for learning

Dependencies:   mbed FastPWM

main.cpp

Committer:
Lightvalve
Date:
2020-12-30
Revision:
228:83e3a91aa1c6
Parent:
227:3bc296775732
Child:
229:c13dac18dee3

File content as of revision 228:83e3a91aa1c6:

//201230_1
#include "mbed.h"
#include "FastPWM.h"
#include "INIT_HW.h"
#include "function_CAN.h"
#include "SPI_EEP_ENC.h"
#include "I2C_AS5510.h"
#include "setting.h"
#include "function_utilities.h"
#include "stm32f4xx_flash.h"
#include "FlashWriter.h"
#include <string>
#include <iostream>
#include <cmath>

using namespace std;
Timer t;

///191008////

// dac & check ///////////////////////////////////////////
DigitalOut check(PC_2);
DigitalOut check_2(PC_3);
AnalogOut dac_1(PA_4);
AnalogOut dac_2(PA_5);
AnalogIn adc1(PC_4); //pressure_1
AnalogIn adc2(PB_0); //pressure_2
AnalogIn adc3(PC_1); //current


// PWM ///////////////////////////////////////////
float dtc_v=0.0f;
float dtc_w=0.0f;

// I2C ///////////////////////////////////////////
I2C i2c(PC_9,PA_8); // SDA, SCL (for K22F)
const int i2c_slave_addr1 =  0x56;
unsigned int value; // 10bit output of reading sensor AS5510

// SPI ///////////////////////////////////////////
SPI eeprom(PB_15, PB_14, PB_13); // EEPROM //(SPI_MOSI, SPI_MISO, SPI_SCK);
DigitalOut eeprom_cs(PB_12);
//FlashWriter writer(6);//2부터 7까지 되는듯 아마 sector
SPI enc(PC_12,PC_11,PC_10);
DigitalOut enc_cs(PD_2);
DigitalOut LED(PA_15);

// UART ///////////////////////////////////////////
Serial pc(PA_9,PA_10); //  _ UART

// CAN ///////////////////////////////////////////
CAN can(PB_8, PB_9, 1000000);
CANMessage msg;
void onMsgReceived()
{
    CAN_RX_HANDLER();
}

// Variables ///////////////////////////////////////////
State pos;
State vel;
State Vout;
State torq;
State torq_dot;
State pres_A;
State pres_B;
State cur;
State valve_pos;

State INIT_Vout;
State INIT_Valve_Pos;
State INIT_Pos;
State INIT_torq;

extern int CID_RX_CMD;
extern int CID_RX_REF_POSITION;
extern int CID_RX_REF_VALVE_POS;
extern int CID_RX_REF_PWM;

extern int CID_TX_INFO;
extern int CID_TX_POSITION;
extern int CID_TX_TORQUE;
extern int CID_TX_PRES;
extern int CID_TX_VOUT;
extern int CID_TX_VALVE_POSITION;




// =============================================================================
// =============================================================================
// =============================================================================

/*******************************************************************************
 *  REFERENCE MODE
 ******************************************************************************/
enum _REFERENCE_MODE {
    MODE_REF_NO_ACT = 0,                                //0
    MODE_REF_DIRECT,                                //1
    MODE_REF_COS_INC,                                  //2
    MODE_REF_LINE_INC,                                 //3
    MODE_REF_SIN_WAVE,                                  //4
    MODE_REF_SQUARE_WAVE,                                  //5
};

/*******************************************************************************
 *  CONTROL MODE
 ******************************************************************************/
enum _CONTROL_MODE {
    //control mode
    MODE_NO_ACT = 0,                                    //0
    MODE_VALVE_POSITION_CONTROL,                        //1
    MODE_JOINT_CONTROL,                                 //2

    MODE_VALVE_OPEN_LOOP,                               //3
    MODE_JOINT_ADAPTIVE_BACKSTEPPING,                   //4
    MODE_RL,                                            //5

    MODE_JOINT_POSITION_PRES_CONTROL_PWM,               //6
    MODE_JOINT_POSITION_PRES_CONTROL_VALVE_POSITION,    //7
    MODE_VALVE_POSITION_PRES_CONTROL_LEARNING,          //8

    MODE_TEST_CURRENT_CONTROL,                          //9
    MODE_TEST_PWM_CONTROL,                              //10

    MODE_CURRENT_CONTROL,                               //11
    MODE_JOINT_POSITION_TORQUE_CONTROL_CURRENT,         //12
    MODE_JOINT_POSITION_PRES_CONTROL_CURRENT,           //13
    MODE_VALVE_POSITION_TORQUE_CONTROL_LEARNING,                                            //14

    //utility
    MODE_TORQUE_SENSOR_NULLING = 20,                    //20
    MODE_VALVE_NULLING_AND_DEADZONE_SETTING,            //21
    MODE_FIND_HOME,                                     //22
    MODE_VALVE_GAIN_SETTING,                            //23
    MODE_PRESSURE_SENSOR_NULLING,                       //24
    MODE_PRESSURE_SENSOR_CALIB,                         //25
    MODE_ROTARY_FRICTION_TUNING,                        //26

    MODE_DDV_POS_VS_PWM_ID = 30,                           //30
    MODE_DDV_DEADZONE_AND_CENTER,                       //31
    MODE_DDV_POS_VS_FLOWRATE,                           //32
    MODE_SYSTEM_ID,                                     //33
    MODE_FREQ_TEST,                                     //34
    MODE_SEND_BUFFER,                                   //35
    MODE_SEND_OVER,                                     //36
    MODE_STEP_TEST,                                     //37
};

void SystemClock_Config(void)
{
    RCC_OscInitTypeDef RCC_OscInitStruct = {0};
    RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

    /** Configure the main internal regulator output voltage
    */
    __HAL_RCC_PWR_CLK_ENABLE();
    __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
    /** Initializes the CPU, AHB and APB busses clocks
    */
    RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
    RCC_OscInitStruct.HSIState = RCC_HSI_ON;
    RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
    RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
    RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
    RCC_OscInitStruct.PLL.PLLM = 8;//8
    RCC_OscInitStruct.PLL.PLLN = 180; //180
    RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
    RCC_OscInitStruct.PLL.PLLQ = 2;
    RCC_OscInitStruct.PLL.PLLR = 2;
    if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
        //Error_Handler();
    }
    /** Activate the Over-Drive mode
    */
    if (HAL_PWREx_EnableOverDrive() != HAL_OK) {
        //Error_Handler();
    }
    /** Initializes the CPU, AHB and APB busses clocks
    */
    RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                                  |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
    RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
    RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
    RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
    RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;

    if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) {
        //Error_Handler();
    }
}

float u_past[num_array_u_past] = {0.0f};
float x_past[num_array_x_past] = {0.0f};
float x_future[num_array_x_future] = {0.0f};
float f_past[num_array_f_past] = {0.0f};
float f_future[num_array_f_future] = {0.0f};

float input_NN[num_input] = { 0.0f };

const float h1[num_input][16] = {
    {0.21710851788520813f,-0.05835658311843872f,0.12024858593940735f,-0.31008681654930115f,-0.0982133150100708f,-0.17835518717765808f,-0.1628284603357315f,0.0627439022064209f,-0.2620668113231659f,-0.05229143425822258f,-0.1862572282552719f,-0.3528204560279846f,0.2787628173828125f,0.2949141561985016f,-0.2396446317434311f,0.1873062551021576f},
{-0.1646273285150528f,0.15895842015743256f,-0.36603355407714844f,-0.1901821345090866f,-0.2621099054813385f,0.1840967983007431f,-0.3777896761894226f,-0.05303867906332016f,-0.0715283527970314f,0.1800564080476761f,-0.2212582379579544f,-0.03985835984349251f,0.056893475353717804f,-0.07665825635194778f,-0.1953967958688736f,0.13413189351558685f},
{-0.1751502901315689f,0.1295098513364792f,0.33912619948387146f,-0.5264424681663513f,0.0014073352795094252f,-0.10263941437005997f,0.2676515281200409f,-0.05712807551026344f,-0.14674054086208344f,0.18135717511177063f,-0.29151666164398193f,0.39914262294769287f,-0.10191211849451065f,-0.03679787740111351f,0.05209478735923767f,-0.23318035900592804f},
{0.08773957192897797f,0.059932585805654526f,0.3703531324863434f,0.1890704482793808f,-0.5685915946960449f,-0.9968946576118469f,-0.10795548558235168f,0.2569338381290436f,0.023257998749613762f,0.30387452244758606f,0.12322977185249329f,-6.214670658111572f,0.6218557357788086f,0.22927629947662354f,-0.27597576379776f,1.0344496965408325f},
{-0.341019868850708f,1.716659426689148f,-0.004794687032699585f,3.811917543411255f,-0.44779855012893677f,5.250626564025879f,0.12058994174003601f,0.06565902382135391f,0.029530562460422516f,0.13024947047233582f,0.3581587076187134f,5.495739936828613f,0.32269057631492615f,0.2027294933795929f,-0.36018112301826477f,-1.535042405128479f},
{-0.8380345106124878f,-1.3260560035705566f,0.20290347933769226f,2.5959393978118896f,1.4356293678283691f,0.30882853269577026f,0.15389427542686462f,-0.321927011013031f,0.030967984348535538f,0.13585081696510315f,-0.1967213749885559f,1.4991086721420288f,0.5693753957748413f,0.1478225290775299f,-0.38513508439064026f,0.9474997520446777f},
{-0.683259904384613f,-0.8101462721824646f,-0.2331579178571701f,0.2851295471191406f,0.5227901339530945f,0.2213594615459442f,0.05604562163352966f,-0.3566524088382721f,0.340404748916626f,0.08874274045228958f,0.17397800087928772f,0.36228781938552856f,0.3637121319770813f,0.204885333776474f,-0.14554673433303833f,1.5621423721313477f},
{0.2438136488199234f,-0.038819216191768646f,-0.24806702136993408f,0.26695358753204346f,-0.6833134293556213f,-0.45427772402763367f,-0.16704979538917542f,-0.364534467458725f,0.026426557451486588f,0.13160675764083862f,0.13139647245407104f,-0.5438024401664734f,0.2081027328968048f,0.0352388434112072f,0.04009982943534851f,0.8651177287101746f},
{0.399420827627182f,0.7111073136329651f,0.09550115466117859f,-0.13722945749759674f,-0.6188552379608154f,0.09277452528476715f,-0.06753402948379517f,-0.4231712818145752f,-0.24982194602489471f,0.34706196188926697f,-0.24380797147750854f,0.08192895352840424f,0.018970858305692673f,0.11796440184116364f,-0.2847418785095215f,0.17251382768154144f},
{0.38405391573905945f,0.42134660482406616f,0.17205187678337097f,-1.2010875940322876f,-0.6272928714752197f,-0.0024884298909455538f,-0.2786858379840851f,-0.11577512323856354f,-0.004904093686491251f,-0.41817817091941833f,0.025525355711579323f,-0.6284334659576416f,-0.0862298384308815f,-0.287846177816391f,0.3247623145580292f,-1.3453173637390137f},
{0.6584739685058594f,0.8861123919487f,0.34649983048439026f,-2.0575315952301025f,0.0029634551610797644f,-0.1881372630596161f,-0.1895401030778885f,-0.016842292621731758f,-0.39519330859184265f,0.0457906648516655f,0.35786765813827515f,-0.6493228077888489f,-1.0070158243179321f,-0.1055193692445755f,0.24870619177818298f,-2.0926122665405273f},
{-4.20821475982666f,-4.356006145477295f,-0.3757385015487671f,2.0618209838867188f,2.884111166000366f,2.543921947479248f,0.1429324448108673f,0.1709202378988266f,-0.1357613056898117f,0.2062210589647293f,-0.3532536029815674f,1.7752840518951416f,4.858647346496582f,-0.660963773727417f,0.09779238700866699f,0.7557253837585449f},
{-2.1083571910858154f,-1.7688544988632202f,0.18496140837669373f,-0.46151071786880493f,1.474288821220398f,-0.7176749110221863f,-0.22405625879764557f,-0.03395454213023186f,-0.15607798099517822f,-0.1729339212179184f,-0.06886337697505951f,-0.29444989562034607f,1.2748531103134155f,-0.20135706663131714f,-0.2075144499540329f,-3.261737823486328f},
{3.5962183475494385f,3.374176025390625f,0.38466766476631165f,-4.8142170906066895f,-4.66273307800293f,-3.462780237197876f,-0.2982172966003418f,-0.43583643436431885f,-0.10630133002996445f,-0.2060280591249466f,-0.1487589031457901f,-1.0152119398117065f,-3.2444868087768555f,0.49480560421943665f,0.04470124840736389f,-4.24110221862793f},
{1.598503828048706f,0.5136365294456482f,0.18900898098945618f,0.017271745949983597f,-1.8248393535614014f,-4.067183971405029f,0.03916636109352112f,0.09532613307237625f,0.30280715227127075f,0.07684552669525146f,-0.22735022008419037f,-0.6214115023612976f,-1.3549392223358154f,0.2816005051136017f,0.062258750200271606f,-3.0343241691589355f},
{-0.04581713676452637f,-0.8378515243530273f,-0.37685394287109375f,1.967070460319519f,0.19949127733707428f,-1.418633222579956f,-0.14507901668548584f,-0.17562240362167358f,0.20774737000465393f,-0.009641649201512337f,-0.40854886174201965f,0.4172761142253876f,-0.45967918634414673f,-0.012022500857710838f,-0.07684260606765747f,0.7026128768920898f},
{0.32617276906967163f,-0.25086039304733276f,0.15568438172340393f,0.4640309810638428f,-0.37468042969703674f,-1.229672908782959f,-0.03859376907348633f,-0.1532677412033081f,-0.03914693370461464f,0.07321617752313614f,-0.29630669951438904f,-0.5918252468109131f,-0.3932393491268158f,0.29289379715919495f,0.2742314636707306f,-0.031258534640073776f},
{-0.005290712229907513f,-0.07519976794719696f,0.19490453600883484f,0.5935949683189392f,-0.07097543030977249f,-0.3804037272930145f,-0.336474746465683f,-0.05229208618402481f,-0.3598732352256775f,-0.1231364756822586f,-0.12190809845924377f,0.367918998003006f,-0.08971880376338959f,-0.17653463780879974f,-0.2561379373073578f,0.7032476663589478f},
{-0.06372973322868347f,0.033496905118227005f,-0.2776013910770416f,0.2678217589855194f,0.0578499510884285f,-0.6571398377418518f,0.25546005368232727f,-0.4622184932231903f,-0.35577359795570374f,0.017385512590408325f,-0.3627778887748718f,-0.1795680820941925f,-0.22878967225551605f,0.158436581492424f,-0.30415377020835876f,-0.32187676429748535f},
{0.16661548614501953f,-0.004885958973318338f,0.1420871913433075f,0.045542508363723755f,-0.03160545229911804f,0.008304453454911709f,-0.13263443112373352f,-0.510770320892334f,-0.14304111897945404f,0.03424033150076866f,0.13338813185691833f,0.25419220328330994f,0.2775229215621948f,0.27265164256095886f,0.13351169228553772f,0.12091268599033356f},
{-0.0903313085436821f,-0.22801446914672852f,-0.07561364769935608f,0.37586510181427f,-0.19908323884010315f,0.0550796203315258f,0.14428457617759705f,-0.14634819328784943f,-0.3402363657951355f,-0.2975690960884094f,-0.34984755516052246f,-0.16906507313251495f,-0.308422714471817f,0.31129270792007446f,0.019461065530776978f,0.37325340509414673f},
{-0.040057551115751266f,-0.20191167294979095f,0.2631795108318329f,0.14898988604545593f,0.1371445208787918f,-0.5027453303337097f,0.27224990725517273f,-0.1382894366979599f,-0.04866792634129524f,0.08683944493532181f,0.07068000733852386f,0.2494114190340042f,-0.12455370277166367f,0.048056963831186295f,0.06011766195297241f,0.18133442103862762f},
};

