_UDIS;
    make_delay();

    // TMR2 init
    Init_TMR2();
    TIM2->CR1 ^= TIM_CR1_UDIS;
    make_delay();

    // CAN
    can.attach(&CAN_RX_HANDLER);
    CAN_ID_INIT();
    make_delay();

    //Timer priority
    NVIC_SetPriority(TIM3_IRQn, 2);
    NVIC_SetPriority(TIM2_IRQn, 3);
    NVIC_SetPriority(TIM4_IRQn, 4);

    //can.reset();
    can.filter(msg.id, 0xFFFFF000, CANStandard);

    // spi _ enc
    spi_enc_set_init();
    make_delay();

    //DAC init
//    dac_1 = PRES_A_VREF / 3.3f;
//    dac_2 = PRES_B_VREF / 3.3f;
    dac_1 = TORQUE_VREF / 3.3f;
    dac_2 = 0.0f;
    make_delay();

    for (int i=0; i<50; i++) {
        if(i%2==0)
            ID_index_array[i] = - i * 0.5f;
        else
            ID_index_array[i] =  (i+1) * 0.5f;
    }

    /************************************
    ***     Program is operating!
    *************************************/
    while(1) {
        if(timer_while==1000) {
            //i2c
            read_field(i2c_slave_addr1);
            if(DIR_VALVE_ENC < 0) value = 1023 - value;
//            if(LED==1) {
//                LED=0;
//            } else
//                LED = 1;
            timer_while = 0;
        }
        timer_while ++;
    }
}

float DDV_JOINT_POS_FF(float REF_JOINT_VEL)
{

    int i = 0;
    float Ref_Valve_Pos_FF = 0.0f;
    for(i=0; i<VALVE_POS_NUM; i++) {
        if(REF_JOINT_VEL >= min(JOINT_VEL[i],JOINT_VEL[i+1]) && REF_JOINT_VEL <=  max(JOINT_VEL[i],JOINT_VEL[i+1])) {
            if(i==0) {
                if(JOINT_VEL[i+1] == JOINT_VEL[i]) {
                    Ref_Valve_Pos_FF = DDV_CENTER;
                } else {
                    Ref_Valve_Pos_FF = ((float) 10/(JOINT_VEL[i+1] - JOINT_VEL[i]) * (REF_JOINT_VEL - JOINT_VEL[i])) + DDV_CENTER;
                }
            } else {
                if(JOINT_VEL[i+1] == JOINT_VEL[i-1]) {
                    Ref_Valve_Pos_FF = DDV_CENTER;
                } else {
                    Ref_Valve_Pos_FF = ((float) 10*(ID_index_array[i+1] - ID_index_array[i-1])/(JOINT_VEL[i+1] - JOINT_VEL[i-1]) * (REF_JOINT_VEL - JOINT_VEL[i-1])) + DDV_CENTER + (float) (10*ID_index_array[i-1]);
                }
            }
            break;
        }
    }
    if(REF_JOINT_VEL > max(JOINT_VEL[VALVE_POS_NUM-1], JOINT_VEL[VALVE_POS_NUM-2])) {
        Ref_Valve_Pos_FF = (float) VALVE_MAX_POS;
    } else if(REF_JOINT_VEL < min(JOINT_VEL[VALVE_POS_NUM-1], JOINT_VEL[VALVE_POS_NUM-2])) {
        Ref_Valve_Pos_FF = (float) VALVE_MIN_POS;
    }

    Ref_Valve_Pos_FF = (float) VELOCITY_COMP_GAIN * 0.01f * (float) (Ref_Valve_Pos_FF - DDV_CENTER);
    return Ref_Valve_Pos_FF;

}


void VALVE_POS_CONTROL(float REF_VALVE_POS)
{
    int i = 0;

    if(REF_VALVE_POS > VALVE_MAX_POS) {
        REF_VALVE_POS = VALVE_MAX_POS;
    } else if(REF_VALVE_POS < VALVE_MIN_POS) {
        REF_VALVE_POS = VALVE_MIN_POS;
    }

    valve_pos_err = REF_VALVE_POS - value;
    valve_pos_err_diff = valve_pos_err - valve_pos_err_old;
    valve_pos_err_old = valve_pos_err;
    valve_pos_err_sum += valve_pos_err;
    if (valve_pos_err_sum > 1000) valve_pos_err_sum = 1000;
    if (valve_pos_err_sum<-1000) valve_pos_err_sum = -1000;

    VALVE_PWM_RAW_FB = P_GAIN_VALVE_POSITION * valve_pos_err + I_GAIN_VALVE_POSITION * valve_pos_err_sum + D_GAIN_VALVE_POSITION * valve_pos_err_diff;

    for(i=0; i<24; i++) {
        if(REF_VALVE_POS >= min(VALVE_POS_VS_PWM[i],VALVE_POS_VS_PWM[i+1]) && REF_VALVE_POS <=  max(VALVE_POS_VS_PWM[i],VALVE_POS_VS_PWM[i+1])) {
            if(i==0) {
                VALVE_PWM_RAW_FF = (float) 1000.0f / (float) (VALVE_POS_VS_PWM[i+1] - VALVE_POS_VS_PWM[i]) * ((float) REF_VALVE_POS - VALVE_POS_VS_PWM[i]);
            } else {
                VALVE_PWM_RAW_FF = (float) 1000.0f* (float) (ID_index_array[i+1] - ID_index_array[i-1])/(VALVE_POS_VS_PWM[i+1] - VALVE_POS_VS_PWM[i-1]) * ((float) REF_VALVE_POS - VALVE_POS_VS_PWM[i-1]) + 1000.0f * (float) ID_index_array[i-1];
            }
            break;
        }
    }
    V_out = VALVE_PWM_RAW_FF + VALVE_PWM_RAW_FB;
}

#define LT_MAX_IDX  57
float LT_PWM_duty[LT_MAX_IDX] = {-100.0f, -80.0f, -60.0f, -50.0f, -40.0f, -35.0f, -30.0f, -25.0f, -20.0f,
                                 -19.0f, -18.0f, -17.0f, -16.0f, -15.0f, -14.0f, -13.0f, -12.0f, -11.0f, -10.0f,
                                 -9.0f, -8.0f, -7.0f, -6.0f, -5.0f, -4.0f, -3.0f, -2.0f, -1.0f, 0.0f,
                                 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f,
                                 11.0f, 12.0f, 13.0f, 14.0f, 15.0f, 16.0f, 17.0f, 18.0f, 19.0f, 20.0f,
                                 25.0f, 30.0f, 35.0f, 40.0f, 50.0f, 60.0f, 80.0f, 100.0f
                                };  // duty
float LT_Voltage_Output[LT_MAX_IDX] = {-321.4f, -291.3f, -261.5f, -246.8f, -231.7f, -223.9f, -216.1f, -207.9f, -198.8f,
                                       -196.9f, -195.0f, -192.5f, -188.8f, -184.5f, -180.2f, -175.9f, -171.5f, -166.3f, -161.0f,
                                       -156.0f, -149.5f, -139.0f, -126.0f, -107.0f, -87.5f, -64.0f, -38.5f, -9.4f, 0.0f,
                                       12.0f, 43.5f, 69.0f, 94.0f, 114.0f, 132.0f, 146.0f, 155.5f, 162.3f, 168.2f,
                                       173.1f, 178.2f, 182.8f, 187.4f, 191.8f, 196.0f, 199.7f, 201.9f, 203.8f, 205.6f,
                                       214.6f, 222.5f, 230.4f, 238.2f, 253.3f, 268.0f, 297.6f, 327.7f
                                      }; // mV

float PWM_duty_byLT(float Ref_V)
{
    float PWM_duty = 0.0f;
    if(Ref_V<LT_Voltage_Output[0]) {
        PWM_duty = (Ref_V-LT_Voltage_Output[0])/1.5f+LT_PWM_duty[0];
    } else if (Ref_V>=LT_Voltage_Output[LT_MAX_IDX-1]) {
        PWM_duty = (Ref_V-LT_Voltage_Output[LT_MAX_IDX-1])/1.5f+LT_PWM_duty[LT_MAX_IDX-1];
    } else {
        int idx = 0;
        for(idx=0; idx<LT_MAX_IDX-1; idx++) {
            float ini_x = LT_Voltage_Output[idx];
            float fin_x = LT_Voltage_Output[idx+1];
            float ini_y = LT_PWM_duty[idx];
            float fin_y = LT_PWM_duty[idx+1];
            if(Ref_V>=ini_x && Ref_V<fin_x) {
                PWM_duty = (fin_y-ini_y)/(fin_x-ini_x)*(Ref_V-ini_x) + ini_y;
                break;
            }
        }
    }

    return PWM_duty;
}

/*******************************************************************************
                            TIMER INTERRUPT
*******************************************************************************/

float FREQ_TMR4 = (float)FREQ_20k;
float DT_TMR4 = (float)DT_20k;
extern "C" void TIM4_IRQHandler(void)
{

    if (TIM4->SR & TIM_SR_UIF ) {

        /*******************************************************
        ***     Sensor Read & Data Handling
        ********************************************************/


        //Using LoadCell
//            ADC1->CR2  |= 0x40000000;                        // adc _ 12bit
//            //while((ADC1->SR & 0b10));
//            float alpha_update_torque = 1.0f/(1.0f+(FREQ_TMR4/2.0f)/(2.0f*3.14f*1000.0f));
//            float torque_new = ((float)ADC1->DR - PRES_A_NULL)  / TORQUE_SENSOR_PULSE_PER_TORQUE + 1.0f;
//            torq.sen = torq.sen*(1.0f-alpha_update_torque)+torque_new*(alpha_update_torque);



        //Pressure sensor A
        ADC1->CR2  |= 0x40000000;                        // adc _ 12bit
        //while((ADC1->SR & 0b10));
        float alpha_update_pres_A = 1.0f/(1.0f + FREQ_TMR4/(2.0f*3.14f*100.0f));
//        float pres_A_new = ((float)ADC1->DR - PRES_A_NULL)  / PRES_SENSOR_A_PULSE_PER_BAR;
        float pres_A_new = ((float)ADC1->DR);
        pres_A.sen = pres_A.sen*(1.0f-alpha_update_pres_A)+pres_A_new*(alpha_update_pres_A);
        torq.sen = - (pres_A.sen-2048.0f); //pulse -2047~2047


        //Pressure sensor 1B
        //float alpha_update_pres_B = 1.0f/(1.0f+(FREQ_TMR4/2.0f)/(2.0f*3.14f*1000.0f));
        //float pres_B_new = ((float)ADC2->DR);
        //pres_B.sen = pres_B.sen*(1.0f-alpha_update_pres_B)+pres_B_new*(alpha_update_pres_B);
        //torq.sen = pres_A.sen * (float) PISTON_AREA_A - pres_B.sen * (float) PISTON_AREA_B;



        //Current
        //ADC3->CR2  |= 0x40000000;                        // adc _ 12bit
//          a1=ADC2->DR;
        //int raw_cur = ADC3->DR;
        //while((ADC3->SR & 0b10));
        float alpha_update_cur = 1.0f/(1.0f + FREQ_TMR4/(2.0f*3.14f*500.0f)); // f_cutoff : 500Hz
        float cur_new = ((float)ADC3->DR-2048.0f)*20.0f/4096.0f; // unit : mA
        cur.sen=cur.sen*(1.0f-alpha_update_cur)+cur_new*(alpha_update_cur);
        //cur.sen = raw_cur;