const float h2[16][16] = {
    {-0.26723405718803406f,3.436506986618042f,-0.06966331601142883f,-1.8851170539855957f,-0.21907491981983185f,0.291226863861084f,0.015459171496331692f,-0.1071208193898201f,-0.5817054510116577f,-0.1415480375289917f,2.841161012649536f,-0.7992897033691406f,-0.07293413579463959f,-0.4298669099807739f,-2.4861531257629395f,1.5274772644042969f},
{2.6455771923065186f,0.8134444355964661f,0.057057321071624756f,-0.12591442465782166f,-0.35503754019737244f,0.26150521636009216f,-3.3769495487213135f,-0.6518222093582153f,-0.6712901592254639f,0.2895788848400116f,1.889601707458496f,-0.6946915984153748f,0.13749389350414276f,-2.4608261585235596f,-0.49290743470191956f,-2.1129796504974365f},
{-0.22745239734649658f,0.003037691116333008f,-0.061119019985198975f,0.35696902871131897f,0.05568113923072815f,0.011741191148757935f,-0.20225946605205536f,-0.08465918898582458f,0.3489862382411957f,0.0687277615070343f,0.31964078545570374f,0.3004753887653351f,0.36063823103904724f,-0.42892736196517944f,0.08652284741401672f,0.027493387460708618f},
{0.796710729598999f,-0.10332272946834564f,-0.2894435524940491f,1.1835746765136719f,0.08946844935417175f,-1.047329306602478f,0.8074626326560974f,0.2824513912200928f,0.012639492750167847f,0.2953031361103058f,0.5696664452552795f,-0.08588860929012299f,-0.48111507296562195f,1.6103204488754272f,0.7986408472061157f,-0.21878749132156372f},
{-1.3417195081710815f,-0.7138416767120361f,-0.25313520431518555f,-0.6614899039268494f,0.036378175020217896f,0.823881983757019f,-4.63653039932251f,-0.27306196093559265f,-0.06466124951839447f,-0.39465832710266113f,0.0016015330329537392f,-0.7870113253593445f,-0.06011026352643967f,-3.621800184249878f,2.5364484786987305f,-1.5223392248153687f},
{0.6848915219306946f,-0.39380156993865967f,-0.3519742488861084f,0.38149240612983704f,-0.3015052080154419f,0.10571412742137909f,-0.9900799989700317f,-0.23774199187755585f,-0.7109643220901489f,0.3579089343547821f,-0.21304041147232056f,-0.40623411536216736f,-0.2862647473812103f,-2.199444532394409f,-0.03355676680803299f,0.7081170082092285f},
{-0.1828227937221527f,-0.02554568648338318f,-0.3260969817638397f,0.08422836661338806f,-0.38453540205955505f,-0.25432005524635315f,0.285016268491745f,0.12387624382972717f,-0.0982072651386261f,0.13111665844917297f,-0.03692615032196045f,-0.32796353101730347f,-0.21546880900859833f,0.049302369356155396f,-0.27088475227355957f,-0.4124959409236908f},
{-0.04024162515997887f,0.37415388226509094f,0.33083590865135193f,-0.09207740426063538f,-0.14358049631118774f,-0.4130993187427521f,-0.09043094515800476f,-0.3092288076877594f,0.2600560486316681f,-0.37898191809654236f,0.2606242001056671f,-0.2890920341014862f,-0.41139593720436096f,0.344535231590271f,0.1222056895494461f,-0.016515038907527924f},
{-0.2864131033420563f,0.3310338258743286f,-0.11379697918891907f,0.10645820200443268f,0.041274964809417725f,-0.35836148262023926f,-0.10284432768821716f,0.0019084513187408447f,0.06103590130805969f,-0.38046833872795105f,0.04191019758582115f,-0.3197441101074219f,-0.37024784088134766f,-0.28181442618370056f,-0.3813771605491638f,-0.22868402302265167f},
{-0.10638687759637833f,0.18947477638721466f,-0.13502129912376404f,0.10904058068990707f,0.12987366318702698f,0.06331641227006912f,0.2711336314678192f,-0.3632148504257202f,-0.13619378209114075f,0.16938945651054382f,0.21176552772521973f,0.39862415194511414f,0.3811538517475128f,-0.20535631477832794f,0.04266967624425888f,-0.26521480083465576f},
{-0.25592130422592163f,-0.027659105136990547f,0.0457797646522522f,-0.39426594972610474f,-0.03321319818496704f,-0.44821619987487793f,0.17873415350914001f,-0.20421427488327026f,-0.050184011459350586f,0.12480869889259338f,-0.2292342334985733f,0.3545852601528168f,-0.3647043704986572f,0.44143247604370117f,-0.3769301772117615f,-0.30688443779945374f},
{0.518974244594574f,1.4600558280944824f,0.3954955041408539f,1.4798170328140259f,0.0033026933670043945f,1.93472158908844f,0.2169281542301178f,-0.16245169937610626f,0.2089681625366211f,-0.32520344853401184f,0.0831938162446022f,-0.5508549213409424f,0.005738466512411833f,0.4115873873233795f,-0.48970356583595276f,0.2728462219238281f},
{-0.02581711858510971f,-3.642622470855713f,-0.15798500180244446f,2.601588726043701f,-0.37393757700920105f,-1.3707489967346191f,-0.0324789434671402f,-0.5317329168319702f,-0.8471572399139404f,0.2424570620059967f,-2.8096792697906494f,-0.7880776524543762f,0.20291848480701447f,0.5545087456703186f,-0.7411673665046692f,0.05684801563620567f},
{0.008935408666729927f,0.23658603429794312f,-0.2018718123435974f,0.08555340766906738f,0.07545611262321472f,-0.0010491880821064115f,0.033573225140571594f,-0.24210108816623688f,-0.24509364366531372f,0.19522181153297424f,-0.11541958153247833f,-0.6472615599632263f,-0.24549134075641632f,-0.29431283473968506f,-0.12282686680555344f,-0.25719138979911804f},
{0.4138670265674591f,0.1604653298854828f,0.056746453046798706f,0.036025404930114746f,0.3228367865085602f,-0.07083973288536072f,0.018455177545547485f,0.0059362053871154785f,0.40515169501304626f,0.014240056276321411f,-0.07738298177719116f,0.1407785713672638f,-0.13024571537971497f,-0.29546058177948f,-0.11976784467697144f,-0.35825538635253906f},
{-1.2283841371536255f,2.0610783100128174f,0.12081471085548401f,0.40022987127304077f,0.29976895451545715f,-0.09938766807317734f,-2.411539077758789f,0.22121109068393707f,-0.6443181037902832f,-0.02222958207130432f,1.4849238395690918f,-0.6256117820739746f,-0.358810693025589f,-0.5680041909217834f,-0.3835602104663849f,-0.5177282094955444f},
};

const float h3[16][16] = {
    {-0.36079341173171997f,0.23955848813056946f,-1.1817095279693604f,-1.58957839012146f,-0.4517802894115448f,0.00593087263405323f,0.14463050663471222f,0.0036972183734178543f,-0.6693695187568665f,-0.21179355680942535f,-2.772231340408325f,-0.08654152601957321f,-1.4973424673080444f,-1.0522558689117432f,-0.02775469981133938f,-1.0456385612487793f},
{0.047732532024383545f,-0.898144006729126f,-3.1017537117004395f,-1.381134033203125f,-0.3441418707370758f,0.5184141993522644f,-0.24482108652591705f,0.06247803568840027f,0.2504468262195587f,-0.1780138611793518f,-2.9596712589263916f,-0.3128277659416199f,0.34827539324760437f,0.25014761090278625f,-0.4353446960449219f,-2.2584781646728516f},
{0.07903262972831726f,0.2790505588054657f,-0.07798504829406738f,0.04248586297035217f,-0.1963958442211151f,-0.19260792434215546f,-0.4038352966308594f,0.015906542539596558f,0.15353140234947205f,0.030178606510162354f,0.2488909661769867f,0.13805970549583435f,-0.0816211998462677f,-0.20733052492141724f,-0.3036302626132965f,0.054825395345687866f},
{-0.30922991037368774f,-2.42948055267334f,1.2146846055984497f,2.071460485458374f,0.23535194993019104f,0.23716674745082855f,0.0023064776323735714f,-0.2272281050682068f,-0.6102874279022217f,-0.5878366827964783f,3.270146369934082f,-0.079141765832901f,-0.19914497435092926f,1.0818650722503662f,-0.21022048592567444f,-3.447765350341797f},
{-0.39607733488082886f,-0.05481579899787903f,0.1976260244846344f,0.022423356771469116f,0.16892847418785095f,-0.27518749237060547f,0.16012099385261536f,0.3626593053340912f,-0.08640444278717041f,-0.11053556203842163f,-0.10529157519340515f,-0.31317979097366333f,-0.1530032455921173f,-0.1336749792098999f,0.22959044575691223f,0.19986507296562195f},
{-0.37449589371681213f,2.105287790298462f,-1.1706833839416504f,-0.07963728904724121f,0.49037525057792664f,-0.6520670652389526f,-0.24929550290107727f,0.07373787462711334f,-0.49333110451698303f,-0.2514972388744354f,0.6977552175521851f,-0.07344245910644531f,0.4499317705631256f,-0.6970130205154419f,0.24799692630767822f,-10.489715576171875f},
{0.4110594093799591f,0.03259836509823799f,-1.3994123935699463f,-0.6297501921653748f,-3.9271013736724854f,-1.6792638301849365f,0.008842500858008862f,-0.34646254777908325f,-0.030661463737487793f,-0.06259563565254211f,-2.7556934356689453f,0.1246558353304863f,0.2790711224079132f,2.5501139163970947f,-0.0001432369026588276f,-1.7808431386947632f},
{-0.40892091393470764f,0.12677159905433655f,-0.3778429329395294f,0.13786058127880096f,0.2654329240322113f,-0.23563161492347717f,-0.23312048614025116f,-0.390264093875885f,0.28059282898902893f,-0.1559126079082489f,-0.14134526252746582f,-0.0003446042537689209f,-0.09309493750333786f,-0.19106461107730865f,0.10737434774637222f,0.005298197269439697f},
{0.10697010159492493f,0.1519632488489151f,-0.4634546637535095f,0.22168387472629547f,-0.2484942376613617f,-0.12435030937194824f,-0.1382003128528595f,0.3493293821811676f,-0.360889196395874f,-0.3875247836112976f,0.5694200396537781f,-0.3482915461063385f,-0.2985605299472809f,-0.3215094208717346f,0.09620395302772522f,-0.06898030638694763f},
{0.2847062647342682f,0.018552124500274658f,0.11435768008232117f,0.36562982201576233f,-0.047046810388565063f,0.30447837710380554f,0.2430230677127838f,0.2909286320209503f,-0.2802048921585083f,0.18043199181556702f,0.41849127411842346f,-0.287167489528656f,0.24394884705543518f,-0.14084559679031372f,-0.10168051719665527f,0.010465055704116821f},
{0.15459725260734558f,0.6347795724868774f,-2.843824863433838f,-0.8757935166358948f,-3.682453155517578f,0.11140545457601547f,-0.22749444842338562f,-0.21671739220619202f,-0.2897385358810425f,-0.561979353427887f,0.1738443821668625f,-0.6332975029945374f,0.02973129227757454f,-0.4262983202934265f,0.45153680443763733f,2.4266700744628906f},
{-0.408692330121994f,0.07524891197681427f,0.07453340291976929f,-0.13479788601398468f,-0.012258211150765419f,-0.2789190411567688f,0.03285527229309082f,0.38763079047203064f,-0.20705322921276093f,-0.25883403420448303f,0.12809070944786072f,0.03996849060058594f,-0.4356187880039215f,-0.45683375000953674f,-0.31865036487579346f,0.34510013461112976f},
{-0.2991822361946106f,0.26059526205062866f,0.02585286647081375f,-0.05932474136352539f,0.19066159427165985f,0.12553727626800537f,-0.11253207921981812f,0.34576353430747986f,0.04814547300338745f,-0.35770976543426514f,-0.044228196144104004f,-0.36229726672172546f,0.1342717409133911f,-0.24822832643985748f,0.25641894340515137f,-0.16869547963142395f},
{-0.2675279378890991f,-0.038760922849178314f,0.8058972358703613f,0.568178653717041f,1.926482081413269f,1.051330804824829f,-0.6637630462646484f,-0.31893211603164673f,-0.684364914894104f,-1.2043099403381348f,1.0483613014221191f,-0.6093144416809082f,-0.6137930750846863f,-1.9366679191589355f,0.2598099410533905f,3.515615940093994f},
{-0.015470266342163086f,0.5485411286354065f,1.72163987159729f,-0.12105733156204224f,-0.3831140995025635f,-1.352612853050232f,-0.5277559757232666f,-0.23413920402526855f,-0.6437380909919739f,-0.8957201242446899f,-0.650761604309082f,-0.5959860682487488f,0.7570517063140869f,-0.511589527130127f,-0.24105386435985565f,-1.6552906036376953f},
{0.1863725483417511f,0.23044399917125702f,2.8924405574798584f,-0.16066978871822357f,-0.9396040439605713f,0.942517876625061f,-0.12535610795021057f,0.036833830177783966f,-0.41546201705932617f,-0.26821044087409973f,-0.645840585231781f,-0.044248316437006f,0.6587316393852234f,-1.3007421493530273f,-0.2326364666223526f,-1.1934552192687988f},
};