        /*******************************************************
        ***     Timer Counting & etc.
        ********************************************************/
        //CNT_TMR4++;
    }
    TIM4->SR = 0x0;  // reset the status register
}


int j =0;
//unsigned long CNT_TMR3 = 0;
//float FREQ_TMR3 = (float)FREQ_5k;
float FREQ_TMR3 = (float)FREQ_1k;
float DT_TMR3 = (float)DT_5k;
//float DT_TMR3 = (float)DT_1k;
int cnt_trans = 0;
double VALVE_POS_RAW_FORCE_FB_LOGGING = 0.0f;

extern "C" void TIM3_IRQHandler(void)
{
    if (TIM3->SR & TIM_SR_UIF ) {
        ENC_UPDATE();

        if(MODE_POS_FT_TRANS == 1) {
            alpha_trans = (float)(1.0f - cos(3.141592f * (float)cnt_trans * DT_TMR3 /3.0f))/2.0f;
            cnt_trans++;
            torq.err_sum = 0;
            if((float)cnt_trans * DT_TMR3 > 3.0f)
                MODE_POS_FT_TRANS = 2;
        } else if(MODE_POS_FT_TRANS == 3) {
            alpha_trans = (float)(1.0f + cos(3.141592f * (float)cnt_trans * DT_TMR3 /3.0f))/2.0f;
            cnt_trans++;
            torq.err_sum = 0;
            if((float) cnt_trans * DT_TMR3 > 3.0f )
                MODE_POS_FT_TRANS = 0;
        } else if(MODE_POS_FT_TRANS == 2) {
            alpha_trans = 1.0;
            cnt_trans = 0;
        } else {
            alpha_trans = 0.0;
            cnt_trans = 0;
        }



        // CONTROL LOOP ------------------------------------------------------------

        switch (CONTROL_MODE) {
            case MODE_NO_ACT: {
                V_out = 0.0f;
                break;
            }

            case MODE_VALVE_POSITION_CONTROL: {
                VALVE_POS_CONTROL(valve_pos.ref);
                break;
            }

            case MODE_JOINT_CONTROL: {

                float VALVE_POS_RAW_FORCE_FB = 0.0f;

                pos.err = pos.ref - pos.sen; //[pulse]
                vel.err = vel.ref - vel.sen; //[pulse/s]
                double torq_ref = 0.0f;
                torq_ref = torq.ref + (K_SPRING * pos.err * 0.01f + D_DAMPER * vel.err * 0.0001f) / ENC_PULSE_PER_POSITION; //[N]

                // torque feedback
                torq.err = torq_ref - torq.sen; //[pulse]
                torq.err_sum += torq.err/(float) TMR_FREQ_5k; //[pulse]
//                if (torq.err_sum > 1000) torq.err_sum = 1000;
//                if (torq.err_sum<-1000) torq.err_sum = -1000;


                VALVE_POS_RAW_FORCE_FB = alpha_trans*(((float) P_GAIN_JOINT_TORQUE * torq.err + (float) I_GAIN_JOINT_TORQUE * torq.err_sum) /(float) TORQUE_SENSOR_PULSE_PER_TORQUE * 0.01f
                                                      + DDV_JOINT_POS_FF(vel.sen))+ (1.0f-alpha_trans) * (P_GAIN_JOINT_POSITION * 0.01f * pos.err /(float) ENC_PULSE_PER_POSITION + DDV_JOINT_POS_FF(vel.ref));

                if (VALVE_POS_RAW_FORCE_FB >= 0) {
                    valve_pos.ref = VALVE_POS_RAW_FORCE_FB + VALVE_DEADZONE_PLUS;
                } else {
                    valve_pos.ref = VALVE_POS_RAW_FORCE_FB + VALVE_DEADZONE_MINUS;
                }
                
                if(I_GAIN_JOINT_TORQUE != 0){
                    double Ka = 1.0f / (double) I_GAIN_JOINT_TORQUE * (float) TORQUE_SENSOR_PULSE_PER_TORQUE * 100.0f;
                    if(valve_pos.ref>VALVE_MAX_POS){
                        double valve_pos_rem = valve_pos.ref - VALVE_MAX_POS;
                        valve_pos_rem = valve_pos_rem * Ka;
                        valve_pos.ref = VALVE_MAX_POS;
                        torq.err_sum = torq.err_sum - valve_pos_rem/(float) TMR_FREQ_5k;
                    }
                    else if(valve_pos.ref < VALVE_MIN_POS){
                        double valve_pos_rem = valve_pos.ref - VALVE_MIN_POS;
                        valve_pos_rem = valve_pos_rem * Ka;
                        valve_pos.ref = VALVE_MIN_POS;
                        torq.err_sum = torq.err_sum - valve_pos_rem/(float) TMR_FREQ_5k;
                    }
                }    
            
                VALVE_POS_CONTROL(valve_pos.ref);

                break;
            }

            case MODE_VALVE_OPEN_LOOP: {
                V_out = (float) Vout.ref;
                break;
            }

            case MODE_JOINT_POSITION_TORQUE_CONTROL_VALVE_POSITION: {
                float VALVE_POS_RAW_POS_FB = 0.0f; // Valve Position by Position Feedback
                //float VALVE_POS_RAW_POS_FF = 0.0f; // Valve Position by Position Feedforward
                float VALVE_POS_RAW_FORCE_FB = 0.0f; // Valve Position by Force Feedback
                //int DDV_JOINT_CAN = 0;
                // feedback input for position control
                pos.err = pos.ref - (float) pos.sen;
                pos.err_diff = pos.err - pos.err_old;
                pos.err_old = pos.err;
                pos.err_sum += pos.err;
                if (pos.err_sum > 1000) pos.err_sum = 1000;
                if (pos.err_sum<-1000) pos.err_sum = -1000;
                VALVE_POS_RAW_POS_FB = (float) P_GAIN_JOINT_POSITION * 0.01f * pos.err/(float) ENC_PULSE_PER_POSITION + (float) I_GAIN_JOINT_POSITION * 0.01f * pos.err_sum/(float) ENC_PULSE_PER_POSITION + (float) D_GAIN_JOINT_POSITION * pos.err_diff/(float) ENC_PULSE_PER_POSITION;


                //Ref_Joint_Vel =  Ref_Vel_Test;
                // feedforward input for position control
                //            float Ref_Joint_Vel_Act = Ref_Joint_Vel/(float)ENC_PULSE_PER_POSITION; // [pulse/s] >> [deg/s]
                //            float K_ff = 0.9f;
                //            if(Ref_Joint_Vel_Act > 0) K_ff = 0.90f; // open
                //            if(Ref_Joint_Vel_Act > 0) K_ff = 0.75f; // close
                //            VALVE_POS_RAW_POS_FF = K_ff*Ref_Joint_Vel_Act/0.50f;

                //torque feedback
                torq.err = - torq.ref + torq.sen;
                torq.err_diff = torq.err - torq.err_old;
                torq.err_old = torq.err;
                torq.err_sum += torq.err;
                if (torq.err_sum > 1000) torq.err_sum = 1000;
                if (torq.err_sum<-1000) torq.err_sum = -1000;
                VALVE_POS_RAW_FORCE_FB = (float) P_GAIN_JOINT_TORQUE * torq.err + (float) I_GAIN_JOINT_TORQUE * torq.err_sum + (float) D_GAIN_JOINT_TORQUE * torq.err_diff;
                VALVE_POS_RAW_FORCE_FB = VALVE_POS_RAW_FORCE_FB * 0.01f;

//                valve_pos.ref = VALVE_POS_RAW_POS_FB + DDV_JOINT_POS_FF(vel.ref) + VALVE_POS_RAW_FORCE_FB;
                valve_pos.ref = VALVE_POS_RAW_POS_FB + DDV_JOINT_POS_FF(vel.ref);

                if (valve_pos.ref >= 0) {
                    valve_pos.ref = valve_pos.ref + VALVE_DEADZONE_PLUS;
                } else if(valve_pos.ref < 0) {
                    valve_pos.ref = valve_pos.ref + VALVE_DEADZONE_MINUS;
                }
                VALVE_POS_CONTROL(valve_pos.ref);