const float hout[16] = { 0.45773375034332275f,0.2386862337589264f,-0.2851997911930084f,-0.14161087572574615f,-0.17498421669006348f,0.20173802971839905f,-0.0029246758203953505f,0.057233236730098724f,0.06631378084421158f,0.12506327033042908f,0.270881712436676f,-0.1020549014210701f,-0.24224728345870972f,0.16140422224998474f,0.2347816675901413f,-0.12646318972110748f };

const float b1[16] = { 0.682098388671875f,1.3871639966964722f,-1.7145336866378784f,-1.186700701713562f,2.072877883911133f,2.73624849319458f,-0.058932315558195114f,0.8410549163818359f,0.5336584448814392f,-0.8973275423049927f,0.6093431115150452f,0.40226659178733826f,-0.4711519479751587f,-1.025956630706787f,-1.087764859199524f,4.489203453063965f };

const float b2[16] = { -0.4100606441497803f,-1.4202418327331543f,-1.4564176797866821f,-0.7459886074066162f,-0.6939148902893066f,-0.11409489065408707f,2.606159210205078f,-0.5281766057014465f,-1.3896151781082153f,-1.912178635597229f,-1.0096604824066162f,0.04112252593040466f,-0.30573347210884094f,1.7771672010421753f,0.9408959150314331f,1.509745717048645f };

const float b3[16] = { -1.963319182395935f,1.035247564315796f,-4.8930206298828125f,-0.12025665491819382f,0.3674905002117157f,1.4917001724243164f,-0.7277941703796387f,-0.9398375153541565f,0.036721598356962204f,-0.03335632383823395f,-3.3403966426849365f,-0.5037021636962891f,1.1861028671264648f,2.1023385524749756f,-1.3048676252365112f,-1.8699331283569336f };

const float bout[1] = { -0.25776052474975586f };

float valve_ref_pos_buffer[10] = {0.0f};

/////////////////////////////////////////////////////////////////////////////////////////////RL
float input_RL[num_input_RL] = { 0.0f };

//Critic Networks
float hc1[num_input_RL][num_hidden_unit1] = {0.0f};
float bc1[num_hidden_unit1] = {0.0f};
float hc2[num_hidden_unit1][num_hidden_unit2] = {0.0f};
float bc2[num_hidden_unit2] = {0.0f};
float hc3[num_hidden_unit2] = {0.0f};
float bc3 = 0.0f;

//Critic Networks Temporary
float hc1_temp[num_input_RL][num_hidden_unit1] = {0.0f};
float bc1_temp[num_hidden_unit1] = {0.0f};
float hc2_temp[num_hidden_unit1][num_hidden_unit2] = {0.0f};
float bc2_temp[num_hidden_unit2] = {0.0f};
float hc3_temp[num_hidden_unit2] = {0.0f};
float bc3_temp = 0.0f;

//Actor Networks
float ha1[num_input_RL][num_hidden_unit1] = {0.0f};
float ba1[num_hidden_unit1] = {0.0f};
float ha2[num_hidden_unit1][num_hidden_unit2] = {0.0f};
float ba2[num_hidden_unit2] = {0.0f};
float ha3[num_hidden_unit2][2] = {0.0f};
float ba3[2] = {0.0f};

//Actor Networks Temporary
float ha1_temp[num_input_RL][num_hidden_unit1] = {0.0f};
float ba1_temp[num_hidden_unit1] = {0.0f};
float ha2_temp[num_hidden_unit1][num_hidden_unit2] = {0.0f};
float ba2_temp[num_hidden_unit2] = {0.0f};
float ha3_temp[num_hidden_unit2][2] = {0.0f};
float ba3_temp[2] = {0.0f};

float VALVE_POS_RAW_NN = 0.0f;
float DDV_JOINT_POS_FF(float REF_JOINT_VEL);

/////////////////////////////////////////////RL tuning
float Gradient_Limit = 0.5f;
float gradient_rate_actor = 0.001f;
float gradient_rate_critic = 0.001f;
//////////////////////////////////////////////////////////////////////////////

float Critic_Network_Temp(float *arr)
{
    float output1[num_hidden_unit1] = { 0.0f };
    float output2[num_hidden_unit2] = { 0.0f };
    float output = 0.0f;
    for (int index2 = 0; index2 < num_hidden_unit1; index2++) {
        for (int index1 = 0; index1 < num_input_RL; index1++) {
            output1[index2] = output1[index2] + hc1_temp[index1][index2] * arr[index1];
        }
        //ReLU
        output1[index2] = output1[index2] + bc1_temp[index2];
        hx_c_sum[index2] = output1[index2];
        if (output1[index2] < 0) {
            output1[index2] = 0;
        }
        //tanh
        //output1[index2] = tanh(output1[index2] + bc1_temp[index2]);
    }
    for (int index2 = 0; index2 < num_hidden_unit2; index2++) {
        for (int index1 = 0; index1 < num_hidden_unit1; index1++) {
            output2[index2] = output2[index2] + hc2_temp[index1][index2] * output1[index1];
        }
        //ReLU
        output2[index2] = output2[index2] + bc2_temp[index2];
        hxh_c_sum[index2] = output2[index2];
        if (output2[index2] < 0) {
            output2[index2] = 0;
        }
        //tanh
        //output2[index2] = tanh(output2[index2] + bc2_temp[index2]);
    }
    for (int index2 = 0; index2 < 1; index2++) {
        for (int index1 = 0; index1 < num_hidden_unit2; index1++) {
            output = output + hc3_temp[index1] * output2[index1];
        }
        output = output + bc3_temp;
        hxhh_c_sum = output;
    }
    return output;
}


void Actor_Network(float *arr)
{
    float output1[num_hidden_unit1] = {0.0f};
    float output2[num_hidden_unit2] = {0.0f};
    float output[2] = {0.0f};

    for (int index2 = 0; index2 < num_hidden_unit1; index2++) {
        for (int index1 = 0; index1 < num_input_RL; index1++) {
            output1[index2] = output1[index2] + ha1_temp[index1][index2] * arr[index1];
        }
        output1[index2] = output1[index2] + ba1_temp[index2];
        hx_a_sum[index2] = output1[index2];
        if (output1[index2] < 0) {
            output1[index2] = 0;
        }
    }
    for (int index2 = 0; index2 < num_hidden_unit2; index2++) {
        for (int index1 = 0; index1 < num_hidden_unit1; index1++) {
            output2[index2] = output2[index2] + ha2_temp[index1][index2] * output1[index1];
        }
        output2[index2] = output2[index2] + ba2_temp[index2];
        hxh_a_sum[index2] = output2[index2];
        if (output2[index2] < 0) {
            output2[index2] = 0;
        }
    }
    for (int index2 = 0; index2 < 2; index2++) {
        for (int index1 = 0; index1 < num_hidden_unit2; index1++) {
            output[index2] = output[index2] + ha3_temp[index1][index2] * output2[index1];
        }
        hxhh_a_sum[index2] = output[index2] + ba3_temp[index2];
    }

    mean_before_SP = output[0] + ba3_temp[0];    //SP = softplus
    deviation_before_SP = output[1] + ba3_temp[1];
    //Softplus
    mean = log(1.0f+exp(mean_before_SP));
    deviation = log(1.0f+exp(deviation_before_SP));
    logging2 = mean;
    logging4 = deviation;
}


void Actor_Network_Old(float *arr)
{
    float output1[num_hidden_unit1] = {0.0f};
    float output2[num_hidden_unit2] = {0.0f};
    float output[2] = {0.0f};

    for (int index2 = 0; index2 < num_hidden_unit1; index2++) {
        for (int index1 = 0; index1 < num_input_RL; index1++) {
            output1[index2] = output1[index2] + ha1[index1][index2] * arr[index1];
        }
        output1[index2] = output1[index2] + ba1[index2];
        if (output1[index2] < 0) {
            output1[index2] = 0;
        }
    }
    for (int index2 = 0; index2 < num_hidden_unit2; index2++) {
        for (int index1 = 0; index1 < num_hidden_unit1; index1++) {
            output2[index2] = output2[index2] + ha2[index1][index2] * output1[index1];
        }
        output2[index2] = output2[index2] + ba2[index2];
        if (output2[index2] < 0) {
            output2[index2] = 0;
        }
    }
    for (int index2 = 0; index2 < 2; index2++) {
        for (int index1 = 0; index1 < num_hidden_unit2; index1++) {
            output[index2] = output[index2] + ha3[index1][index2] * output2[index1];
        }
    }
    mean_old = output[0] + ba3[0];
    deviation_old = output[1] + ba3[1];
    //Softplus
    mean_old = log(1.0f+exp(mean_old));
    deviation_old = log(1.0f+exp(deviation_old));
}

float Grad_Normal_Dist_Mean(float mean, float deviation, float action)
{
    float grad_mean = 0.0f;
    grad_mean = (action-mean)*exp(-(action-mean)*(action-mean)/(2.0f*deviation*deviation))/(sqrt(2.0f*PI)*deviation*deviation*deviation);
    return grad_mean;
}

float Grad_Normal_Dist_Deviation(float mean, float deviation, float action)
{
    float grad_dev = 0.0f;
    grad_dev = exp(-(action-mean)*(action-mean)/(2.0f*deviation*deviation))*(-1.0f/(sqrt(2.0f*PI)*deviation*deviation) + (action-mean)*(action-mean)/(sqrt(2.0f*PI)*deviation*deviation*deviation*deviation));
    return grad_dev;
}

float ReLU(float x)
{
    if (x >= 0) {
        return x;
    } else {
        return 0.0f;
    }
}

void update_Critic_Networks(float (*arr)[num_input_RL])
{
    float G_hc1[num_input_RL][num_hidden_unit1] = {0.0f};
    float G_bc1[num_hidden_unit1] = {0.0f};
    for (int index2 = 0; index2 < num_hidden_unit1; index2++) {
        for (int index1 = 0; index1 < num_input_RL; index1++) {
            for (int n=0; n<batch_size; n++) {
                float d_V_d_hc1 = 0.0f;
                for(int k=0; k<num_hidden_unit2; k++) {
                    if (hxh_c_sum_array[n][k] >= 0) {
                        if (hx_c_sum_array[n][index2] > 0) {
                            d_V_d_hc1 = d_V_d_hc1 + arr[n][index1]*hc2_temp[index2][k]*hc3_temp[k];
                        }
                    }
                }
                G_hc1[index1][index2] = G_hc1[index1][index2] + 2.0f*(return_G[n]-V[n])*(-d_V_d_hc1);
            }
            G_hc1[index1][index2] = G_hc1[index1][index2] / batch_size;
            if(G_hc1[index1][index2] > Gradient_Limit) G_hc1[index1][index2] = Gradient_Limit;
            else if (G_hc1[index1][index2] < -Gradient_Limit) G_hc1[index1][index2] = -Gradient_Limit;
            //hc1_temp[index1][index2] = hc1_temp[index1][index2] - gradient_rate_critic * G_hc1[index1][index2];
        }
        for (int n=0; n<batch_size; n++) {
            float d_V_d_bc1 = 0.0f;
            for(int k=0; k<num_hidden_unit2; k++) {
                if (hxh_c_sum_array[n][k] >= 0) {
                    if (hx_c_sum_array[n][index2] > 0) {
                        d_V_d_bc1 = d_V_d_bc1 + hc2_temp[index2][k]*hc3_temp[k];
                    }
                }
            }
            G_bc1[index2] = G_bc1[index2] + 2.0f*(return_G[n]-V[n])*(-d_V_d_bc1);
        }
        G_bc1[index2] = G_bc1[index2] / batch_size;
        if(G_bc1[index2] > Gradient_Limit) G_bc1[index2] = Gradient_Limit;
        else if (G_bc1[index2] < -Gradient_Limit) G_bc1[index2] = -Gradient_Limit;
        //bc1_temp[index2] = bc1_temp[index2] - gradient_rate_critic * G_bc1[index2];
    }


    float G_hc2[num_hidden_unit1][num_hidden_unit2] = {0.0f};
    float G_bc2[num_hidden_unit2] = {0.0f};
    for (int index2 = 0; index2 < num_hidden_unit2; index2++) {
        for (int index1 = 0; index1 < num_hidden_unit1; index1++) {
            for (int n=0; n<batch_size; n++) {
                float d_V_d_hc2 = 0.0f;
                if (hxh_c_sum_array[n][index2] >= 0) {
                    if (hx_c_sum_array[n][index1] > 0) {
                        d_V_d_hc2 = hx_c_sum_array[n][index1]*hc3_temp[index2];
                    }
                }
                G_hc2[index1][index2] = G_hc2[index1][index2] + 2.0f*(return_G[n]-V[n])*(-d_V_d_hc2);
            }
            G_hc2[index1][index2] = G_hc2[index1][index2] / batch_size;
            if(G_hc2[index1][index2] > Gradient_Limit) G_hc2[index1][index2] = Gradient_Limit;
            else if (G_hc2[index1][index2] < -Gradient_Limit) G_hc2[index1][index2] = -Gradient_Limit;
            //hc2_temp[index1][index2] = hc2_temp[index1][index2] - gradient_rate_critic * G_hc2[index1][index2];
        }
        for (int n=0; n<batch_size; n++) {
            float d_V_d_bc2 = 0.0f;
            if (hxh_c_sum_array[n][index2] >= 0) {
                d_V_d_bc2 = hc3_temp[index2];
            }
            G_bc2[index2] = G_bc2[index2] + 2.0f*(return_G[n]-V[n])*(-d_V_d_bc2);
        }
        G_bc2[index2] = G_bc2[index2] / batch_size;
        if(G_bc2[index2] > Gradient_Limit) G_bc2[index2] = Gradient_Limit;
        else if (G_bc2[index2] < -Gradient_Limit) G_bc2[index2] = -Gradient_Limit;
        //bc2_temp[index2] = bc2_temp[index2] - gradient_rate_critic * G_bc2[index2];
    }

    float G_hc3[num_hidden_unit2]= {0.0f};
    float G_bc3 = 0.0f;
    for (int index2 = 0; index2 < 1; index2++) {
        for (int index1 = 0; index1 < num_hidden_unit2; index1++) {
            for (int n=0; n<batch_size; n++) {
                float d_V_d_hc3 = 0.0f;
                if (hxh_c_sum_array[n][index1] >= 0) {
                    d_V_d_hc3 = d_V_d_hc3 + hxh_c_sum_array[n][index1];
                }
                G_hc3[index1] = G_hc3[index1] + 2.0f*(return_G[n]-V[n])*(-d_V_d_hc3);
            }
            G_hc3[index1] = G_hc3[index1] / batch_size;
            if(G_hc3[index1] > Gradient_Limit) G_hc3[index1] = Gradient_Limit;
            else if (G_hc3[index1] < -Gradient_Limit) G_hc3[index1] = -Gradient_Limit;
            //hc3_temp[index1] = hc3_temp[index1] - gradient_rate_critic * G_hc3[index1];
        }
        for (int n=0; n<batch_size; n++) {
            float d_V_d_bc3 = 0.0f;
            d_V_d_bc3 = 1.0f;
            G_bc3 = G_bc3 + 2.0f*(return_G[n]-V[n])*(-d_V_d_bc3);
        }
        G_bc3 = G_bc3 / batch_size;
        if(G_bc3 > Gradient_Limit) G_bc3 = Gradient_Limit;
        else if (G_bc3 < -Gradient_Limit) G_bc3 = -Gradient_Limit;
        //bc3_temp = bc3_temp - gradient_rate_critic * G_bc3;
    }

    // Simultaneous Update
    for (int index2 = 0; index2 < num_hidden_unit1; index2++) {
        for (int index1 = 0; index1 < num_input_RL; index1++) {
            hc1_temp[index1][index2] = hc1_temp[index1][index2] - gradient_rate_critic * G_hc1[index1][index2];
        }
        bc1_temp[index2] = bc1_temp[index2] - gradient_rate_critic * G_bc1[index2];
    }
    for (int index2 = 0; index2 < num_hidden_unit2; index2++) {
        for (int index1 = 0; index1 < num_hidden_unit1; index1++) {
            hc2_temp[index1][index2] = hc2_temp[index1][index2] - gradient_rate_critic * G_hc2[index1][index2];
        }
        bc2_temp[index2] = bc2_temp[index2] - gradient_rate_critic * G_bc2[index2];
    }
    for (int index2 = 0; index2 < 1; index2++) {
        for (int index1 = 0; index1 < num_hidden_unit2; index1++) {
            hc3_temp[index1] = hc3_temp[index1] - gradient_rate_critic * G_hc3[index1];
        }
        bc3_temp = bc3_temp - gradient_rate_critic * G_bc3;
    }
}

///////////////////////////Softplus//////////////////////////////////
void update_Actor_Networks(float (*arr)[num_input_RL])
{


    float G_ha1[num_input_RL][num_hidden_unit1] = {0.0f};
    float G_ba1[num_hidden_unit1] = {0.0f};

    for (int index2 = 0; index2 < num_hidden_unit1; index2++) {
        for (int index1 = 0; index1 < num_input_RL; index1++) {
            for (int n=0; n<batch_size; n++) {
                float d_x_d_ha1 = 0.0f;
                float d_y_d_ha1 = 0.0f;
                if((advantage[n] >= 0.0f && ratio[n] >= 1.0f + epsilon) || (advantage[n] < 0.0f && ratio[n] < 1.0f - epsilon)) {
                    G_ha1[index1][index2] = G_ha1[index1][index2];
                } else {
                    for(int k=0; k<num_hidden_unit2; k++) {
                        if (hxh_a_sum_array[n][k] >= 0) {
                            if (hx_a_sum_array[n][index2] > 0) {
                                d_x_d_ha1 = d_x_d_ha1 + arr[n][index1]*ha2_temp[index2][k]*ha3_temp[k][0];
                                d_y_d_ha1 = d_y_d_ha1 + arr[n][index1]*ha2_temp[index2][k]*ha3_temp[k][1];
                            }
                        }
                    }
                    float d_mean_d_ha1 = 0.0f;
                    float d_dev_d_ha1 = 0.0f;
                    d_mean_d_ha1 = exp(hxhh_a_sum_array[n][0])/(1.0f+exp(hxhh_a_sum_array[n][0]))*d_x_d_ha1;
                    d_dev_d_ha1 = exp(hxhh_a_sum_array[n][1])/(1.0f+exp(hxhh_a_sum_array[n][1]))*d_y_d_ha1;

                    G_ha1[index1][index2] = G_ha1[index1][index2] + advantage[n]/pi_old[n]*(d_mean_d_ha1*Grad_Normal_Dist_Mean(mean_array[n],deviation_array[n],action_array[n])+d_dev_d_ha1*Grad_Normal_Dist_Deviation(mean_array[n],deviation_array[n],action_array[n]));
                }
            }
            G_ha1[index1][index2] = -G_ha1[index1][index2] / batch_size;
            if(G_ha1[index1][index2] > Gradient_Limit) G_ha1[index1][index2] = Gradient_Limit;
            else if (G_ha1[index1][index2] < -Gradient_Limit) G_ha1[index1][index2] = -Gradient_Limit;
            //ha1_temp[index1][index2] = ha1_temp[index1][index2] - gradient_rate_actor * G_ha1[index1][index2];
        }

        for (int n=0; n<batch_size; n++) {
            float d_x_d_ba1 = 0.0f;
            float d_y_d_ba1 = 0.0f;
            if((advantage[n] >= 0.0f && ratio[n] >= 1.0f + epsilon) || (advantage[n] < 0.0f && ratio[n] < 1.0f - epsilon))  {
                G_ba1[index2] = G_ba1[index2];
            } else {
                for(int k=0; k<num_hidden_unit2; k++) {
                    if (hxh_a_sum_array[n][k] >= 0) {
                        if (hx_a_sum_array[n][index2] > 0) {
                            d_x_d_ba1 = d_x_d_ba1 + ha2_temp[index2][k]*ha3_temp[k][0];
                            d_y_d_ba1 = d_y_d_ba1 + ha2_temp[index2][k]*ha3_temp[k][1];
                        }
                    }
                }
                float d_mean_d_ba1 = 0.0f;
                float d_dev_d_ba1 = 0.0f;
                d_mean_d_ba1 = exp(hxhh_a_sum_array[n][0])/(1.0f+exp(hxhh_a_sum_array[n][0]))*d_x_d_ba1;
                d_dev_d_ba1 = exp(hxhh_a_sum_array[n][1])/(1.0f+exp(hxhh_a_sum_array[n][1]))*d_y_d_ba1;

                G_ba1[index2] = G_ba1[index2] + advantage[n]/pi_old[n]*(d_mean_d_ba1*Grad_Normal_Dist_Mean(mean_array[n],deviation_array[n],action_array[n])+d_dev_d_ba1*Grad_Normal_Dist_Deviation(mean_array[n],deviation_array[n],action_array[n]));
            }
        }
        G_ba1[index2] = -G_ba1[index2] / batch_size;
        if(G_ba1[index2] > Gradient_Limit) G_ba1[index2] = Gradient_Limit;
        else if (G_ba1[index2] < -Gradient_Limit) G_ba1[index2] = -Gradient_Limit;
        //ba1_temp[index2] = ba1_temp[index2] - gradient_rate_actor * G_ba1[index2];
    }

    float G_ha2[num_hidden_unit1][num_hidden_unit2] = {0.0f};
    float G_ba2[num_hidden_unit2] = {0.0f};

    for (int index2 = 0; index2 < num_hidden_unit2; index2++) {
        for (int index1 = 0; index1 < num_hidden_unit1; index1++) {
            for (int n=0; n<batch_size; n++) {
                float d_x_d_ha2 = 0.0f;
                float d_y_d_ha2 = 0.0f;
                if((advantage[n] >= 0.0f && ratio[n] >= 1.0f + epsilon) || (advantage[n] < 0.0f && ratio[n] < 1.0f - epsilon)) {
                    G_ha2[index1][index2] = G_ha2[index1][index2];
                } else {
                    if (hxh_a_sum_array[n][index2] >= 0) {
                        if (hx_a_sum_array[n][index1] > 0) {
                            d_x_d_ha2 = hx_a_sum_array[n][index1]*ha3_temp[index2][0];
                            d_y_d_ha2 = hx_a_sum_array[n][index1]*ha3_temp[index2][1];
                        }
                    }

                    float d_mean_d_ha2 = 0.0f;
                    float d_dev_d_ha2 = 0.0f;
                    d_mean_d_ha2 = exp(hxhh_a_sum_array[n][0])/(1.0f+exp(hxhh_a_sum_array[n][0]))*d_x_d_ha2;
                    d_dev_d_ha2 = exp(hxhh_a_sum_array[n][1])/(1.0f+exp(hxhh_a_sum_array[n][1]))*d_y_d_ha2;

                    G_ha2[index1][index2] = G_ha2[index1][index2] + advantage[n]/pi_old[n]*(d_mean_d_ha2*Grad_Normal_Dist_Mean(mean_array[n],deviation_array[n],action_array[n])+d_dev_d_ha2*Grad_Normal_Dist_Deviation(mean_array[n],deviation_array[n],action_array[n]));
                }
            }
            G_ha2[index1][index2] = -G_ha2[index1][index2] / batch_size;
            if(G_ha2[index1][index2] > Gradient_Limit) G_ha2[index1][index2] = Gradient_Limit;
            else if (G_ha2[index1][index2] < -Gradient_Limit) G_ha2[index1][index2] = -Gradient_Limit;
            //ha2_temp[index1][index2] = ha2_temp[index1][index2] - gradient_rate_actor * G_ha2[index1][index2];
        }

        for (int n=0; n<batch_size; n++) {
            float d_x_d_ba2 = 0.0f;
            float d_y_d_ba2 = 0.0f;
            if((advantage[n] >= 0.0f && ratio[n] >= 1.0f + epsilon) || (advantage[n] < 0.0f && ratio[n] < 1.0f - epsilon))  {
                G_ba2[index2] = G_ba2[index2];
            } else {

                if (hxh_a_sum_array[n][index2] >= 0) {
                    d_x_d_ba2 = ha3_temp[index2][0];
                    d_y_d_ba2 = ha3_temp[index2][1];
                }
                float d_mean_d_ba2= 0.0f;
                float d_dev_d_ba2= 0.0f;
                d_mean_d_ba2 = exp(hxhh_a_sum_array[n][0])/(1.0f+exp(hxhh_a_sum_array[n][0]))*d_x_d_ba2;
                d_dev_d_ba2 = exp(hxhh_a_sum_array[n][1])/(1.0f+exp(hxhh_a_sum_array[n][1]))*d_y_d_ba2;