                break;
            }

//            case MODE_VALVE_POSITION_TORQUE_CONTROL_LEARNING: {
//
//                break;
//            }

//            case MODE_JOINT_POSITION_PRES_CONTROL_PWM: {
//                pos.err = pos.ref - (float) pos.sen;
//                pos.err_diff = pos.err - pos.err_old;
//                pos.err_old = pos.err;
//                pos.err_sum += pos.err;
//                if (pos.err_sum > 1000) pos.err_sum = 1000;
//                if (pos.err_sum<-1000) pos.err_sum = -1000;
//                VALVE_PWM_RAW_POS = ((float) P_GAIN_JOINT_POSITION * pos.err + (float) I_GAIN_JOINT_POSITION * pos.err_sum + (float) D_GAIN_JOINT_POSITION * pos.err_diff)/(float) ENC_PULSE_PER_POSITION;
//
//                torq.err = torq.ref - torq.sen;
//                torq.err_diff = torq.err - torq.err_old;
//                torq.err_old = torq.err;
//                torq.err_sum += torq.err;
//                if (torq.err_sum > 1000) torq.err_sum = 1000;
//                if (torq.err_sum<-1000) torq.err_sum = -1000;
//                VALVE_PWM_RAW_TORQ = (float) P_GAIN_JOINT_TORQUE * torq.err + (float) I_GAIN_JOINT_TORQUE * torq.err_sum + (float) D_GAIN_JOINT_TORQUE * torq.err_diff;
//
//                VALVE_PWM_RAW_TORQ = VALVE_PWM_RAW_TORQ * 0.01f;
//
//                V_out = VALVE_PWM_RAW_POS + (float) COMPLIANCE_GAIN * 0.01f * VALVE_PWM_RAW_TORQ;
//
//                CUR_FLOWRATE = (float) CUR_VELOCITY * 0.00009587f;
//                CUR_FLOWRATE = CUR_FLOWRATE * 0.5757f; // 0.4791=2*pi/65536*5000(pulse/tic to rad/s) 0.5757=0.02525*0.02*0.0095*2*60*1000 (radius * area * 2 * 60(sec --> min) * 1000(m^3 --> L))
//                if (DIR_VALVE > 0) {
//                    if (CUR_FLOWRATE >= 0 && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[0]*1.0f)) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - 0.0f) / (VALVE_GAIN_LPM_PER_V[0]*1.0f - 0.0f) + 0.0f;
//                    else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[0]*1.0f) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[2]*2.0f)) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[0]*1.0f) / (VALVE_GAIN_LPM_PER_V[2]*2.0f - VALVE_GAIN_LPM_PER_V[0]*1.) + 1.0f;
//                    else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[2]*2.0f) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[4]*3.0f)) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[2]*2.0f) / (VALVE_GAIN_LPM_PER_V[4]*3.0f - VALVE_GAIN_LPM_PER_V[2]*2.) + 2.0f;
//                    else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[4]*3.0f) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[6]*4.0f)) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[4]*3.0f) / (VALVE_GAIN_LPM_PER_V[6]*4.0f - VALVE_GAIN_LPM_PER_V[4]*3.) + 3.0f;
//                    else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[6]*4.0f) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[8]*5.0f)) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[6]*4.0f) / (VALVE_GAIN_LPM_PER_V[8]*5.0f - VALVE_GAIN_LPM_PER_V[6]*4.) + 4.0f;
//                    else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[8]*5.0f)) VALVE_FF_VOLTAGE = 5.0f;
//                    else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[1]*(-1.0f)) && CUR_FLOWRATE < 0.0f) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[1]*(-1.0f)) / (0.0f - VALVE_GAIN_LPM_PER_V[1]*(-1.)) - 1.0f;
//                    else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[3]*(-2.0f)) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[1]*(-1.0f))) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[3]*(-2.0f)) / ((VALVE_GAIN_LPM_PER_V[1]*(-1.0f)) - VALVE_GAIN_LPM_PER_V[3]*(-2.)) - 2.0f;
//                    else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[5]*(-3.0f)) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[3]*(-2.0f))) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[5]*(-3.0f)) / ((VALVE_GAIN_LPM_PER_V[3]*(-2.0f)) - VALVE_GAIN_LPM_PER_V[5]*(-3.)) - 3.0f;
//                    else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[7]*(-4.0f)) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[5]*(-3.0f))) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[7]*(-4.0f)) / ((VALVE_GAIN_LPM_PER_V[5]*(-3.0f)) - VALVE_GAIN_LPM_PER_V[7]*(-4.)) - 4.0f;
//                    else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[9]*(-5.0f)) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[7]*(-4.0f))) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[9]*(-5.0f)) / ((VALVE_GAIN_LPM_PER_V[7]*(-4.0f)) - VALVE_GAIN_LPM_PER_V[9]*(-5.)) - 5.0f;
//                    else if (CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[9]*(-5.0f))) VALVE_FF_VOLTAGE = -5;
//                    else VALVE_FF_VOLTAGE = 0;
//                } else {
//                    if (CUR_FLOWRATE >= 0 && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[0]*1.0f)) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - 0.0f) / (VALVE_GAIN_LPM_PER_V[0]*1.0f - 0.0f) + 0.0f;
//                    else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[1]*1.0f) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[2]*2.0f)) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[0]*1.0f) / (VALVE_GAIN_LPM_PER_V[2]*2.0f - VALVE_GAIN_LPM_PER_V[0]*1.0f) + 1.0f;
//                    else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[3]*2.0f) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[4]*3.0f)) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[2]*2.0f) / (VALVE_GAIN_LPM_PER_V[4]*3.0f - VALVE_GAIN_LPM_PER_V[2]*2.0f) + 2.0f;
//                    else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[5]*3.0f) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[6]*4.0f)) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[4]*3.0f) / (VALVE_GAIN_LPM_PER_V[6]*4.0f - VALVE_GAIN_LPM_PER_V[4]*3.0f) + 3.0f;
//                    else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[7]*4.0f) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[8]*5.0f)) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[6]*4.0f) / (VALVE_GAIN_LPM_PER_V[8]*5.0f - VALVE_GAIN_LPM_PER_V[6]*4.0f) + 4.0f;
//                    else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[9]*5.0f)) VALVE_FF_VOLTAGE = 5.0f;
//                    else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[0]*(-1.0f)) && CUR_FLOWRATE < 0.0f) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[1]*(-1.0f)) / (0.0f - VALVE_GAIN_LPM_PER_V[1]*(-1.0f)) - 1.0f;
//                    else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[2]*(-2.0f)) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[1]*(-1.0f))) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[3]*(-2.0f)) / ((VALVE_GAIN_LPM_PER_V[1]*(-1.0f)) - VALVE_GAIN_LPM_PER_V[3]*(-2.0f)) - 2.0f;
//                    else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[4]*(-3.0f)) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[3]*(-2.0f))) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[5]*(-3.0f)) / ((VALVE_GAIN_LPM_PER_V[3]*(-2.0f)) - VALVE_GAIN_LPM_PER_V[5]*(-3.0f)) - 3.0f;
//                    else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[6]*(-4.0f)) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[5]*(-3.0f))) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[7]*(-4.0f)) / ((VALVE_GAIN_LPM_PER_V[5]*(-3.0f)) - VALVE_GAIN_LPM_PER_V[7]*(-4.0f)) - 4.0f;
//                    else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[8]*(-5.0f)) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[7]*(-4.0f))) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[9]*(-5.0f)) / ((VALVE_GAIN_LPM_PER_V[7]*(-4.0f)) - VALVE_GAIN_LPM_PER_V[9]*(-5.0f)) - 5.0f;
//                    else if (CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[8]*(-5.0f))) VALVE_FF_VOLTAGE = -5;
//                    else VALVE_FF_VOLTAGE = 0;
//                }
//                //            VALVE_FF_VOLTAGE = CUR_FLOWRATE * 0.5f;
//
//                if (CUR_FLOWRATE >= 0) VALVE_FF_VOLTAGE = (float) VELOCITY_COMP_GAIN * 0.001f * VALVE_FF_VOLTAGE * sqrt((float) PRES_SUPPLY - CUR_PRES_A_BAR) * 0.0707f; // 0.0707 = 1/sqrt(200.))
//                else if (CUR_FLOWRATE < 0) VALVE_FF_VOLTAGE = (float) VELOCITY_COMP_GAIN * 0.001f * VALVE_FF_VOLTAGE * sqrt((float) PRES_SUPPLY - CUR_PRES_B_BAR) * 0.0707f;
//
//                V_out = V_out + VALVE_FF_VOLTAGE;
//                break;
//            }

//            case MODE_JOINT_POSITION_PRES_CONTROL_VALVE_POSITION: {
//
//                pos.err = pos.ref - (float) pos.sen;
//                pos.err_diff = pos.err - pos.err_old;
//                pos.err_old = pos.err;
//                pos.err_sum += pos.err;
//                if (pos.err_sum > 1000) pos.err_sum = 1000;
//                if (pos.err_sum<-1000) pos.err_sum = -1000;
//                VALVE_PWM_RAW_POS = ((float) P_GAIN_JOINT_POSITION * pos.err + (float) I_GAIN_JOINT_POSITION * pos.err_sum + (float) D_GAIN_JOINT_POSITION * pos.err_diff) * 0.01f;
//
//                torq.err = torq.ref - torq.sen;
//                torq.err_diff = torq.err - torq.err_old;
//                torq.err_old = torq.err;
//                torq.err_sum += torq.err;
//                if (torq.err_sum > 1000) torq.err_sum = 1000;
//                if (torq.err_sum<-1000) torq.err_sum = -1000;
//                VALVE_PWM_RAW_TORQ = (float) P_GAIN_JOINT_TORQUE * torq.err + (float) I_GAIN_JOINT_TORQUE * torq.err_sum + (float) D_GAIN_JOINT_TORQUE * torq.err_diff;
//
//                valve_pos.ref = VALVE_PWM_RAW_POS + VALVE_PWM_RAW_TORQ;
//                VALVE_POS_CONTROL(valve_pos.ref);
//
//                break;
//            }

//            case MODE_VALVE_POSITION_PRES_CONTROL_LEARNING: {
//
//                break;
//            }


//            case MODE_TEST_CURRENT_CONTROL: {
//                if (TMR3_COUNT_IREF == TMR_FREQ_5k) {
//                    TMR3_COUNT_IREF = 0;
//                }
//                TMR3_COUNT_IREF++;
//
//                // Set Current Reference
//                float TMR3_CNT_MAX = (float)TMR_FREQ_5k/2.0f;
//                float I_REF_MID = 0.0f;
//                if (TMR3_COUNT_IREF < TMR3_CNT_MAX) {
//                    I_REF = I_REF_MID + 1.0f;
//                } else {
//                    I_REF = I_REF_MID - 1.0f;
//                }
////              float T = 1.0; // wave period
////              I_REF = (5. * sin(2. * 3.1415 * (float) TMR3_COUNT_IREF / (float)TMR_FREQ_5k/ T));
////              I_REF = (2.0 * sin(2. * 2. * 3.14 * (float) TMR3_COUNT_IREF / 5000.)+(2.0 * sin(2. * 1. * 3.14 * (float)TMR3_COUNT_IREF/ 5000.))+(2.0 * sin(2. * 5. * 3.14 * (float)TMR3_COUNT_IREF/ 5000.))+(2.0 * sin(2. * 10. * 3.14 * (float)TMR3_COUNT_IREF/ 5000.)));
//
//                if (TMR3_COUNT_IREF % (int) (TMR_FREQ_5k / CAN_FREQ) == 0) {
//                    //CAN_TX_PRES((int16_t)(I_REF*1000.0), (int16_t) (CUR_CURRENT*1000.0)); // to check the datas
//                }
//                break;
//            }

//            case MODE_TEST_PWM_CONTROL: {
//                if (TMR3_COUNT_IREF == TMR_FREQ_5k) {
//                    TMR3_COUNT_IREF = 0;
//                }
//                TMR3_COUNT_IREF++;
//
//                // Set PWM reference
//                float TMR3_CNT_MAX = (float)TMR_FREQ_5k/2.0f;
//                //float I_REF_MID = 0.0f;
//                if (TMR3_COUNT_IREF < TMR3_CNT_MAX) {
//                    CUR_PWM = 1000;
//                } else {
//                    CUR_PWM = -1000;
//                }
//
//                if (TMR3_COUNT_IREF % (int) (TMR_FREQ_5k / CAN_FREQ) == 0) {
//                    //CAN_TX_PRES((int16_t)(u_CUR[0]*1000.0f), (int16_t) (CUR_CURRENT*1000.0f)); // to check the datas
//                }
//                break;
//            }


//            case MODE_CURRENT_CONTROL: {
//
//                cur.ref = cur.ref; // Unit : mA
//                CurrentControl();
//                break;
//            }

//            case MODE_JOINT_POSITION_TORQUE_CONTROL_CURRENT: {
//                float I_REF_POS_FB = 0.0f; // I_REF by Position Feedback
//                float I_REF_POS_FF = 0.0f; // I_REF by Position Feedforward
//                float I_REF_FORCE_FB = 0.0f; // I_REF by Force Feedback
//                float I_REF_FORCE_FF = 0.0f; // I_REF by Force Feedforward
//
//                // feedback input for position control
//                pos.err = pos.ref - pos.sen;
//                float alpha_update_vel = 1.0f/(1.0f+(float)FREQ_TMR4/(2.0f*3.1415f*50.0f)); // f_cutoff : 50Hz
//                float err_diff = (pos.err - pos.err_old)*(float)FREQ_5k;
//                pos.err_diff = (1.0f-alpha_update_vel)*pos.err_diff + alpha_update_vel*err_diff;
//                pos.err_old = pos.err;
//                I_REF_POS_FB = 0.001f*((float)P_GAIN_JOINT_POSITION * pos.err + (float)D_GAIN_JOINT_POSITION * pos.err_diff * 0.1f);
//
//                // feedforward input for position control
//                float Vel_Act_Ref = vel.ref; // [pulse/s] >> [deg/s]
//                float K_ff = 1.3f;
//                float K_v = 0.0f;
//                if(Vel_Act_Ref > 0) K_v = 1.0f/100.0f; // open, tuning. (deg/s >> mA)
//                if(Vel_Act_Ref < 0) K_v = 1.0f/100.0f; // close, tuning. (deg/s >> mA)
//                I_REF_POS_FF = K_ff*K_v*Vel_Act_Ref;
//
//                // feedback input for position control
//                I_REF_FORCE_FB = 0.0f;
//
//                // feedforward input for position control
//                I_REF_FORCE_FF = 0.0f;
//
//                cur.ref = I_REF_POS_FF + I_REF_POS_FB + I_REF_FORCE_FB + I_REF_FORCE_FF;
//
//                CurrentControl();
//
//                break;
//            }

//            case MODE_JOINT_POSITION_PRES_CONTROL_CURRENT: {
//                //float T_REF = 0.0; // Torque Reference
//                float I_REF_FORCE_FB = 0.; // I_REF by Force Feedback
//                float I_REF_VC = 0.; // I_REF for velocity compensation
//
//                // feedback input for position control
//                //float Joint_Pos_Err = 34.0f-(float) pos.sen/(float)ENC_PULSE_PER_POSITION; // [pulse/s] >> [deg/s]
//                //float Joint_Vel_Err = 0.0f-(float) vel.sen/(float)ENC_PULSE_PER_POSITION; // [pulse/s] >> [deg/s]
//                //float K_spring = 0.7f;
//                //float D_damper = 0.02f;
////              T_REF = K_spring * pos.err + D_damper * Joint_Vel_Err; // unit : Nm
//
//                // torque feedback
//                torq.err = torq.ref - torq.sen;
//                //            torq.err_diff = torq.err - torq.err_old;
//                //            torq.err_old = torq.err;
//                torq.err_sum = torq.err_sum + torq.err/(float)TMR_FREQ_5k;
//                I_REF_FORCE_FB = 0.001f*((float)P_GAIN_JOINT_TORQUE * torq.err + (float)I_GAIN_JOINT_TORQUE * torq.err_sum);
//
//                // velocity compensation for torque control
//                float Joint_Vel_Act = vel.sen/(float)ENC_PULSE_PER_POSITION; // [pulse/s] >> [deg/s]
//                float K_vc = 1.5f; // Velocity comp. gain
//                float K_v = 0.0f; // Valve gain
//                if(Joint_Vel_Act > 0) K_v = 1.0f/100.0f; // open, tuning
//                if(Joint_Vel_Act < 0) K_v = 1.0f/100.0f; // close, tuning
//                I_REF_VC = K_vc*K_v*Joint_Vel_Act;
//
//                cur.ref = I_REF_VC + I_REF_FORCE_FB;
//                //            cur.ref = I_REF_FORCE_FB;
//
//                float I_MAX = 10.0f; // Maximum Current : 10mV
//                float Ka = 1.0f/I_GAIN_JOINT_TORQUE;
//                if(cur.ref > I_MAX) {
//                    float I_rem = cur.ref-I_MAX;
//                    I_rem = Ka*I_rem;
//                    cur.ref = I_MAX;
//                    torq.err_sum = torq.err_sum - I_rem/(float)TMR_FREQ_5k;
//                } else if(cur.ref < -I_MAX) {
//                    float I_rem = cur.ref-(-I_MAX);
//                    I_rem = Ka*I_rem;
//                    cur.ref = -I_MAX;
//                    torq.err_sum = torq.err_sum - I_rem/(float)TMR_FREQ_5k;
//                }
//
//                CurrentControl();
//
//
//                /*
//                float I_REF_POS_FB = 0.0f; // I_REF by Position Feedback
//                float I_REF_POS_FF = 0.0f; // I_REF by Position Feedforward
//                float I_REF_FORCE_FB = 0.0f; // I_REF by Force Feedback
//                float I_REF_FORCE_FF = 0.0f; // I_REF by Force Feedforward
//
//                // feedback input for position control
//                pos.err = pos.ref - pos.sen;
//                float alpha_update_vel = 1.0f/(1.0f+(float)FREQ_TMR4/(2.0f*3.1415f*50.0f)); // f_cutoff : 50Hz
//                float err_diff = (pos.err - pos.err_old)*(float)FREQ_5k;
//                pos.err_diff = (1.0f-alpha_update_vel)*pos.err_diff + alpha_update_vel*err_diff;
//                pos.err_old = pos.err;
//                I_REF_POS_FB = 0.001f*((float)P_GAIN_JOINT_POSITION * pos.err + (float)D_GAIN_JOINT_POSITION * pos.err_diff * 0.1f);
//
//                // feedforward input for position control
//                float Vel_Act_Ref = vel.ref; // [pulse/s] >> [deg/s]
//                float K_ff = 1.3f;
//                float K_v = 0.0f;
//                if(Vel_Act_Ref > 0) K_v = 1.0f/100.0f; // open, tuning. (deg/s >> mA)
//                if(Vel_Act_Ref < 0) K_v = 1.0f/100.0f; // close, tuning. (deg/s >> mA)
//                I_REF_POS_FF = K_ff*K_v*Vel_Act_Ref;
//
//                // feedback input for position control
//                I_REF_FORCE_FB = 0.0f;
//
//                // feedforward input for position control
//                I_REF_FORCE_FF = 0.0f;
//
//                cur.ref = I_REF_POS_FF + I_REF_POS_FB + I_REF_FORCE_FB + I_REF_FORCE_FF;
//
//                CurrentControl();
//                */
//
//                break;
//            }

            case MODE_TORQUE_SENSOR_NULLING: {
                // DAC Voltage reference set
                if (TMR3_COUNT_TORQUE_NULL < TMR_FREQ_5k * 2) {
                    CUR_TORQUE_sum += torq.sen;

                    if (TMR3_COUNT_TORQUE_NULL % 10 == 0) {
                        CUR_TORQUE_mean = CUR_TORQUE_sum / 10.0f;
                        CUR_TORQUE_sum = 0;

                        TORQUE_VREF += 0.0003 * (0.0f - CUR_TORQUE_mean);

                        if (TORQUE_VREF > 3.3f) TORQUE_VREF = 3.3f;
                        if (TORQUE_VREF < 0) TORQUE_VREF = 0;

                        //spi_eeprom_write(RID_TORQUE_SENSOR_VREF, (int16_t) (TORQUE_VREF * 1000.0));
                        dac_1 = TORQUE_VREF / 3.3f;
                    }
                } else {
                    CONTROL_MODE = MODE_NO_ACT;
                    TMR3_COUNT_TORQUE_NULL = 0;
                    CUR_TORQUE_sum = 0;
                    CUR_TORQUE_mean = 0;

                    ROM_RESET_DATA();

                    //spi_eeprom_write(RID_TORQUE_SENSOR_VREF, (int16_t) (TORQUE_VREF * 1000.0));

                    //pc.printf("%f\n", TORQUE_VREF);
                    dac_1 = TORQUE_VREF / 3.3f;

                }
                TMR3_COUNT_TORQUE_NULL++;
                break;



                //           // DAC Voltage reference set
//                if (TMR3_COUNT_PRES_NULL < TMR_FREQ_5k * 2) {
//                    CUR_PRES_A_sum += pres_A.sen;
//                    CUR_PRES_B_sum += pres_B.sen;
//
//                    if (TMR3_COUNT_PRES_NULL % 10 == 0) {
//                        CUR_PRES_A_mean = CUR_PRES_A_sum / 10.0f;
//                        CUR_PRES_B_mean = CUR_PRES_B_sum / 10.0f;
//                        CUR_PRES_A_sum = 0;
//                        CUR_PRES_B_sum = 0;
//
//                        float VREF_NullingGain = 0.0003f;
//                        PRES_A_VREF = PRES_A_VREF - VREF_NullingGain * (PRES_A_NULL - CUR_PRES_A_mean);
//                        PRES_B_VREF = PRES_B_VREF - VREF_NullingGain * (PRES_B_NULL - CUR_PRES_B_mean);
//
//                        if (PRES_A_VREF > 3.3f) PRES_A_VREF = 3.3f;
//                        if (PRES_A_VREF < 0.0f) PRES_A_VREF = 0.0f;
//                        if (PRES_B_VREF > 3.3f) PRES_B_VREF = 3.3f;
//                        if (PRES_B_VREF < 0.0f) PRES_B_VREF = 0.0f;
//
//                        dac_1 = PRES_A_VREF / 3.3f;
//                        dac_2 = PRES_B_VREF / 3.3f;
//                    }
//                } else {
//                    CONTROL_MODE = MODE_NO_ACT;
//                    TMR3_COUNT_PRES_NULL = 0;
//                    CUR_PRES_A_sum = 0;
//                    CUR_PRES_B_sum = 0;
//                    CUR_PRES_A_mean = 0;
//                    CUR_PRES_B_mean = 0;
//
//                    ROM_RESET_DATA();
//
//                    dac_1 = PRES_A_VREF / 3.3f;
//                    dac_2 = PRES_B_VREF / 3.3f;
//                    //pc.printf("nulling end");
//                }
//                TMR3_COUNT_PRES_NULL++;
//                break;





            }

//            case MODE_VALVE_NULLING_AND_DEADZONE_SETTING: {
//                if (TMR3_COUNT_DEADZONE == 0) {
//                    if (pos_plus_end == pos_minus_end) need_enc_init = true;
//                    else temp_time = 0;
//                }
//                if (need_enc_init) {
//                    if (TMR3_COUNT_DEADZONE < (int) (0.5f * (float) TMR_FREQ_5k)) {
//                        V_out = VALVE_VOLTAGE_LIMIT * 1000.0f;
//                        pos_plus_end = pos.sen;
//                    } else if (TMR3_COUNT_DEADZONE < TMR_FREQ_5k) {
//                        V_out = -VALVE_VOLTAGE_LIMIT * 1000.0f;
//                        pos_minus_end = pos.sen;
//                    } else if (TMR3_COUNT_DEADZONE == TMR_FREQ_5k) need_enc_init = false;
//                    temp_time = TMR_FREQ_5k;
//                }
//
//                if (temp_time <= TMR3_COUNT_DEADZONE && TMR3_COUNT_DEADZONE < (temp_time + TMR_FREQ_5k)) {
//                    V_out = (float) P_GAIN_JOINT_POSITION * (0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end - (float) pos.sen);
//                    VALVE_CENTER = VALVE_DEADZONE_PLUS = VALVE_DEADZONE_MINUS = 0;
//
//                } else if (temp_time <= TMR3_COUNT_DEADZONE && TMR3_COUNT_DEADZONE < (temp_time + (int) (1.9f * (float) TMR_FREQ_5k))) {
//                    V_out = 0;
//                    CUR_VELOCITY_sum += CUR_VELOCITY;
//                } else if (TMR3_COUNT_DEADZONE == (temp_time + 2 * TMR_FREQ_5k)) {
//                    if (CUR_VELOCITY_sum == 0) DZ_dir = 1;
//                    else if (CUR_VELOCITY_sum > 0) DZ_dir = 1;
//                    else if (CUR_VELOCITY_sum < 0) DZ_dir = -1;
//                    else DZ_temp_cnt2 = DZ_end;
//                    CUR_VELOCITY_sum = 0;
//                } else if (TMR3_COUNT_DEADZONE > (temp_time + 2 * TMR_FREQ_5k)) {
//                    if (TMR3_COUNT_DEADZONE > (temp_time + 10 * TMR_FREQ_5k)) DZ_temp_cnt2 = DZ_end;
//
//                    // Position of Dead Zone
//                    //  (CUR_VELOCITY < 0)  (CUR_VELOCITY == 0)  (CUR_VELOCITY > 0)
//                    //     |        /                 |    /                      |/
//                    //     | ______/               ___|___/                ______/|
//                    //     |/                     /   |                   /       |
//                    //    /|                     /    |                  /        |
//                    //     0V                         0V                          0V
//
//                    if (DZ_temp_cnt2 < DZ_end) {
//                        if (TMR3_COUNT_DEADZONE % 20 != 0) {
//                            CUR_VELOCITY_sum += CUR_VELOCITY;
//                        } else {
//                            V_out -= DZ_dir;
//                            if (CUR_VELOCITY_sum * DZ_dir < 0) DZ_temp_cnt++;
//                            CUR_VELOCITY_sum = 0;
//                        }
//                        if (DZ_temp_cnt == 5) {
//                            if (DZ_dir >= 0) VALVE_DEADZONE_MINUS = (int16_t) V_out;
//                            else VALVE_DEADZONE_PLUS = (int16_t) V_out;
//                            DZ_dir = -DZ_dir;
//                            DZ_temp_cnt = 0;
//                            DZ_temp_cnt2++;
//                        }
//                    } else {
//                        TMR3_COUNT_DEADZONE = -1;
//                        VALVE_CENTER = VALVE_DEADZONE_PLUS / 2 + VALVE_DEADZONE_MINUS / 2;
//                        if (VALVE_DEADZONE_PLUS < VALVE_DEADZONE_MINUS) {
//                            VALVE_DEADZONE_PLUS = VALVE_CENTER;
//                            VALVE_DEADZONE_MINUS = VALVE_CENTER;
//                        }
//                        V_out = 0;
//
//                        ROM_RESET_DATA();
//
//                        //spi_eeprom_write(RID_VALVE_DEADZONE_PLUS, VALVE_DEADZONE_PLUS);
//                        //spi_eeprom_write(RID_VALVE_DEADZONE_MINUS, VALVE_DEADZONE_MINUS);
//
//                        CONTROL_MODE = MODE_NO_ACT;
//                        DZ_temp_cnt2 = 0;
//                    }
//                }
//                TMR3_COUNT_DEADZONE++;
//                break;
//            }