                G_ba2[index2] = G_ba2[index2] + advantage[n]/pi_old[n]*(d_mean_d_ba2*Grad_Normal_Dist_Mean(mean_array[n],deviation_array[n],action_array[n])+d_dev_d_ba2*Grad_Normal_Dist_Deviation(mean_array[n],deviation_array[n],action_array[n]));
            }
        }
        G_ba2[index2] = -G_ba2[index2] / batch_size;
        if(G_ba2[index2] > Gradient_Limit) G_ba2[index2] = Gradient_Limit;
        else if (G_ba2[index2] < -Gradient_Limit) G_ba2[index2] = -Gradient_Limit;
        //ba2_temp[index2] = ba2_temp[index2] - gradient_rate_actor * G_ba2[index2];
    }

    float G_ha3[num_hidden_unit2][2] = {0.0f};
    float G_ba3[2] = {0.0f};

    for (int index2 = 0; index2 < 2; index2++) {
        for (int index1 = 0; index1 < num_hidden_unit2; index1++) {
            for (int n=0; n<batch_size; n++) {
                float d_x_d_ha3 = 0.0f;
                float d_y_d_ha3 = 0.0f;
                if((advantage[n] >= 0.0f && ratio[n] >= 1.0f + epsilon) || (advantage[n] < 0.0f && ratio[n] < 1.0f - epsilon)) {
                    G_ha3[index1][index2] = G_ha3[index1][index2];
                } else {
                    if (hxh_a_sum_array[n][index1] >= 0) {
                        if (hx_a_sum_array[n][index1] > 0) {
                            d_x_d_ha3 = hxh_a_sum_array[n][index1];
                            d_y_d_ha3 = hxh_a_sum_array[n][index1];
                        }
                    }
                    float d_mean_d_ha3 = 0.0f;
                    float d_dev_d_ha3 = 0.0f;
                    d_mean_d_ha3 = exp(hxhh_a_sum_array[n][0])/(1.0f+exp(hxhh_a_sum_array[n][0]))*d_x_d_ha3;
                    d_dev_d_ha3 = exp(hxhh_a_sum_array[n][1])/(1.0f+exp(hxhh_a_sum_array[n][1]))*d_y_d_ha3;

                    G_ha3[index1][index2] = G_ha3[index1][index2] + advantage[n]/pi_old[n]*(d_mean_d_ha3*Grad_Normal_Dist_Mean(mean_array[n],deviation_array[n],action_array[n])+d_dev_d_ha3*Grad_Normal_Dist_Deviation(mean_array[n],deviation_array[n],action_array[n]));
                }
            }
            G_ha3[index1][index2] = -G_ha3[index1][index2] / batch_size;
            if(G_ha3[index1][index2] > Gradient_Limit) G_ha3[index1][index2] = Gradient_Limit;
            else if (G_ha3[index1][index2] < -Gradient_Limit) G_ha3[index1][index2] = -Gradient_Limit;
            //ha3_temp[index1][index2] = ha3_temp[index1][index2] - gradient_rate_actor * G_ha3[index1][index2];
        }

        for (int n=0; n<batch_size; n++) {
            float d_x_d_ba3 = 0.0f;
            float d_y_d_ba3 = 0.0f;
            if((advantage[n] >= 0.0f && ratio[n] >= 1.0f + epsilon) || (advantage[n] < 0.0f && ratio[n] < 1.0f - epsilon))  {
                G_ba3[index2] = G_ba3[index2];
            } else {

                d_x_d_ba3 = 1.0f;
                d_y_d_ba3 = 1.0f;

                float d_mean_d_ba3= 0.0f;
                float d_dev_d_ba3= 0.0f;
                d_mean_d_ba3 = exp(hxhh_a_sum_array[n][0])/(1.0f+exp(hxhh_a_sum_array[n][0]))*d_x_d_ba3;
                d_dev_d_ba3 = exp(hxhh_a_sum_array[n][1])/(1.0f+exp(hxhh_a_sum_array[n][1]))*d_y_d_ba3;

                G_ba3[index2] = G_ba3[index2] + advantage[n]/pi_old[n]*(d_mean_d_ba3*Grad_Normal_Dist_Mean(mean_array[n],deviation_array[n],action_array[n])+d_dev_d_ba3*Grad_Normal_Dist_Deviation(mean_array[n],deviation_array[n],action_array[n]));
            }
        }
        G_ba3[index2] = -G_ba3[index2] / batch_size;
        if(G_ba3[index2] > Gradient_Limit) G_ba3[index2] = Gradient_Limit;
        else if (G_ba3[index2] < -Gradient_Limit) G_ba3[index2] = -Gradient_Limit;
        //ba3_temp[index2] = ba3_temp[index2] - gradient_rate_actor * G_ba3[index2];
    }

    // Simultaneous Update
    for (int index2 = 0; index2 < num_hidden_unit1; index2++) {
        for (int index1 = 0; index1 < num_input_RL; index1++) {
            ha1_temp[index1][index2] = ha1_temp[index1][index2] - gradient_rate_actor * G_ha1[index1][index2];
        }
        ba1_temp[index2] = ba1_temp[index2] - gradient_rate_actor * G_ba1[index2];
    }
    for (int index2 = 0; index2 < num_hidden_unit2; index2++) {
        for (int index1 = 0; index1 < num_hidden_unit1; index1++) {
            ha2_temp[index1][index2] = ha2_temp[index1][index2] - gradient_rate_actor * G_ha2[index1][index2];
        }
        ba2_temp[index2] = ba2_temp[index2] - gradient_rate_actor * G_ba2[index2];
    }
    for (int index2 = 0; index2 < 2; index2++) {
        for (int index1 = 0; index1 < num_hidden_unit2; index1++) {
            ha3_temp[index1][index2] = ha3_temp[index1][index2] - gradient_rate_actor * G_ha3[index1][index2];
        }
        ba3_temp[index2] = ba3_temp[index2] - gradient_rate_actor * G_ba3[index2];
    }
}

float rand_normal(double mean, double stddev)
{
    //Box muller method
    static double n2 = 0.0f;
    static int n2_cached = 0;
    if (!n2_cached) {
        double x, y, r;
        do {
            x = 2.0f*rand()/RAND_MAX - 1;
            y = 2.0f*rand()/RAND_MAX - 1;

            r = x*x + y*y;
        } while (r == 0.0f || r > 1.0f);
        {
            double d = sqrt(-2.0f*log(r)/r);
            double n1 = x*d;
            n2 = y*d;
            double result = n1*stddev + mean;
            n2_cached = 1;
            return result;
        }
    } else {
        n2_cached = 0;
        return n2*stddev + mean;
    }
}

float mean_adv(float x[], int size)
{
    float add = 0.0f;
    float result;

    for (int i=0; i<size; i++) {
        add += x[i];
    }
    result = (float) add/size;
    return result;
}
float deviation_adv(float x[], int size)
{
    float sigma = 0.0f;
    float resultDeb = 0.0f;

    for (int k=0; k<size; k++) {
        sigma = pow((float)x[k]-mean_adv(x,size), (float)2.0f)/(size-1);
        resultDeb += sqrt(sigma);
    }
    return resultDeb;
}


void Overwirte_Critic_Networks()
{
    for (int index2 = 0; index2 < num_hidden_unit1; index2++) {
        for (int index1 = 0; index1 < num_input_RL; index1++) {
            hc1[index1][index2] = hc1_temp[index1][index2];
        }
        bc1[index2] = bc1_temp[index2];
    }
    for (int index2 = 0; index2 < num_hidden_unit2; index2++) {
        for (int index1 = 0; index1 < num_hidden_unit1; index1++) {
            hc2[index1][index2] = hc2_temp[index1][index2];
        }
        bc2[index2] = bc2_temp[index2];
        hc3[index2] = hc3_temp[index2];
    }
    bc3 = bc3_temp;
}
void Overwirte_Actor_Networks()
{
    for (int index2 = 0; index2 < num_hidden_unit1; index2++) {
        for (int index1 = 0; index1 < num_input_RL; index1++) {
            ha1[index1][index2] = ha1_temp[index1][index2];
        }
        ba1[index2] = ba1_temp[index2];
    }
    for (int index2 = 0; index2 < num_hidden_unit2; index2++) {
        for (int index1 = 0; index1 < num_hidden_unit1; index1++) {
            ha2[index1][index2] = ha2_temp[index1][index2];
        }
        ba2[index2] = ba2_temp[index2];
    }
    for (int index2 = 0; index2 < 2; index2++) {
        for (int index1 = 0; index1 < num_hidden_unit2; index1++) {
            ha3[index1][index2] = ha3_temp[index1][index2];
        }
        ba3[index2] = ba3_temp[index2];
    }
}


int main()
{

    HAL_Init();
    SystemClock_Config();

    /*********************************
    ***     Initialization
    *********************************/
    LED = 0;
    pc.baud(9600);

    // i2c init
    i2c.frequency(400 * 1000);          // 0.4 mHz
    wait_ms(2);                         // Power Up wait
    look_for_hardware_i2c();            // Hardware present
    init_as5510(i2c_slave_addr1);
    make_delay();

//    // spi init
    eeprom.format(8,3);
    eeprom.frequency(5000000); //5M
    enc.format(8,0);
    enc.frequency(5000000); //5M
    make_delay();

    //rom
    ROM_CALL_DATA();
    make_delay();

    // ADC init
    Init_ADC();
    make_delay();

    // Pwm init
    Init_PWM();
    TIM4->CR1 ^= TIM_CR1_UDIS;
    make_delay();

    // TMR3 init
    Init_TMR3();
    TIM3->CR1 ^= TIM_CR1_UDIS;
    make_delay();

    // TMR2 init
//    Init_TMR2();
//    TIM2->CR1 ^= TIM_CR1_UDIS;
//    make_delay();

    // CAN
    can.attach(&CAN_RX_HANDLER);
    CAN_ID_INIT();
    make_delay();

    //Timer priority
    NVIC_SetPriority(TIM3_IRQn, 2);
    //NVIC_SetPriority(TIM2_IRQn, 3);
    NVIC_SetPriority(TIM4_IRQn, 3);

    //can.reset();
    can.filter(msg.id, 0xFFFFF000, CANStandard);

    // spi _ enc
    spi_enc_set_init();
    make_delay();

    //DAC init
    if (SENSING_MODE == 0) {
        dac_1 = TORQUE_VREF / 3.3f;
        dac_2 = 0.0f;
    } else if (SENSING_MODE == 1) {
        dac_1 = PRES_A_VREF / 3.3f;
        dac_2 = PRES_B_VREF / 3.3f;
    }
    make_delay();

    for (int i=0; i<50; i++) {
        if(i%2==0)
            ID_index_array[i] = - i * 0.5f;
        else
            ID_index_array[i] =  (i+1) * 0.5f;
    }

    for (int index2 = 0; index2 < num_hidden_unit1; index2++) {
        for (int index1 = 0; index1 < num_input_RL; index1++) {
            hc1_temp[index1][index2] = (float) (rand()%100) * 0.007f ;
        }
        bc1_temp[index2] = (float) (rand()%100) * 0.007f;
    }
    for (int index2 = 0; index2 < num_hidden_unit2; index2++) {
        for (int index1 = 0; index1 < num_hidden_unit1; index1++) {
            hc2_temp[index1][index2] = (float) (rand()%100) * 0.007f;
        }
        bc2_temp[index2] = (float) (rand()%100) * 0.007f;
        hc3_temp[index2] = (float) (rand()%100) * 0.007f;
    }
    bc3_temp = (float) (rand()%100) * 0.007f;

    for (int index2 = 0; index2 < num_hidden_unit1; index2++) {
        for (int index1 = 0; index1 < num_input_RL; index1++) {
            ha1_temp[index1][index2] = (float) (rand()%100) * 0.007f;
        }
        ba1_temp[index2] = (float) (rand()%100) * 0.007f;
    }
    for (int index2 = 0; index2 < num_hidden_unit2; index2++) {
        for (int index1 = 0; index1 < num_hidden_unit1; index1++) {
            ha2_temp[index1][index2] = (float) (rand()%100) * 0.007f;
        }
        ba2_temp[index2] = (float) (rand()%100) * 0.007f;
    }
    for (int index2 = 0; index2 < 2; index2++) {
        for (int index1 = 0; index1 < num_hidden_unit2; index1++) {
            ha3_temp[index1][index2] = (float) (rand()%100) * 0.007f;
        }
        ba3_temp[index2] = (float) (rand()%100) * 0.007f;
    }

    Overwirte_Critic_Networks();
    Overwirte_Actor_Networks();

    /************************************
    ***     Program is operating!
    *************************************/
    while(1) {

//        if(timer_while==27491) {
//            timer_while = 0;
//            pc.printf("ref : %f     virt_pos : %f  mean : %f    deviation : %f       Last_pos_of_batch : %f      reward_sum : %f\n", pos.sen/(float)(ENC_PULSE_PER_POSITION), logging3, logging2, logging4, logging1, logging5);
//            //pc.printf("%f\n", virt_pos);
//            //pc.printf("%f\n", pos.sen/(float)(ENC_PULSE_PER_POSITION));
//            //pc.printf("ref : %f     virt_pos : %f\n", pos.sen/(float)(ENC_PULSE_PER_POSITION), virt_pos);
//        }


        //i2c
        read_field(i2c_slave_addr1);
        if(DIR_VALVE_ENC < 0) value = 1023 - value;

        //timer_while ++;