            case MODE_FIND_HOME: {
                if (FINDHOME_STAGE == FINDHOME_INIT) {
                    cnt_findhome = 0;
                    cnt_vel_findhome = 0;
                    //REFERENCE_MODE = MODE_REF_NO_ACT; // Stop taking reference data from PODO
                    pos.ref_home_pos = pos.sen;
                    vel.ref_home_pos = 0.0f;
                    FINDHOME_STAGE = FINDHOME_GOTOLIMIT;
                    CAN_TX_PRES((int16_t)(CONTROL_MODE), (int16_t) (3));
                } else if (FINDHOME_STAGE == FINDHOME_GOTOLIMIT) {
                    int cnt_check_enc = (TMR_FREQ_5k/500);
                    if(cnt_findhome%cnt_check_enc == 0) {
                        FINDHOME_POSITION = pos.sen;
                        FINDHOME_VELOCITY = FINDHOME_POSITION - FINDHOME_POSITION_OLD;
                        FINDHOME_POSITION_OLD = FINDHOME_POSITION;
                    }
                    cnt_findhome++;
                    //if(cnt_findhome == TMR_FREQ_5k) cnt_findhome = 0;

                    if (abs(FINDHOME_VELOCITY) <= 1) {
                        cnt_vel_findhome = cnt_vel_findhome + 1;
                    } else {
                        cnt_vel_findhome = 0;
                    }

                    if ((cnt_vel_findhome < 3*TMR_FREQ_5k) &&  cnt_findhome <= 10*TMR_FREQ_5k) { // wait for 3sec
                        //REFERENCE_MODE = MODE_REF_NO_ACT;
                        if (HOMEPOS_OFFSET > 0) pos.ref_home_pos = pos.ref_home_pos + 2.0f;
                        else pos.ref_home_pos = pos.ref_home_pos - 2.0f;
                        pos.err = pos.ref_home_pos - pos.sen;
                        float VALVE_POS_RAW_POS_FB = 0.0f;
                        VALVE_POS_RAW_POS_FB = (float) P_GAIN_JOINT_POSITION * pos.err/(float) ENC_PULSE_PER_POSITION * 0.01f;
                        valve_pos.ref = VALVE_POS_RAW_POS_FB + DDV_CENTER;
                        VALVE_POS_CONTROL(valve_pos.ref);

                        //float wn_Pos = 2.0f*PI*5.0f; // f_cut : 10Hz Position Control
                        //I_REF = 0.04f*wn_Pos*((float)joint_pos_err/ENC_PULSE_PER_POSITION);
                        ////       L velocity >> mA convert
                        //if(I_REF>5.0f) I_REF = 5.0f;
                        //if(I_REF<-5.0f) I_REF = -5.0f;
                        //FLAG_CURRNET_CONTROL = true;
                    } else {
                        ENC_SET(HOMEPOS_OFFSET);
                        INIT_REF_POS = HOMEPOS_OFFSET;
                        REF_POSITION = 0;
                        REF_VELOCITY = 0;
                        FINDHOME_POSITION = 0;
                        FINDHOME_POSITION_OLD = 0;
                        FINDHOME_VELOCITY = 0;
                        cnt_findhome = 0;
                        cnt_vel_findhome = 0;
                        FINDHOME_STAGE = FINDHOME_ZEROPOSE;
                    }
                } else if (FINDHOME_STAGE == FINDHOME_ZEROPOSE) {
                    int T_move = 2*TMR_FREQ_5k;
                    pos.ref_home_pos = (0.0f - (float)INIT_REF_POS)*0.5f*(1.0f - cos(3.14159f * (float)cnt_findhome / (float)T_move)) + (float)INIT_REF_POS;
                    vel.ref_home_pos = 0.0f;

                    // input for position control
                    pos.err = pos.ref_home_pos - (float)pos.sen;
                    float VALVE_POS_RAW_POS_FB = 0.0f;
                    VALVE_POS_RAW_POS_FB = (float) P_GAIN_JOINT_POSITION * 0.01f * pos.err/(float) ENC_PULSE_PER_POSITION;
                    valve_pos.ref = VALVE_POS_RAW_POS_FB + DDV_CENTER;
                    VALVE_POS_CONTROL(valve_pos.ref);


//                    if((OPERATING_MODE && 0x01) == 0) { // Rotary Mode
//                        float wn_Pos = 2.0f*PI*5.0f; // f_cut : 10Hz Position Control
//                        float temp_vel = ( 0.01f * (float)P_GAIN_JOINT_POSITION * wn_Pos * pos.err)*PI/180.0f; // rad/s
//                        //                            L when P-gain = 100, f_cut = 10Hz
//                        if (temp_vel > 0.0f ) I_REF = temp_vel*((float)PISTON_AREA_A*0.00006f/(K_v*sqrt(2.0f*alpha3/(alpha3+1.0f))));
//                        else I_REF = temp_vel*((float)PISTON_AREA_B*0.00006f/(K_v*sqrt(2.0f/(alpha3+1.0f))));
//                        //                                ------------------------------------------------------------------------
//                        //                                   L   thetadot(rad/s) >> I_ref(mA)
//                    } else if ((OPERATING_MODE && 0x01) == 1) { // Linear Mode
//                        float wn_Pos = 2.0f*PI*5.0f; // f_cut : 10Hz Position Control
//                        float temp_vel = ( 0.01f  * (float)P_GAIN_JOINT_POSITION * wn_Pos * pos.err); // mm/s
//                        //                            L when P-gain = 100, f_cut = 10Hz
//                        if (temp_vel > 0.0f ) I_REF = temp_vel*((float)PISTON_AREA_A*0.00006f/(K_v*sqrt(2.0f*alpha3/(alpha3+1.0f))));
//                        else I_REF = temp_vel*((float)PISTON_AREA_B*0.00006f/(K_v*sqrt(2.0f/(alpha3+1.0f))));
//                        //                                ------------------------------------------------------------------------
//                        //                                   L   xdot(mm/s) >> I_ref(mA)
//                    }

                    cnt_findhome++;
                    if (cnt_findhome >= T_move) {
                        //REFERENCE_MODE = MODE_REF_DIRECT;
                        cnt_findhome = 0;
                        pos.ref = 0.0f;
                        vel.ref = 0.0f;
                        pos.ref_home_pos = 0.0f;
                        vel.ref_home_pos = 0.0f;
                        FINDHOME_STAGE = FINDHOME_INIT;
                        CONTROL_MODE = MODE_JOINT_CONTROL;
                    }
                }

                break;
            }

//            case MODE_VALVE_GAIN_SETTING: {
//                if (TMR3_COUNT_FLOWRATE == 0) {
//                    if (pos_plus_end == pos_minus_end) need_enc_init = true;
//                    else {
//                        V_out = -VALVE_VOLTAGE_LIMIT * 1000.0f;
//                        temp_time = (int) (0.5f * (float) TMR_FREQ_5k);
//                    }
//                }
//                if (need_enc_init) {
//                    if (TMR3_COUNT_FLOWRATE < (int) (0.5f * (float) TMR_FREQ_5k)) {
//                        V_out = VALVE_VOLTAGE_LIMIT * 1000.0f;
//                        pos_plus_end = pos.sen;
//                    } else if (TMR3_COUNT_FLOWRATE < TMR_FREQ_5k) {
//                        V_out = -VALVE_VOLTAGE_LIMIT * 1000.0f;
//                        pos_minus_end = pos.sen;
//                    } else if (TMR3_COUNT_FLOWRATE == TMR_FREQ_5k) {
//                        need_enc_init = false;
//                        check_vel_pos_init = (int) (0.9f * (float) (pos_plus_end - pos_minus_end));
//                        check_vel_pos_fin = (int) (0.95f * (float) (pos_plus_end - pos_minus_end));
//                        check_vel_pos_interv = check_vel_pos_fin - check_vel_pos_init;
//                    }
//                    temp_time = TMR_FREQ_5k;
//                }
//                TMR3_COUNT_FLOWRATE++;
//                if (TMR3_COUNT_FLOWRATE > temp_time) {
//                    if (flag_flowrate % 2 == 0) { // (+)
//                        VALVE_VOLTAGE = 1000.0f * (float) (flag_flowrate / 2 + 1);
//                        V_out = VALVE_VOLTAGE;
//                        if (pos.sen > (pos_minus_end + check_vel_pos_init) && pos.sen < (pos_minus_end + check_vel_pos_fin)) {
//                            fl_temp_cnt++;
//                        } else if (pos.sen >= (pos_minus_end + check_vel_pos_fin) && CUR_VELOCITY == 0) {
//                            VALVE_GAIN_LPM_PER_V[flag_flowrate] = 0.95873f * 0.5757f * (float) TMR_FREQ_5k / 10000.0 * (float) check_vel_pos_interv / (float) fl_temp_cnt / VALVE_VOLTAGE; // 0.9587=6*pi/65536*10000 0.5757=0.02525*0.02*0.0095*2*60*1000
//                            //                        VALVE_GAIN_LPM_PER_V[flag_flowrate] = (float) TMR_FREQ_10k * (float) check_vel_pos_interv / (float) fl_temp_cnt / VALVE_VOLTAGE; // PULSE/sec
//                            fl_temp_cnt2++;
//                        }
//                    } else if (flag_flowrate % 2 == 1) { // (-)
//                        VALVE_VOLTAGE = -1. * (float) (flag_flowrate / 2 + 1);
//                        V_out = VALVE_VOLTAGE;
//                        if (pos.sen < (pos_plus_end - check_vel_pos_init) && pos.sen > (pos_plus_end - check_vel_pos_fin)) {
//                            fl_temp_cnt++;
//                        } else if (pos.sen <= (pos_plus_end - check_vel_pos_fin) && CUR_VELOCITY == 0) {
//                            VALVE_GAIN_LPM_PER_V[flag_flowrate] = 0.95873f * 0.5757f * (float) TMR_FREQ_5k / 10000.0f * (float) check_vel_pos_interv / (float) fl_temp_cnt / (-VALVE_VOLTAGE);
//                            //                        VALVE_GAIN_LPM_PER_V[flag_flowrate] = (float) TMR_FREQ_10k * (float) check_vel_pos_interv / (float) fl_temp_cnt / (-VALVE_VOLTAGE); // PULSE/sec
//                            fl_temp_cnt2++;
//                        }
//                    }
//                    if (fl_temp_cnt2 == 100) {
//
//                        ROM_RESET_DATA();
//
//                        //spi_eeprom_write(RID_VALVE_GAIN_PLUS_1 + flag_flowrate, (int16_t) (VALVE_GAIN_LPM_PER_V[flag_flowrate] * 100.0f));
//                        cur_vel_sum = 0;
//                        fl_temp_cnt = 0;
//                        fl_temp_cnt2 = 0;
//                        flag_flowrate++;
//                    }
//                    if (flag_flowrate == 10) {
//                        V_out = 0;
//                        flag_flowrate = 0;
//                        TMR3_COUNT_FLOWRATE = 0;
//                        valve_gain_repeat_cnt++;
//                        if (valve_gain_repeat_cnt >= 1) {
//                            CONTROL_MODE = MODE_NO_ACT;
//                            valve_gain_repeat_cnt = 0;
//                        }
//
//                    }
//                    break;
//                }
//
//            }