        ///////////////////////////////////////////////////////Neural Network

        if(NN_Control_Flag == 0) {
            LED = 0;
        }

        else if(NN_Control_Flag == 1) {

            int ind = 0;
            for(int i=0; i<numpast_u; i++) {
                input_NN[ind] = u_past[time_interval*i];
                ind = ind + 1;
            }

            for(int i=0; i<numpast_x; i++) {
                input_NN[ind] = x_past[time_interval*i] / 60.0f;
                ind = ind + 1;
            }
            input_NN[ind] = (pos.sen / ENC_PULSE_PER_POSITION) / 60.0f;
            ind = ind + 1;

//            for(int i=0; i<numfuture_x; i++) {
//                input_NN[ind] = x_future[time_interval*i+time_interval] / 60.0f;
//                ind = ind + 1;
//            }

            for(int i=0; i<numpast_f; i++) {
//                input_NN[ind] = f_past[time_interval*i] / 10000.0f * 8.0f + 0.5f;
                input_NN[ind] = f_past[time_interval*i] / 10000.0f + 0.5f;
                ind = ind + 1;
            }
//            input_NN[ind] = torq.sen / 10000.0f * 8.0f + 0.5f;
            input_NN[ind] = torq.sen / 10000.0f + 0.5f;
            ind = ind + 1;
            for(int i=0; i<numfuture_f; i++) {
//                input_NN[ind] = (f_future[time_interval*i+time_interval] - torq.sen)/10000.0f * 8.0f + 0.5f;
//                input_NN[ind] = (f_future[time_interval*i+time_interval] - torq.sen)/10000.0f + 0.5f;
//                input_NN[ind] = (f_future[time_interval*i+time_interval])/10000.0f*8.0f+0.5f;
                input_NN[ind] = (f_future[time_interval*i+time_interval])/10000.0f + 0.5f;
                ind = ind + 1;
            }

            float output1[16] = { 0.0f };
            float output2[16] = { 0.0f };
            float output3[16] = { 0.0f };
            float output = 0.0f;

            for (int index2 = 0; index2 < 16; index2++) {
                for (int index1 = 0; index1 < num_input; index1++) {
                    output1[index2] = output1[index2]
                                      + h1[index1][index2] * input_NN[index1];
                }
                output1[index2] = output1[index2] + b1[index2];
                if (output1[index2] < 0) {
                    output1[index2] = 0;
                }
            }

            for (int index2 = 0; index2 < 16; index2++) {
                for (int index1 = 0; index1 < 16; index1++) {
                    output2[index2] = output2[index2]
                                      + h2[index1][index2] * output1[index1];
                }
                output2[index2] = output2[index2] + b2[index2];
                if (output2[index2] < 0) {
                    output2[index2] = 0;
                }
            }

            for (int index2 = 0; index2 < 16; index2++) {
                for (int index1 = 0; index1 < 16; index1++) {
                    output3[index2] = output3[index2]
                                      + h3[index1][index2] * output2[index1];
                }
                output3[index2] = output3[index2] + b3[index2];
                if (output3[index2] < 0) {
                    output3[index2] = 0;
                }
            }

            for (int index2 = 0; index2 < 1; index2++) {
                for (int index1 = 0; index1 < 16; index1++) {
                    output = output + hout[index1] * output3[index1];
                }
                output = output + bout[index2];

            }
            output = 1.0f/(1.0f+exp(-output));
            output_normalized = output;
            output = output * 20000.0f - 10000.0f;

            if(output>=0) {
                valve_pos.ref = output*0.0001f*((double)VALVE_MAX_POS - (double) VALVE_CENTER) + (double) VALVE_CENTER;
            } else {
                valve_pos.ref = -output*0.0001f*((double)VALVE_MIN_POS - (double) VALVE_CENTER) + (double) VALVE_CENTER;
            }


            if(LED==1) {
                LED=0;
            } else
                LED = 1;

        }


        /////////////////////////////////////////////////////////////////////RL
        switch (Update_Case) {
            case 0: {
                break;
            }
            case 1: {
                //Network Update(just update and hold network)
                for (int epoch = 0; epoch < num_epoch; epoch++) {
                    float loss_sum = 0.0f;
                    for (int n=batch_size-1; n>=0; n--) {
                        //Calculate Estimated V
                        //float temp_array[3] = {state_array[n][0], state_array[n][1], state_array[n][2]};
                        float temp_array[2] = {state_array[n][0], state_array[n][1]};
                        V[n] = Critic_Network_Temp(temp_array);
                        for (int i=0; i<num_hidden_unit1; i++) {
                            hx_c_sum_array[n][i] = hx_c_sum[i];
                        }
                        for (int i=0; i<num_hidden_unit2; i++) {
                            hxh_c_sum_array[n][i] = hxh_c_sum[i];
                        }
                        hxhh_c_sum_array[n] = hxhh_c_sum;

                        pi[n] = exp(-(action_array[n]-mean_array[n])*(action_array[n]-mean_array[n])/(2.0f*deviation_array[n]*deviation_array[n]))/(sqrt(2.0f*PI)*deviation_array[n]);
                        Actor_Network_Old(temp_array);
                        pi_old[n] = exp(-(action_array[n]-mean_old)*(action_array[n]-mean_old)/(2.0f*deviation_old*deviation_old))/(sqrt(2.0f*PI)*deviation_old);
                        r[n] = exp(-0.25f * 5.0f * state_array[n][1] * state_array[n][1]);
                        if(n == batch_size-1) return_G[n] = 0.0f;
                        else return_G[n] = gamma * return_G[n+1] + r[n];
                        if(n == batch_size-1) td_target[n] = r[n];
                        else td_target[n] = r[n] + gamma * V[n+1];
                        delta[n] = td_target[n] - V[n];
                        if(n == batch_size-1) advantage[n] = 0.0f;
                        else advantage[n] = gamma * lmbda * advantage[n+1] + delta[n];
//                        return_G[n] = advantage[n] + V[n];
                        ratio[n] = pi[n]/pi_old[n];
                    }
                    float mean_advantage = 0.0f;
                    float dev_advantage = 0.0f;
                    mean_advantage = mean_adv(advantage, batch_size);
                    dev_advantage = deviation_adv(advantage, batch_size);
                    for (int n=batch_size-1; n>=0; n--) {
                        //advantage[n] = (advantage[n]-mean_advantage)/dev_advantage;
                        surr1[n] = ratio[n] * advantage[n];
                        if (ratio[n] > 1.0f + epsilon) {
                            surr2[n] = (1.0f + epsilon)*advantage[n];
                        } else if( ratio[n] < 1.0f - epsilon) {
                            surr2[n] = (1.0f - epsilon)*advantage[n];
                        } else {
                            surr2[n] = ratio[n]*advantage[n];
                        }
                        loss[n] = -min(surr1[n], surr2[n]);
                        loss_sum = loss_sum + loss[n];
                    }
                    reward_sum = 0.0f;
                    for (int i=0; i<batch_size; i++) {
                        reward_sum = reward_sum + r[i];
                    }
                    logging5 = reward_sum;


                    //loss_batch = loss_sum / (float) batch_size;
                    loss_batch = loss_sum;
                    //Update Networks
                    update_Critic_Networks(state_array);
                    update_Actor_Networks(state_array);
                }
                Update_Done_Flag = 1;
                Update_Case = 0;
                //logging1 = V[0];

                break;
            }
            case 2: {
                //Network apply to next Network
                Overwirte_Critic_Networks();
                Overwirte_Actor_Networks();
                virt_pos = 10.0f;
                Update_Done_Flag = 1;
                Update_Case = 0;
                break;
            }

        }
    }
}

float DDV_JOINT_POS_FF(float REF_JOINT_VEL)
{

    int i = 0;
    float Ref_Valve_Pos_FF = 0.0f;
    for(i=0; i<VALVE_POS_NUM; i++) {
        if(REF_JOINT_VEL >= min(JOINT_VEL[i],JOINT_VEL[i+1]) && REF_JOINT_VEL <=  max(JOINT_VEL[i],JOINT_VEL[i+1])) {
            if(i==0) {
                if(JOINT_VEL[i+1] == JOINT_VEL[i]) {
                    Ref_Valve_Pos_FF = (float) VALVE_CENTER;
                } else {
                    Ref_Valve_Pos_FF = ((float) 10/(JOINT_VEL[i+1] - JOINT_VEL[i]) * (REF_JOINT_VEL - JOINT_VEL[i])) + (float) VALVE_CENTER;
                }
            } else {
                if(JOINT_VEL[i+1] == JOINT_VEL[i-1]) {
                    Ref_Valve_Pos_FF = (float) VALVE_CENTER;
                } else {
                    Ref_Valve_Pos_FF = ((float) 10*(ID_index_array[i+1] - ID_index_array[i-1])/(JOINT_VEL[i+1] - JOINT_VEL[i-1]) * (REF_JOINT_VEL - JOINT_VEL[i-1])) + (float) VALVE_CENTER + (float) (10*ID_index_array[i-1]);
                }
            }
            break;
        }
    }
    if(REF_JOINT_VEL > max(JOINT_VEL[VALVE_POS_NUM-1], JOINT_VEL[VALVE_POS_NUM-2])) {
        Ref_Valve_Pos_FF = (float) VALVE_MAX_POS;
    } else if(REF_JOINT_VEL < min(JOINT_VEL[VALVE_POS_NUM-1], JOINT_VEL[VALVE_POS_NUM-2])) {
        Ref_Valve_Pos_FF = (float) VALVE_MIN_POS;
    }

    Ref_Valve_Pos_FF = (float) VELOCITY_COMP_GAIN * 0.01f * (float) (Ref_Valve_Pos_FF - (float) VALVE_CENTER);
    return Ref_Valve_Pos_FF;

}


void VALVE_POS_CONTROL(float REF_VALVE_POS)
{
    int i = 0;

    if(REF_VALVE_POS > VALVE_MAX_POS) {
        REF_VALVE_POS = VALVE_MAX_POS;
    } else if(REF_VALVE_POS < VALVE_MIN_POS) {
        REF_VALVE_POS = VALVE_MIN_POS;
    }

    valve_pos_err = (float) (REF_VALVE_POS - value);
    valve_pos_err_diff = valve_pos_err - valve_pos_err_old;
    valve_pos_err_old = valve_pos_err;
    valve_pos_err_sum += valve_pos_err;
    if (valve_pos_err_sum > 1000.0f) valve_pos_err_sum = 1000.0f;
    if (valve_pos_err_sum<-1000.0f) valve_pos_err_sum = -1000.0f;

    VALVE_PWM_RAW_FB = P_GAIN_VALVE_POSITION * valve_pos_err + I_GAIN_VALVE_POSITION * valve_pos_err_sum + D_GAIN_VALVE_POSITION * valve_pos_err_diff;

    for(i=0; i<24; i++) {
        if(REF_VALVE_POS >= min(VALVE_POS_VS_PWM[i],VALVE_POS_VS_PWM[i+1]) && (float) REF_VALVE_POS <=  max(VALVE_POS_VS_PWM[i],VALVE_POS_VS_PWM[i+1])) {
            if(i==0) {
                VALVE_PWM_RAW_FF = (float) 1000.0f / (float) (VALVE_POS_VS_PWM[i+1] - VALVE_POS_VS_PWM[i]) * ((float) REF_VALVE_POS - VALVE_POS_VS_PWM[i]);
            } else {
                VALVE_PWM_RAW_FF = (float) 1000.0f* (float) (ID_index_array[i+1] - ID_index_array[i-1])/(VALVE_POS_VS_PWM[i+1] - VALVE_POS_VS_PWM[i-1]) * ((float) REF_VALVE_POS - VALVE_POS_VS_PWM[i-1]) + 1000.0f * (float) ID_index_array[i-1];
            }
            break;
        }
    }
    Vout.ref = VALVE_PWM_RAW_FF + VALVE_PWM_RAW_FB;
}

#define LT_MAX_IDX  57
float LT_PWM_duty[LT_MAX_IDX] = {-100.0f, -80.0f, -60.0f, -50.0f, -40.0f, -35.0f, -30.0f, -25.0f, -20.0f,
                                 -19.0f, -18.0f, -17.0f, -16.0f, -15.0f, -14.0f, -13.0f, -12.0f, -11.0f, -10.0f,
                                 -9.0f, -8.0f, -7.0f, -6.0f, -5.0f, -4.0f, -3.0f, -2.0f, -1.0f, 0.0f,
                                 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f,
                                 11.0f, 12.0f, 13.0f, 14.0f, 15.0f, 16.0f, 17.0f, 18.0f, 19.0f, 20.0f,
                                 25.0f, 30.0f, 35.0f, 40.0f, 50.0f, 60.0f, 80.0f, 100.0f
                                };  // duty
float LT_Voltage_Output[LT_MAX_IDX] = {-230.0f, -215.0f, -192.5f, -185.0f, -177.5f, -170.0f, -164.0f, -160.0f, -150.0f,
                                       -150.0f, -145.0f, -145.0f, -145.0f, -135.0f, -135.0f, -135.0f, -127.5f, -127.5f, -115.0f,
                                       -115.0f, -115.0F, -100.0f, -100.0f, -100.0f, -60.0f, -60.0f, -10.0f, -5.0f, 0.0f,
                                       7.5f, 14.0f, 14.0f, 14.0f, 42.5f, 42.5f, 42.5f, 80.0f, 80.0f, 105.0f,
                                       105.0f, 105.0f, 120.0f, 120.0f, 120.0f, 131.0f, 131.0f, 140.0f, 140.0f, 140.0f,
                                       155.0f, 160.0f, 170.0f, 174.0f, 182.0f, 191.0f, 212.0f, 230.0f
                                      }; // mV

float PWM_duty_byLT(float Ref_V)
{
    float PWM_duty = 0.0f;
    if(Ref_V<LT_Voltage_Output[0]) {
        PWM_duty = (Ref_V-LT_Voltage_Output[0])/1.5f+LT_PWM_duty[0];
    } else if (Ref_V>=LT_Voltage_Output[LT_MAX_IDX-1]) {
        PWM_duty = (Ref_V-LT_Voltage_Output[LT_MAX_IDX-1])/1.5f+LT_PWM_duty[LT_MAX_IDX-1];
    } else {
        int idx = 0;
        for(idx=0; idx<LT_MAX_IDX-1; idx++) {
            float ini_x = LT_Voltage_Output[idx];
            float fin_x = LT_Voltage_Output[idx+1];
            float ini_y = LT_PWM_duty[idx];
            float fin_y = LT_PWM_duty[idx+1];
            if(Ref_V>=ini_x && Ref_V<fin_x) {
                PWM_duty = (fin_y-ini_y)/(fin_x-ini_x)*(Ref_V-ini_x) + ini_y;
                break;
            }
        }
    }

    return PWM_duty;
}





/*******************************************************************************
                            TIMER INTERRUPT
*******************************************************************************/

float FREQ_TMR4 = (float)FREQ_20k;
float DT_TMR4 = (float)DT_20k;
long  CNT_TMR4 = 0;
int   TMR4_FREQ_10k = (int)FREQ_10k;
extern "C" void TIM4_IRQHandler(void)
{
    if (TIM4->SR & TIM_SR_UIF ) {

        /*******************************************************
        ***     Sensor Read & Data Handling
        ********************************************************/

        //Encoder
        if (CNT_TMR4 % (int) ((int) FREQ_TMR4/TMR4_FREQ_10k) == 0) {
            ENC_UPDATE();
        }

        ADC1->CR2  |= 0x40000000;
        if (SENSING_MODE == 0) {
            // Torque Sensing (0~210)bar =============================================
            float pres_A_new = (((float) ADC1->DR) - 2047.5f);
            double alpha_update_ft = 1.0f / (1.0f + FREQ_TMR4 / (2.0f * 3.14f * 100.0f)); // f_cutoff : 200Hz
            pres_A.sen = (1.0f - alpha_update_ft) * pres_A.sen + alpha_update_ft * pres_A_new;
            torq.sen = -pres_A.sen / TORQUE_SENSOR_PULSE_PER_TORQUE;


//        float alpha_update_pres_A = 1.0f/(1.0f + FREQ_TMR4/(2.0f*3.14f*100.0f));
////        float pres_A_new = ((float)ADC1->DR - PRES_A_NULL)  / PRES_SENSOR_A_PULSE_PER_BAR;
//        float pres_A_new = ((float)ADC1->DR);
//        pres_A.sen = pres_A.sen*(1.0f-alpha_update_pres_A)+pres_A_new*(alpha_update_pres_A);
//        torq.sen = - (pres_A.sen-2048.0f); //pulse -2047~2047


        } else if (SENSING_MODE == 1) {
            // Pressure Sensing (0~210)bar =============================================
            float pres_A_new = (((float)ADC1->DR) - PRES_A_NULL);
            float pres_B_new = (((float)ADC2->DR) - PRES_B_NULL);
            double alpha_update_pres = 1.0f / (1.0f + FREQ_TMR4 / (2.0f * 3.14f * 200.0f)); // f_cutoff : 500Hz
            pres_A.sen = (1.0f - alpha_update_pres) * pres_A.sen + alpha_update_pres * pres_A_new;
            pres_B.sen = (1.0f - alpha_update_pres) * pres_B.sen + alpha_update_pres * pres_B_new;
            CUR_PRES_A_BAR = pres_A.sen / PRES_SENSOR_A_PULSE_PER_BAR;
            CUR_PRES_B_BAR = pres_B.sen / PRES_SENSOR_B_PULSE_PER_BAR;

            if ((OPERATING_MODE & 0x01) == 0) { // Rotary Actuator
                torq.sen = (PISTON_AREA_A * CUR_PRES_A_BAR - PISTON_AREA_B * CUR_PRES_B_BAR) * 0.0001f; // mm^3*bar >> Nm
            } else if ((OPERATING_MODE & 0x01) == 1) { // Linear Actuator
                torq.sen = (PISTON_AREA_A * CUR_PRES_A_BAR - PISTON_AREA_B * CUR_PRES_B_BAR) * 0.1f; // mm^2*bar >> N
            }
        }

//        //Pressure sensor A
//        ADC1->CR2  |= 0x40000000;                        // adc _ 12bit
//        //while((ADC1->SR & 0b10));
//        float alpha_update_pres_A = 1.0f/(1.0f + FREQ_TMR4/(2.0f*3.14f*100.0f));
//        float pres_A_new = ((float)ADC1->DR);
//        pres_A.sen = pres_A.sen*(1.0f-alpha_update_pres_A)+pres_A_new*(alpha_update_pres_A);
//        torq.sen = - (pres_A.sen-2048.0f); //pulse -2047~2047    //SW just changed the sign to correct the direction of loadcell on LIGHT. Correct later.
//
//
//        //Pressure sensor B
//        float alpha_update_pres_B = 1.0f/(1.0f + FREQ_TMR4/(2.0f*3.14f*100.0f));
//        float pres_B_new = ((float)ADC2->DR);
//        pres_B.sen = pres_B.sen*(1.0f-alpha_update_pres_B)+pres_B_new*(alpha_update_pres_B);
//        //torq.sen = pres_A.sen * (float) PISTON_AREA_A - pres_B.sen * (float) PISTON_AREA_B;


        //Current
        //ADC3->CR2  |= 0x40000000;                        // adc _ 12bit
        //int raw_cur = ADC3->DR;
        //while((ADC3->SR & 0b10));
        float alpha_update_cur = 1.0f/(1.0f + FREQ_TMR4/(2.0f*3.14f*500.0f)); // f_cutoff : 500Hz
        float cur_new = ((float)ADC3->DR-2048.0f)*20.0f/4096.0f; // unit : mA
        cur.sen=cur.sen*(1.0f-alpha_update_cur)+cur_new*(alpha_update_cur);
        //cur.sen = raw_cur;

        CNT_TMR4++;
    }
    TIM4->SR = 0x0;  // reset the status register
}


int j =0;
float FREQ_TMR3 = (float)FREQ_5k;
float DT_TMR3 = (float)DT_5k;
int cnt_trans = 0;
double VALVE_POS_RAW_FORCE_FB_LOGGING = 0.0f;
int can_rest =0;

extern "C" void TIM3_IRQHandler(void)
{
    if (TIM3->SR & TIM_SR_UIF ) {

        if (((OPERATING_MODE&0b110)>>1) == 0) {
            K_v = 0.4f; // Moog (LPM >> mA) , 100bar
            mV_PER_mA = 500.0f; // 5000mV/10mA
            mV_PER_pulse = 0.5f; // 5000mV/10000pulse
            mA_PER_pulse = 0.001f; // 10mA/10000pulse
        } else if (((OPERATING_MODE&0b110)>>1) == 1) {
            K_v = 0.5f; // KNR (LPM >> mA) , 100bar
            mV_PER_mA = 166.6666f; // 5000mV/30mA
            mV_PER_pulse = 0.5f; // 5000mV/10000pulse
            mA_PER_pulse = 0.003f; // 30mA/10000pulse
        }

        if(MODE_POS_FT_TRANS == 1) {
            alpha_trans = (float)(1.0f - cos(3.141592f * (float)cnt_trans * DT_TMR3 /3.0f))/2.0f;
            cnt_trans++;
            torq.err_sum = 0;
            if((float)cnt_trans * DT_TMR3 > 3.0f)
                MODE_POS_FT_TRANS = 2;
        } else if(MODE_POS_FT_TRANS == 3) {
            alpha_trans = (float)(1.0f + cos(3.141592f * (float)cnt_trans * DT_TMR3 /3.0f))/2.0f;
            cnt_trans++;
            torq.err_sum = 0;
            if((float) cnt_trans * DT_TMR3 > 3.0f )
                MODE_POS_FT_TRANS = 0;
        } else if(MODE_POS_FT_TRANS == 2) {
            alpha_trans = 1.0f;
            cnt_trans = 0;
        } else {
            alpha_trans = 0.0f;
            cnt_trans = 0;
        }


        int UTILITY_MODE = 0;
        int CONTROL_MODE = 0;

        if (CONTROL_UTILITY_MODE >= 20 || CONTROL_UTILITY_MODE == 0) {
            UTILITY_MODE = CONTROL_UTILITY_MODE;
            CONTROL_MODE = MODE_NO_ACT;
        } else {
            CONTROL_MODE = CONTROL_UTILITY_MODE;
            UTILITY_MODE = MODE_NO_ACT;
        }



        // UTILITY MODE ------------------------------------------------------------

        switch (UTILITY_MODE) {
            case MODE_NO_ACT: {
                break;
            }

            case MODE_TORQUE_SENSOR_NULLING: {
                // DAC Voltage reference set
                if (TMR3_COUNT_TORQUE_NULL < TMR_FREQ_5k * 2) {
                    CUR_TORQUE_sum += torq.sen;

                    if (TMR3_COUNT_TORQUE_NULL % 10 == 0) {
                        CUR_TORQUE_mean = CUR_TORQUE_sum / 10.0f;
                        CUR_TORQUE_sum = 0;

                        TORQUE_VREF += 0.000003f * (0.0f - CUR_TORQUE_mean);

                        if (TORQUE_VREF > 3.3f) TORQUE_VREF = 3.3f;
                        if (TORQUE_VREF < 0.0f) TORQUE_VREF = 0.0f;

                        //spi_eeprom_write(RID_TORQUE_SENSOR_VREF, (int16_t) (TORQUE_VREF * 1000.0));
                        dac_1 = TORQUE_VREF / 3.3f;
                    }
                } else {
                    CONTROL_UTILITY_MODE = MODE_NO_ACT;
                    TMR3_COUNT_TORQUE_NULL = 0;
                    CUR_TORQUE_sum = 0;
                    CUR_TORQUE_mean = 0;

//                    ROM_RESET_DATA();
                    spi_eeprom_write(RID_TORQUE_SENSOR_VREF, (int16_t) (TORQUE_VREF * 1000.0f));

                    dac_1 = TORQUE_VREF / 3.3f;

                }
                TMR3_COUNT_TORQUE_NULL++;
                break;
            }

//            case MODE_VALVE_NULLING_AND_DEADZONE_SETTING: {
//                if (TMR3_COUNT_DEADZONE == 0) {
//                    if (pos_plus_end == pos_minus_end) need_enc_init = true;
//                    else temp_time = 0;
//                }
//                if (need_enc_init) {
//                    if (TMR3_COUNT_DEADZONE < (int) (0.5f * (float) TMR_FREQ_5k)) {
//                        V_out = VALVE_VOLTAGE_LIMIT * 1000.0f;
//                        pos_plus_end = pos.sen;
//                    } else if (TMR3_COUNT_DEADZONE < TMR_FREQ_5k) {
//                        V_out = -VALVE_VOLTAGE_LIMIT * 1000.0f;
//                        pos_minus_end = pos.sen;
//                    } else if (TMR3_COUNT_DEADZONE == TMR_FREQ_5k) need_enc_init = false;
//                    temp_time = TMR_FREQ_5k;
//                }
//
//                if (temp_time <= TMR3_COUNT_DEADZONE && TMR3_COUNT_DEADZONE < (temp_time + TMR_FREQ_5k)) {
//                    V_out = (float) P_GAIN_JOINT_POSITION * (0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end - (float) pos.sen);
//                    VALVE_CENTER = VALVE_DEADZONE_PLUS = VALVE_DEADZONE_MINUS = 0;
//
//                } else if (temp_time <= TMR3_COUNT_DEADZONE && TMR3_COUNT_DEADZONE < (temp_time + (int) (1.9f * (float) TMR_FREQ_5k))) {
//                    V_out = 0;
//                    CUR_VELOCITY_sum += CUR_VELOCITY;
//                } else if (TMR3_COUNT_DEADZONE == (temp_time + 2 * TMR_FREQ_5k)) {
//                    if (CUR_VELOCITY_sum == 0) DZ_dir = 1;
//                    else if (CUR_VELOCITY_sum > 0) DZ_dir = 1;
//                    else if (CUR_VELOCITY_sum < 0) DZ_dir = -1;
//                    else DZ_temp_cnt2 = DZ_end;
//                    CUR_VELOCITY_sum = 0;
//                } else if (TMR3_COUNT_DEADZONE > (temp_time + 2 * TMR_FREQ_5k)) {
//                    if (TMR3_COUNT_DEADZONE > (temp_time + 10 * TMR_FREQ_5k)) DZ_temp_cnt2 = DZ_end;
//
//                    // Position of Dead Zone
//                    //  (CUR_VELOCITY < 0)  (CUR_VELOCITY == 0)  (CUR_VELOCITY > 0)
//                    //     |        /                 |    /                      |/
//                    //     | ______/               ___|___/                ______/|
//                    //     |/                     /   |                   /       |
//                    //    /|                     /    |                  /        |
//                    //     0V                         0V                          0V
//
//                    if (DZ_temp_cnt2 < DZ_end) {
//                        if (TMR3_COUNT_DEADZONE % 20 != 0) {
//                            CUR_VELOCITY_sum += CUR_VELOCITY;
//                        } else {
//                            V_out -= DZ_dir;
//                            if (CUR_VELOCITY_sum * DZ_dir < 0) DZ_temp_cnt++;
//                            CUR_VELOCITY_sum = 0;
//                        }
//                        if (DZ_temp_cnt == 5) {
//                            if (DZ_dir >= 0) VALVE_DEADZONE_MINUS = (int16_t) V_out;
//                            else VALVE_DEADZONE_PLUS = (int16_t) V_out;
//                            DZ_dir = -DZ_dir;
//                            DZ_temp_cnt = 0;
//                            DZ_temp_cnt2++;
//                        }
//                    } else {
//                        TMR3_COUNT_DEADZONE = -1;
//                        VALVE_CENTER = VALVE_DEADZONE_PLUS / 2 + VALVE_DEADZONE_MINUS / 2;
//                        if (VALVE_DEADZONE_PLUS < VALVE_DEADZONE_MINUS) {
//                            VALVE_DEADZONE_PLUS = VALVE_CENTER;
//                            VALVE_DEADZONE_MINUS = VALVE_CENTER;
//                        }
//                        V_out = 0;
//
//                        ROM_RESET_DATA();
//
//                        //spi_eeprom_write(RID_VALVE_DEADZONE_PLUS, VALVE_DEADZONE_PLUS);
//                        //spi_eeprom_write(RID_VALVE_DEADZONE_MINUS, VALVE_DEADZONE_MINUS);
//
//                        CONTROL_MODE = MODE_NO_ACT;
//                        DZ_temp_cnt2 = 0;
//                    }
//                }
//                TMR3_COUNT_DEADZONE++;
//                break;
//            }