            case MODE_PRESSURE_SENSOR_NULLING: {
                // DAC Voltage reference set
                if (TMR3_COUNT_PRES_NULL < TMR_FREQ_5k * 2) {
                    CUR_PRES_A_sum += pres_A.sen;
                    CUR_PRES_B_sum += pres_B.sen;

                    if (TMR3_COUNT_PRES_NULL % 10 == 0) {
                        CUR_PRES_A_mean = CUR_PRES_A_sum / 10.0f;
                        CUR_PRES_B_mean = CUR_PRES_B_sum / 10.0f;
                        CUR_PRES_A_sum = 0;
                        CUR_PRES_B_sum = 0;

                        float VREF_NullingGain = 0.0003f;
                        PRES_A_VREF = PRES_A_VREF - VREF_NullingGain * (PRES_A_NULL - CUR_PRES_A_mean);
                        PRES_B_VREF = PRES_B_VREF - VREF_NullingGain * (PRES_B_NULL - CUR_PRES_B_mean);

                        if (PRES_A_VREF > 3.3f) PRES_A_VREF = 3.3f;
                        if (PRES_A_VREF < 0.0f) PRES_A_VREF = 0.0f;
                        if (PRES_B_VREF > 3.3f) PRES_B_VREF = 3.3f;
                        if (PRES_B_VREF < 0.0f) PRES_B_VREF = 0.0f;

                        dac_1 = PRES_A_VREF / 3.3f;
                        dac_2 = PRES_B_VREF / 3.3f;
                    }
                } else {
                    CONTROL_MODE = MODE_NO_ACT;
                    TMR3_COUNT_PRES_NULL = 0;
                    CUR_PRES_A_sum = 0;
                    CUR_PRES_B_sum = 0;
                    CUR_PRES_A_mean = 0;
                    CUR_PRES_B_mean = 0;

                    ROM_RESET_DATA();

                    dac_1 = PRES_A_VREF / 3.3f;
                    dac_2 = PRES_B_VREF / 3.3f;
                    //pc.printf("nulling end");
                }
                TMR3_COUNT_PRES_NULL++;
                break;
            }

//            case MODE_PRESSURE_SENSOR_CALIB: {
//                if (TMR3_COUNT_PRES_CALIB < 2 * TMR_FREQ_5k) {
//                    V_out = -VALVE_VOLTAGE_LIMIT * 1000.0f;
//                    if (TMR3_COUNT_PRES_CALIB >= TMR_FREQ_5k) {
//                        CUR_PRES_A_sum += CUR_PRES_A;
//                    }
//                } else if (TMR3_COUNT_PRES_CALIB < 4 * TMR_FREQ_5k) {
//                    V_out = VALVE_VOLTAGE_LIMIT * 1000.0f;
//                    if (TMR3_COUNT_PRES_CALIB >= 3 * TMR_FREQ_5k) {
//                        CUR_PRES_B_sum += CUR_PRES_B;
//                    }
//                } else {
//                    CONTROL_MODE = MODE_NO_ACT;
//                    TMR3_COUNT_PRES_CALIB = 0;
//                    V_out = 0;
//                    PRES_SENSOR_A_PULSE_PER_BAR = CUR_PRES_A_sum / ((float) TMR_FREQ_5k - 1.0f) - PRES_A_NULL;
//                    PRES_SENSOR_A_PULSE_PER_BAR = PRES_SENSOR_A_PULSE_PER_BAR / ((float) PRES_SUPPLY - 1.0f);
//                    PRES_SENSOR_B_PULSE_PER_BAR = CUR_PRES_B_sum / ((float) TMR_FREQ_5k - 1.0f) - PRES_B_NULL;
//                    PRES_SENSOR_B_PULSE_PER_BAR = PRES_SENSOR_B_PULSE_PER_BAR / ((float) PRES_SUPPLY - 1.0f);
//                    CUR_PRES_A_sum = 0;
//                    CUR_PRES_B_sum = 0;
//                    CUR_PRES_A_mean = 0;
//                    CUR_PRES_B_mean = 0;
//
//                    ROM_RESET_DATA();
//
//                    //spi_eeprom_write(RID_PRES_SENSOR_A_PULSE_PER_BAR, (int16_t) (PRES_SENSOR_A_PULSE_PER_BAR * 100.0f));
//                    //spi_eeprom_write(RID_PRES_SENSOR_B_PULSE_PER_BAR, (int16_t) (PRES_SENSOR_B_PULSE_PER_BAR * 100.0f));
//                }
//                TMR3_COUNT_PRES_CALIB++;
//                break;
//            }

//            case MODE_ROTARY_FRICTION_TUNING: {
//                if (TMR3_COUNT_ROTARY_FRIC_TUNE % (5 * TMR_FREQ_5k) == 0) freq_fric_tune = 4.0f + 3.0f * sin(2 * 3.14159f * 0.5f * TMR3_COUNT_ROTARY_FRIC_TUNE * 0.0001f * 0.05f);
//                V_out = PWM_out * sin(2 * 3.14159f * freq_fric_tune * TMR3_COUNT_ROTARY_FRIC_TUNE * 0.0001f);
//                if (V_out > 0) V_out = VALVE_VOLTAGE_LIMIT * 1000.0f;
//                else V_out = -VALVE_VOLTAGE_LIMIT * 1000.0f;
//                TMR3_COUNT_ROTARY_FRIC_TUNE++;
//                if (TMR3_COUNT_ROTARY_FRIC_TUNE > TUNING_TIME * TMR_FREQ_5k) {
//                    TMR3_COUNT_ROTARY_FRIC_TUNE = 0;
//                    V_out = 0.0f;
//                    CONTROL_MODE = MODE_NO_ACT;
//                }
//                break;
//            }

            case MODE_DDV_POS_VS_PWM_ID: {
                VALVE_ID_timer = VALVE_ID_timer + 1;

                if(VALVE_ID_timer < TMR_FREQ_5k*1) {
                    V_out = 3000.0f * sin(2*3.14f*VALVE_ID_timer/TMR_FREQ_5k * 100.0f);
                } else if(VALVE_ID_timer < TMR_FREQ_5k*2) {
                    V_out = 1000.0f*(ID_index_array[ID_index]);
                } else if(VALVE_ID_timer == TMR_FREQ_5k*2) {
                    VALVE_POS_TMP = 0;
                    data_num = 0;
                } else if(VALVE_ID_timer < TMR_FREQ_5k*3) {
                    data_num = data_num + 1;
                    VALVE_POS_TMP = VALVE_POS_TMP + value;
                } else if(VALVE_ID_timer == TMR_FREQ_5k*3) {
                    VALVE_POS_AVG[ID_index] = VALVE_POS_TMP / data_num;
                    VALVE_ID_timer = 0;
                    ID_index= ID_index +1;
                }

                if(ID_index>=25) {
                    int i;
                    VALVE_POS_AVG_OLD = VALVE_POS_AVG[0];
                    for(i=0; i<25; i++) {
                        VALVE_POS_VS_PWM[i] = (int16_t) (VALVE_POS_AVG[i]);
                        if(VALVE_POS_AVG[i] > VALVE_POS_AVG_OLD) {
                            VALVE_MAX_POS = VALVE_POS_AVG[i];
                            VALVE_POS_AVG_OLD = VALVE_MAX_POS;
                        } else if(VALVE_POS_AVG[i] < VALVE_POS_AVG_OLD) {
                            VALVE_MIN_POS = VALVE_POS_AVG[i];
                            VALVE_POS_AVG_OLD = VALVE_MIN_POS;
                        }
                    }
                    //ROM_RESET_DATA();
                    ID_index = 0;
                    CONTROL_MODE = MODE_NO_ACT;
                }


                break;
            }

            case MODE_DDV_DEADZONE_AND_CENTER: {

                VALVE_DZ_timer = VALVE_DZ_timer + 1;
                if(first_check == 0) {
                    if(VALVE_DZ_timer < (int) (1.0f * (float) TMR_FREQ_5k)) {
                        V_out = VALVE_VOLTAGE_LIMIT * 1000.0f;
                    } else if(VALVE_DZ_timer == (int) (1.0f * (float) TMR_FREQ_5k)) {
                        V_out = VALVE_VOLTAGE_LIMIT * 1000.0f;
                        pos_plus_end = pos.sen;
                    } else if(VALVE_DZ_timer < (int) (2.0f * (float) TMR_FREQ_5k)) {
                        V_out = -VALVE_VOLTAGE_LIMIT * 1000.0f;
                    } else if(VALVE_DZ_timer == (int) (2.0f * (float) TMR_FREQ_5k)) {
                        V_out = -VALVE_VOLTAGE_LIMIT * 1000.0f;
                        pos_minus_end = pos.sen;
                    } else if(VALVE_DZ_timer < (int) (3.0f * (float) TMR_FREQ_5k)) {
                        V_out = (float) P_GAIN_JOINT_POSITION * (0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end - (float) pos.sen)/(float) ENC_PULSE_PER_POSITION;
                    } else if(VALVE_DZ_timer < (int) (4.0f * (float) TMR_FREQ_5k)) {
                        V_out = (float) P_GAIN_JOINT_POSITION * (0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end - (float) pos.sen)/(float) ENC_PULSE_PER_POSITION;
                        data_num = data_num + 1;
                        VALVE_POS_TMP = VALVE_POS_TMP + value;
                    } else if(VALVE_DZ_timer == (int) (4.0f * (float) TMR_FREQ_5k)) {
                        V_out = (float) P_GAIN_JOINT_POSITION * (0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end - (float) pos.sen)/(float) ENC_PULSE_PER_POSITION;
                        DDV_POS_AVG = VALVE_POS_TMP / data_num;
                        START_POS = pos.sen;
                        VALVE_POS_TMP = 0;
                        data_num = 0;

                    } else if(VALVE_DZ_timer < (int) (5.0f * (float) TMR_FREQ_5k)) {
                        valve_pos.ref = DDV_POS_AVG;
                        VALVE_POS_CONTROL(valve_pos.ref);

                    } else if(VALVE_DZ_timer < (int) (6.0f * (float) TMR_FREQ_5k)) {
                        valve_pos.ref = DDV_POS_AVG;
                        VALVE_POS_CONTROL(valve_pos.ref);
                        if(CUR_VELOCITY >= 0)
                            VEL_POINT = VEL_POINT + 1;
                        else
                            VEL_POINT = VEL_POINT - 1;
                    } else if(VALVE_DZ_timer == (int) (6.0f * (float) TMR_FREQ_5k)) {
                        valve_pos.ref = DDV_POS_AVG;
                        VALVE_POS_CONTROL(valve_pos.ref);
                        FINAL_POS = pos.sen;

                        if((FINAL_POS - START_POS)>100) {
                            DZ_case = 1;
                        } else if((FINAL_POS - START_POS)<-100) {
                            DZ_case = -1;
                        } else {
                            DZ_case = 0;
                        }

                        CAN_TX_PRES((int16_t) (DZ_case), (int16_t) (6));

                        VEL_POINT = 0;
                        first_check = 1;
                        DZ_DIRECTION = 1;
                        VALVE_DZ_timer = 0;
                        Ref_Valve_Pos_Old = DDV_POS_AVG;
                        DZ_NUM = 1;
                        DZ_index = 1;

                    }
                } else {
                    if((DZ_case == -1 && DZ_NUM == 1) | (DZ_case == 1 && DZ_NUM == 1)) {
                        if(VALVE_DZ_timer < (int) (1.0 * (float) TMR_FREQ_5k)) {
                            V_out = (float) P_GAIN_JOINT_POSITION * (0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end - (float) pos.sen)/(float) ENC_PULSE_PER_POSITION;
                        } else if(VALVE_DZ_timer == (int) (1.0f * (float) TMR_FREQ_5k)) {
                            START_POS = pos.sen;
                        } else if(VALVE_DZ_timer < (int) (2.0f * (float) TMR_FREQ_5k)) {
                            valve_pos.ref = Ref_Valve_Pos_Old  - DZ_case * DZ_DIRECTION * 64 / DZ_index;
                            if(valve_pos.ref <= VALVE_MIN_POS) {
                                valve_pos.ref = VALVE_MIN_POS;
                            } else if(valve_pos.ref >= VALVE_MAX_POS) {
                                valve_pos.ref = VALVE_MAX_POS;
                            }
                            VALVE_POS_CONTROL(valve_pos.ref);
                            if(CUR_VELOCITY >= 0)
                                VEL_POINT = VEL_POINT + 1;
                            else
                                VEL_POINT = VEL_POINT - 1;
                        } else if(VALVE_DZ_timer == (int) (2.0f * (float) TMR_FREQ_5k)) {
                            Ref_Valve_Pos_Old = valve_pos.ref;
                            FINAL_POS = pos.sen;

                            if((FINAL_POS - START_POS)>100) {
                                DZ_DIRECTION = 1 * DZ_case;
                            } else if((FINAL_POS - START_POS)<-100) {
                                DZ_DIRECTION = -1 * DZ_case;
                            } else {
                                DZ_DIRECTION = 1 * DZ_case;
                            }

                            VEL_POINT = 0;

                            VALVE_DZ_timer = 0;
                            DZ_index= DZ_index *2;
                            if(DZ_index >= 128) {
                                FIRST_DZ = valve_pos.ref;
                                DZ_NUM = 2;
                                Ref_Valve_Pos_Old = FIRST_DZ;
                                DZ_index = 1;
                                DZ_DIRECTION = 1;
                            }
                        }
                    } else if((DZ_case == -1 && DZ_NUM == 2) | (DZ_case == 1 && DZ_NUM == 2)) {
                        if(VALVE_DZ_timer < (int) (1.0f * (float) TMR_FREQ_5k)) {
                            V_out = (float) P_GAIN_JOINT_POSITION * (0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end - (float) pos.sen)/(float) ENC_PULSE_PER_POSITION;
                        } else if(VALVE_DZ_timer == (int) (1.0f * (float) TMR_FREQ_5k)) {
                            START_POS = pos.sen;
                        } else if(VALVE_DZ_timer < (int) (2.0f * (float) TMR_FREQ_5k)) {
                            valve_pos.ref = Ref_Valve_Pos_Old  + DZ_DIRECTION * 64 / DZ_index;
                            if(valve_pos.ref <= VALVE_MIN_POS) {
                                valve_pos.ref = VALVE_MIN_POS;
                            } else if(valve_pos.ref >= VALVE_MAX_POS) {
                                valve_pos.ref = VALVE_MAX_POS;
                            }
                            VALVE_POS_CONTROL(valve_pos.ref);
                            if(CUR_VELOCITY >= 0)
                                VEL_POINT = VEL_POINT + 1;
                            else
                                VEL_POINT = VEL_POINT - 1;
                        } else if(VALVE_DZ_timer == (int) (2.0f * (float) TMR_FREQ_5k)) {
                            Ref_Valve_Pos_Old = valve_pos.ref;
                            FINAL_POS = pos.sen;

                            if((FINAL_POS - START_POS)>100) {
                                DZ_DIRECTION = -1;
                            } else if((FINAL_POS - START_POS)<-100) {
                                DZ_DIRECTION = 1;
                            } else {
                                DZ_DIRECTION = 1;
                            }

                            VEL_POINT = 0;


                            VALVE_DZ_timer = 0;
                            DZ_index= DZ_index *2;
                            if(DZ_index >= 128) {
                                SECOND_DZ = valve_pos.ref;
                                DDV_CENTER = 0.5f * (float) (FIRST_DZ) + 0.5f * (float) (SECOND_DZ);
                                first_check = 0;
                                VALVE_DEADZONE_MINUS = (float) FIRST_DZ;
                                VALVE_DEADZONE_PLUS = (float) SECOND_DZ;

                                ROM_RESET_DATA();

                                CONTROL_MODE = MODE_NO_ACT;
                                DZ_index = 1;
                            }
                        }
                    } else if(DZ_case == 0 && DZ_NUM ==1) {
                        if(VALVE_DZ_timer < (int) (1.0f * (float) TMR_FREQ_5k)) {
                            V_out = (float) P_GAIN_JOINT_POSITION * (0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end - (float) pos.sen)/(float) ENC_PULSE_PER_POSITION;
                        } else if(VALVE_DZ_timer == (int) (1.0f * (float) TMR_FREQ_5k)) {
                            START_POS = pos.sen;
                        } else if(VALVE_DZ_timer < (int) (2.0f * (float) TMR_FREQ_5k)) {
                            valve_pos.ref = Ref_Valve_Pos_Old  - DZ_DIRECTION * 64 / DZ_index;
                            if(valve_pos.ref <= VALVE_MIN_POS) {
                                valve_pos.ref = VALVE_MIN_POS;
                            } else if(valve_pos.ref >= VALVE_MAX_POS) {
                                valve_pos.ref = VALVE_MAX_POS;
                            }
                            VALVE_POS_CONTROL(valve_pos.ref);
                            if(CUR_VELOCITY >= 0)
                                VEL_POINT = VEL_POINT + 1;
                            else
                                VEL_POINT = VEL_POINT - 1;
                        } else if(VALVE_DZ_timer == (int) (2.0f * (float) TMR_FREQ_5k)) {
                            Ref_Valve_Pos_Old = valve_pos.ref;
                            FINAL_POS = pos.sen;

                            if((FINAL_POS - START_POS)>100) {
                                DZ_DIRECTION = 1;
                            } else if((FINAL_POS - START_POS)<-100) {
                                DZ_DIRECTION = -1;
                            } else {
                                DZ_DIRECTION = 1;
                            }

                            VEL_POINT = 0;
                            VALVE_DZ_timer = 0;
                            DZ_index= DZ_index *2;
                            if(DZ_index >= 128) {
                                FIRST_DZ = valve_pos.ref;
                                DZ_NUM = 2;
                                Ref_Valve_Pos_Old = FIRST_DZ;
                                DZ_index = 1;
                                DZ_DIRECTION = 1;
                            }
                        }
                    } else {
                        if(VALVE_DZ_timer < (int) (1.0f * (float) TMR_FREQ_5k)) {
                            V_out = (float) P_GAIN_JOINT_POSITION * (0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end - (float) pos.sen)/(float) ENC_PULSE_PER_POSITION;
                        } else if(VALVE_DZ_timer == (int) (1.0f * (float) TMR_FREQ_5k)) {
                            START_POS = pos.sen;
                        } else if(VALVE_DZ_timer < (int) (2.0f * (float) TMR_FREQ_5k)) {
                            valve_pos.ref = Ref_Valve_Pos_Old  + DZ_DIRECTION * 64 / DZ_index;
                            if(valve_pos.ref <= VALVE_MIN_POS) {
                                valve_pos.ref = VALVE_MIN_POS;
                            } else if(valve_pos.ref > VALVE_MAX_POS) {
                                valve_pos.ref = VALVE_MAX_POS - 1;
                            }
                            VALVE_POS_CONTROL(valve_pos.ref);
                            if(CUR_VELOCITY >= 0)
                                VEL_POINT = VEL_POINT + 1;
                            else
                                VEL_POINT = VEL_POINT - 1;
                        } else if(VALVE_DZ_timer == (int) (2.0f * (float) TMR_FREQ_5k)) {
                            Ref_Valve_Pos_Old = valve_pos.ref;
                            FINAL_POS = pos.sen;
                            if(VEL_POINT >= 0)
                                DZ_DIRECTION = -1;
                            else
                                DZ_DIRECTION = 1;
                            if(abs(FINAL_POS - START_POS) < 100)
                                DZ_DIRECTION = 1;

                            VEL_POINT = 0;


                            VALVE_DZ_timer = 0;
                            DZ_index= DZ_index *2;
                            if(DZ_index >= 128) {
                                SECOND_DZ = valve_pos.ref;
                                DDV_CENTER = 0.5f * (float) (FIRST_DZ) + 0.5f * (float) (SECOND_DZ);
                                first_check = 0;
                                VALVE_DEADZONE_MINUS = (float) FIRST_DZ;
                                VALVE_DEADZONE_PLUS = (float) SECOND_DZ;

                                CONTROL_MODE = MODE_NO_ACT;
                                DZ_index = 1;
                            }
                        }
                    }
                }
                break;
            }

            case MODE_DDV_POS_VS_FLOWRATE: {
                VALVE_FR_timer = VALVE_FR_timer + 1;
                if(first_check == 0) {
                    if(VALVE_FR_timer < (int) (1.0f * (float) TMR_FREQ_5k)) {
                        V_out = VALVE_VOLTAGE_LIMIT * 1000.0f;
                        //CAN_TX_PRES((int16_t) (VALVE_FR_timer), (int16_t) (6));
                    } else if(VALVE_FR_timer == (int) (1.0f * (float) TMR_FREQ_5k)) {
                        V_out = VALVE_VOLTAGE_LIMIT * 1000.0f;
                        pos_plus_end = pos.sen;
                        //                    CAN_TX_PRES((int16_t) (V_out), (int16_t) (7));
                    } else if(VALVE_FR_timer < (int) (2.0f * (float) TMR_FREQ_5k)) {
                        V_out = -VALVE_VOLTAGE_LIMIT * 1000.0f;
                    } else if(VALVE_FR_timer == (int) (2.0f * (float) TMR_FREQ_5k)) {
                        //                    CAN_TX_PRES((int16_t) (V_out), (int16_t) (8));
                        V_out = -VALVE_VOLTAGE_LIMIT * 1000.0f;
                        pos_minus_end = pos.sen;
                        first_check = 1;
                        VALVE_FR_timer = 0;
                        valve_pos.ref = DDV_CENTER;
                        ID_index = 0;
                        max_check = 0;
                        min_check = 0;
                    }
                } else {
                    if(VALVE_FR_timer < (int) (1.0f * (float) TMR_FREQ_5k)) {
                        V_out = (float) P_GAIN_JOINT_POSITION * (0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end - (float) pos.sen)/(float) ENC_PULSE_PER_POSITION;
                    } else if(VALVE_FR_timer == (int) (1.0f * (float) TMR_FREQ_5k)) {
                        data_num = 0;
                        valve_pos.ref = 10.0f*((float) ID_index_array[ID_index]) + DDV_CENTER;

                        VALVE_POS_CONTROL(valve_pos.ref);
                        START_POS = pos.sen;
                    } else if(VALVE_FR_timer < (int) (5.0f * (float) TMR_FREQ_5k)) {
                        valve_pos.ref = 10.0f*((float) ID_index_array[ID_index]) + DDV_CENTER;
                        VALVE_POS_CONTROL(valve_pos.ref);
                        data_num = data_num + 1;
                        if(abs(0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end - (float) pos.sen) > 20000.0f) {
                            FINAL_POS = pos.sen;
                            one_period_end = 1;
                        }
                    } else if(VALVE_FR_timer == (int) (5.0f * (float) TMR_FREQ_5k)) {
                        FINAL_POS = pos.sen;
                        one_period_end = 1;
                    }

                    if(one_period_end == 1) {
                        if(valve_pos.ref > VALVE_MAX_POS) {
                            max_check = 1;
                        } else if(valve_pos.ref < VALVE_MIN_POS) {
                            min_check = 1;
                        }
                        JOINT_VEL[ID_index] = (FINAL_POS - START_POS) / data_num * TMR_FREQ_5k;   //  pulse/sec

                        //ROM_RESET_DATA();
                        VALVE_FR_timer = 0;
                        one_period_end = 0;
                        ID_index= ID_index +1;
                        V_out = 0.0f;
                    }

                    if(max_check == 1 && min_check == 1) {

                        VALVE_POS_NUM = ID_index;
                        //ROM_RESET_DATA();
                        ID_index = 0;
                        first_check = 0;
                        VALVE_FR_timer = 0;
                        CONTROL_MODE = MODE_NO_ACT;
//                        CAN_TX_PRES((int16_t) (VALVE_FR_timer), (int16_t) (6));
                    }
                }
                break;
            }

            default:
                break;
        }

//        if (FLAG_VALVE_OUTPUT_CALIB) {
//            // Valve Dead Zone (Mechanical dead-zone canceling)
//            //    if (CONTROL_MODE != MODE_VALVE_NULLING_AND_DEADZONE_SETTING) {
//            //        if (V_out > 0.) {
//            //            VALVE_PWM_VALVE_DZ = (int) V_out + VALVE_DEADZONE_PLUS;
//            //        } else if (V_out < 0.) {
//            //            VALVE_PWM_VALVE_DZ = (int) V_out + VALVE_DEADZONE_MINUS;
//            //        } else VALVE_PWM_VALVE_DZ = (int) V_out + VALVE_CENTER;
//            //    } else VALVE_PWM_VALVE_DZ = (int) V_out;
//
//            if(V_out>0) V_out = V_out + VALVE_DEADZONE_PLUS;
//            else if(V_out<0) V_out = V_out + VALVE_DEADZONE_MINUS;
//
//            VALVE_PWM_VALVE_DZ = V_out + VALVE_CENTER;
//
//            // Output Voltage Linearization and Dead Zone Cancellation (Electrical dead-zone)
//            float CUR_PWM_nonlin = VALVE_PWM_VALVE_DZ/5.0f*1000.0f; // convert PWM duty to mV
//            float CUR_PWM_DZ = PWM_duty_byLT(CUR_PWM_nonlin);
//
//            if (CUR_PWM_DZ > 0) V_out = (int)CUR_PWM_DZ + 143;
//            else if (CUR_PWM_DZ < 0) V_out = (int)CUR_PWM_DZ - 138;
//            else V_out = CUR_PWM_DZ;
//        } else {
//            V_out = V_out;
//        }

        /*******************************************************
        ***     PWM
        ********************************************************/
        if (V_out >= VALVE_VOLTAGE_LIMIT*1000.0f) {
            V_out = VALVE_VOLTAGE_LIMIT*1000.0f;
        } else if(V_out<=-VALVE_VOLTAGE_LIMIT*1000.0f) {
            V_out = -VALVE_VOLTAGE_LIMIT*1000.0f;
        }
        PWM_out= V_out/(SUPPLY_VOLTAGE*1000.0f); // Full duty : 12000.0mV

        // Saturation of output voltage to 5.0V
//        if(PWM_out > 0.41667) PWM_out=0.41667; //5.0/12.0 = 0.41667
//        else if (PWM_out < -0.41667) PWM_out=-0.41667;

        // Saturation of output voltage to 12.0V
        if(PWM_out > 1.0f) PWM_out=1.0f;
        else if (PWM_out < -1.0f) PWM_out=-1.0f;

        if (PWM_out>0.0f) {
            dtc_v=0.0f;
            dtc_w=PWM_out;
        } else {
            dtc_v=-PWM_out;
            dtc_w=0.0f;
        }

        //pwm
        TIM4->CCR2 = (PWM_ARR)*(1.0f-dtc_v);
        TIM4->CCR1 = (PWM_ARR)*(1.0f-dtc_w);

    }
    TIM3->SR = 0x0;  // reset the status register

}



//unsigned long CNT_TMR5 = 0;
//float FREQ_TMR5 = (float)FREQ_500;
//float DT_TMR5 = (float)DT_500;
extern "C" void TIM2_IRQHandler(void)
{
    if (TIM2->SR & TIM_SR_UIF ) {

        //CAN ----------------------------------------------------------------------
        if (flag_data_request[0] == HIGH) {
            //position+velocity
            //CAN_TX_POSITION((int32_t) pos.sen, (int32_t) vel.sen);
            CAN_TX_POSITION((int16_t) (pos.sen/4.0f), (int16_t) (vel.sen/100.0f), (int16_t) (torq.sen*10.0f));
        }

        if (flag_data_request[1] == HIGH) {
            //torque
            //CAN_TX_TORQUE((int16_t) (CUR_TORQUE_NM * 100.));
            //CAN_TX_TORQUE((int16_t) (CUR_TORQUE_NM));
            double t_value = 0;
            if(value>=DDV_CENTER) {
                t_value = 10000.0f*((double)value-(double)DDV_CENTER)/((double)VALVE_MAX_POS-(double)DDV_CENTER);
            } else {
                t_value = -10000.0f*((double)value-(double)DDV_CENTER)/((double)VALVE_MIN_POS-(double)DDV_CENTER);
            }
            CAN_TX_TORQUE((int16_t) (t_value));
        }

        if (flag_data_request[2] == HIGH) {
            //pressure A and B
            CAN_TX_PRES((int16_t) (valve_pos.ref), (int16_t) (MODE_POS_FT_TRANS * 100.0f)); // CUR_PRES_X : 0(0bar)~4096(210bar)
            //CAN_TX_PRES((int16_t) (pres_A.sen), (int16_t) (pres_B.sen)); // CUR_PRES_X : 0(0bar)~4096(210bar)
            //                        CAN_TX_PRES((int16_t) (CUR_PRES_A_BAR * 100.), (int16_t) (CUR_PRES_B_BAR * 100.));
            //            CAN_TX_PRES((int16_t) ((DEADZONE_MINUS + 1.)*1000.), (int16_t) ((DEADZONE_PLUS + 1.))*1000.);
            //            CAN_TX_PRES((int16_t) DZ_dir, (int16_t) ((VALVE_DEADZONE_PLUS + 1.))*1000.);

        }

        if (flag_data_request[3] == HIGH) {
            //PWM
            CAN_TX_PWM((int16_t) VALVE_DEADZONE_PLUS);
            //            CAN_TX_PWM((int16_t) cnt_vel_findhome);
            //            CAN_TX_PWM((int16_t) (VALVE_VOLTAGE * 1000.));
            //                        CAN_TX_PWM((int16_t) (VALVE_VOLTAGE_VALVE_DZ * 1000.));

        }

        if (flag_data_request[4] == HIGH) {
            //valve position
            CAN_TX_VALVE_POSITION((int16_t) (K_SPRING), (int16_t) (D_DAMPER), (int16_t) VALVE_POS_RAW_FORCE_FB_LOGGING);
            //CAN_TX_VALVE_POSITION((int16_t) (DDV_CENTER * 10.0f), (int16_t) valve_pos.ref, (int16_t) V_out);

            //CAN_TX_VALVE_POSITION((int16_t) (VALVE_POS_NUM));
            //                        CAN_TX_VALVE_POSITIOfxN((int16_t) (VALVE_FF_VOLTAGE / SUPPLY_VOLTAGE));
            //            CAN_TX_VALVE_POSITION((int16_t) P_GAIN_JOINT_POSITION);
            //            CAN_TX_VALVE_POSITION((int16_t) Ref_Joint_Pos);
            //            CAN_TX_VALVE_POSITION((int16_t) flag_flowrate);
        }


    }
    TIM2->SR = 0x0;  // reset the status register
}



void CurrentControl()
{
    cur.err = cur.ref - cur.sen;
    cur.err_int = cur.err_int + cur.err*DT_TMR4;
    cur.err_diff = (cur.err - cur.err_old)*FREQ_TMR4;
    cur.err_old = cur.err;

    float R_model = 150.0f; // ohm
    float L_model = 0.3f;
    float w0 = 2.0f*3.14f*90.0f;
    float KP_I = L_model*w0;
    float KI_I = R_model*w0;
    float KD_I = 0.0f;

    float FF_gain = 0.0f;
    V_out = (int) (KP_I * cur.err + KI_I * cur.err_int + KD_I * cur.err_diff);
    //          V_out = V_out + FF_gain * (R_model*I_REF); // Unit : mV
    V_out = V_out + FF_gain * (R_model*cur.ref + L_model*cur.ref_diff); // Unit : mV

    float Ka = 5.0f/KP_I;
    if(V_out > V_MAX) {
        V_rem = V_out-V_MAX;
        V_rem = Ka*V_rem;
        V_out = V_MAX;
        cur.err_int = cur.err_int - V_rem*DT_5k;
    } else if(V_out < -V_MAX) {
        V_rem = V_out-(-V_MAX);
        V_rem = Ka*V_rem;
        V_out = -V_MAX;
        cur.err_int = cur.err_int - V_rem*DT_5k;
    }
}