            case MODE_FIND_HOME: {
                if (FINDHOME_STAGE == FINDHOME_INIT) {
                    cnt_findhome = 0;
                    cnt_vel_findhome = 0;
                    //REFERENCE_MODE = MODE_REF_NO_ACT; // Stop taking reference data from PODO
                    pos.ref = pos.sen;
                    vel.ref = 0.0f;
                    FINDHOME_STAGE = FINDHOME_GOTOLIMIT;
                } else if (FINDHOME_STAGE == FINDHOME_GOTOLIMIT) {
                    int cnt_check_enc = (TMR_FREQ_5k/20);
                    if(cnt_findhome%cnt_check_enc == 0) {
                        FINDHOME_POSITION = pos.sen;
                        FINDHOME_VELOCITY = FINDHOME_POSITION - FINDHOME_POSITION_OLD;
                        FINDHOME_POSITION_OLD = FINDHOME_POSITION;
                    }
                    cnt_findhome++;

                    if (abs(FINDHOME_VELOCITY) <= 1) {
                        cnt_vel_findhome = cnt_vel_findhome + 1;
                    } else {
                        cnt_vel_findhome = 0;
                    }

                    if ((cnt_vel_findhome < 3*TMR_FREQ_5k) &&  cnt_findhome < 10*TMR_FREQ_5k) { // wait for 3sec
                        //REFERENCE_MODE = MODE_REF_NO_ACT;
                        if (HOMEPOS_OFFSET > 0) pos.ref = pos.ref + 12.0f;
                        else pos.ref = pos.ref - 12.0f;

//                        pos.err = pos.ref_home_pos - pos.sen;
//                        float VALVE_POS_RAW_POS_FB = 0.0f;
//                        VALVE_POS_RAW_POS_FB = (float) P_GAIN_JOINT_POSITION * pos.err/(float) ENC_PULSE_PER_POSITION * 0.01f;
//                        valve_pos.ref = VALVE_POS_RAW_POS_FB + (float) VALVE_CENTER;
//                        VALVE_POS_CONTROL(valve_pos.ref);

                        CONTROL_MODE = MODE_JOINT_CONTROL;
                        alpha_trans = 0.0f;


                    } else {
                        ENC_SET(HOMEPOS_OFFSET);
//                        ENC_SET_ZERO();
                        INIT_REF_POS = HOMEPOS_OFFSET;
                        REF_POSITION = 0;
                        REF_VELOCITY = 0;
                        FINDHOME_POSITION = 0;
                        FINDHOME_POSITION_OLD = 0;
                        FINDHOME_VELOCITY = 0;
                        cnt_findhome = 0;
                        cnt_vel_findhome = 0;
                        FINDHOME_STAGE = FINDHOME_ZEROPOSE;


                        cnt_findhome = 0;
                        pos.ref = 0.0f;
                        vel.ref = 0.0f;
                        pos.ref_home_pos = 0.0f;
                        vel.ref_home_pos = 0.0f;
                        //FINDHOME_STAGE = FINDHOME_INIT;
                        //CONTROL_UTILITY_MODE = MODE_JOINT_CONTROL;


                    }
                } else if (FINDHOME_STAGE == FINDHOME_ZEROPOSE) {
                    int T_move = 2*TMR_FREQ_5k;
                    pos.ref = (0.0f - (float)INIT_REF_POS)*0.5f*(1.0f - cos(3.14159f * (float)cnt_findhome / (float)T_move)) + (float)INIT_REF_POS;
                    //pos.ref = 0.0f;
                    vel.ref = 0.0f;

                    // input for position control

//                    CONTROL_MODE = MODE_JOINT_CONTROL;
                    alpha_trans = 0.0f;

                    double torq_ref = 0.0f;
                    pos.err = (pos.ref - pos.sen)/(float)(ENC_PULSE_PER_POSITION); //[mm]
                    vel.err = (0.0f - vel.sen)/(float)(ENC_PULSE_PER_POSITION); //[mm/s]
                    pos.err_sum += pos.err/(float) TMR_FREQ_5k; //[mm]

                    if (((OPERATING_MODE&0b110)>>1) == 0 || ((OPERATING_MODE&0b110)>>1) == 1) {

                        double I_REF_POS = 0.0f;
                        double I_REF_FORCE_FB = 0.0f; // I_REF by Force Feedback
                        double I_REF_VC = 0.0f; // I_REF for velocity compensation

                        double temp_vel_pos = 0.0f;
                        double temp_vel_torq = 0.0f;
                        double wn_Pos = 2.0f * PI * 5.0f; // f_cut : 5Hz Position Control

                        if ((OPERATING_MODE & 0x01) == 0) { // Rotary Mode
                            temp_vel_pos = (0.01f * (double) P_GAIN_JOINT_POSITION * wn_Pos * pos.err + 0.01f * (double) I_GAIN_JOINT_POSITION * wn_Pos * pos.err_sum + 0.01f * (double) VELOCITY_COMP_GAIN * vel.ref / ENC_PULSE_PER_POSITION) * 3.14159f / 180.0f; // rad/s
                            //                            L when P-gain = 100, f_cut = 10Hz                                 L feedforward velocity
                        } else if ((OPERATING_MODE & 0x01) == 1) {
                            temp_vel_pos = (0.01f * (double) P_GAIN_JOINT_POSITION * wn_Pos * pos.err + 0.01f * (double) I_GAIN_JOINT_POSITION * wn_Pos * pos.err_sum + 0.01f * (double) VELOCITY_COMP_GAIN * vel.ref / ENC_PULSE_PER_POSITION); // mm/s
                            //                            L when P-gain = 100, f_cut = 10Hz                                 L feedforward velocity
                        }
                        if (temp_vel_pos > 0.0f) I_REF_POS = temp_vel_pos * ((double) PISTON_AREA_A * 0.00006f / (K_v * sqrt(2.0f * alpha3 / (alpha3 + 1.0f))));
                        else I_REF_POS = temp_vel_pos * ((double) PISTON_AREA_B * 0.00006f / (K_v * sqrt(2.0f / (alpha3 + 1.0f))));

                        I_REF = I_REF_POS;



                    } else {
                        float VALVE_POS_RAW_FORCE_FB = 0.0f;
                        VALVE_POS_RAW_FORCE_FB = DDV_JOINT_POS_FF(vel.sen) + (P_GAIN_JOINT_POSITION * 0.01f * pos.err + DDV_JOINT_POS_FF(vel.ref));

                        if (VALVE_POS_RAW_FORCE_FB >= 0) {
                            valve_pos.ref = VALVE_POS_RAW_FORCE_FB + VALVE_DEADZONE_PLUS;
                        } else {
                            valve_pos.ref = VALVE_POS_RAW_FORCE_FB + VALVE_DEADZONE_MINUS;
                        }

                        VALVE_POS_CONTROL(valve_pos.ref);

                        V_out = (float) Vout.ref;

                    }




//                    pos.err = pos.ref - (float)pos.sen;
//                    float VALVE_POS_RAW_POS_FB = 0.0f;
//                    VALVE_POS_RAW_POS_FB = (float) P_GAIN_JOINT_POSITION * 0.01f * pos.err/(float) ENC_PULSE_PER_POSITION;
//                    valve_pos.ref = VALVE_POS_RAW_POS_FB + (float) VALVE_CENTER;
//                    VALVE_POS_CONTROL(valve_pos.ref);

                    cnt_findhome++;
                    if (cnt_findhome >= T_move) {
                        //REFERENCE_MODE = MODE_REF_DIRECT;
                        cnt_findhome = 0;
                        pos.ref = 0.0f;
                        vel.ref = 0.0f;
                        pos.ref_home_pos = 0.0f;
                        vel.ref_home_pos = 0.0f;
                        FINDHOME_STAGE = FINDHOME_INIT;
                        CONTROL_UTILITY_MODE = MODE_JOINT_CONTROL;
                    }
                }

                break;
            }

//            case MODE_VALVE_GAIN_SETTING: {
//                if (TMR3_COUNT_FLOWRATE == 0) {
//                    if (pos_plus_end == pos_minus_end) need_enc_init = true;
//                    else {
//                        V_out = -VALVE_VOLTAGE_LIMIT * 1000.0f;
//                        temp_time = (int) (0.5f * (float) TMR_FREQ_5k);
//                    }
//                }
//                if (need_enc_init) {
//                    if (TMR3_COUNT_FLOWRATE < (int) (0.5f * (float) TMR_FREQ_5k)) {
//                        V_out = VALVE_VOLTAGE_LIMIT * 1000.0f;
//                        pos_plus_end = pos.sen;
//                    } else if (TMR3_COUNT_FLOWRATE < TMR_FREQ_5k) {
//                        V_out = -VALVE_VOLTAGE_LIMIT * 1000.0f;
//                        pos_minus_end = pos.sen;
//                    } else if (TMR3_COUNT_FLOWRATE == TMR_FREQ_5k) {
//                        need_enc_init = false;
//                        check_vel_pos_init = (int) (0.9f * (float) (pos_plus_end - pos_minus_end));
//                        check_vel_pos_fin = (int) (0.95f * (float) (pos_plus_end - pos_minus_end));
//                        check_vel_pos_interv = check_vel_pos_fin - check_vel_pos_init;
//                    }
//                    temp_time = TMR_FREQ_5k;
//                }
//                TMR3_COUNT_FLOWRATE++;
//                if (TMR3_COUNT_FLOWRATE > temp_time) {
//                    if (flag_flowrate % 2 == 0) { // (+)
//                        VALVE_VOLTAGE = 1000.0f * (float) (flag_flowrate / 2 + 1);
//                        V_out = VALVE_VOLTAGE;
//                        if (pos.sen > (pos_minus_end + check_vel_pos_init) && pos.sen < (pos_minus_end + check_vel_pos_fin)) {
//                            fl_temp_cnt++;
//                        } else if (pos.sen >= (pos_minus_end + check_vel_pos_fin) && CUR_VELOCITY == 0) {
//                            VALVE_GAIN_LPM_PER_V[flag_flowrate] = 0.95873f * 0.5757f * (float) TMR_FREQ_5k / 10000.0 * (float) check_vel_pos_interv / (float) fl_temp_cnt / VALVE_VOLTAGE; // 0.9587=6*pi/65536*10000 0.5757=0.02525*0.02*0.0095*2*60*1000
//                            //                        VALVE_GAIN_LPM_PER_V[flag_flowrate] = (float) TMR_FREQ_10k * (float) check_vel_pos_interv / (float) fl_temp_cnt / VALVE_VOLTAGE; // PULSE/sec
//                            fl_temp_cnt2++;
//                        }
//                    } else if (flag_flowrate % 2 == 1) { // (-)
//                        VALVE_VOLTAGE = -1. * (float) (flag_flowrate / 2 + 1);
//                        V_out = VALVE_VOLTAGE;
//                        if (pos.sen < (pos_plus_end - check_vel_pos_init) && pos.sen > (pos_plus_end - check_vel_pos_fin)) {
//                            fl_temp_cnt++;
//                        } else if (pos.sen <= (pos_plus_end - check_vel_pos_fin) && CUR_VELOCITY == 0) {
//                            VALVE_GAIN_LPM_PER_V[flag_flowrate] = 0.95873f * 0.5757f * (float) TMR_FREQ_5k / 10000.0f * (float) check_vel_pos_interv / (float) fl_temp_cnt / (-VALVE_VOLTAGE);
//                            //                        VALVE_GAIN_LPM_PER_V[flag_flowrate] = (float) TMR_FREQ_10k * (float) check_vel_pos_interv / (float) fl_temp_cnt / (-VALVE_VOLTAGE); // PULSE/sec
//                            fl_temp_cnt2++;
//                        }
//                    }
//                    if (fl_temp_cnt2 == 100) {
//
//                        ROM_RESET_DATA();
//
//                        //spi_eeprom_write(RID_VALVE_GAIN_PLUS_1 + flag_flowrate, (int16_t) (VALVE_GAIN_LPM_PER_V[flag_flowrate] * 100.0f));
//                        cur_vel_sum = 0;
//                        fl_temp_cnt = 0;
//                        fl_temp_cnt2 = 0;
//                        flag_flowrate++;
//                    }
//                    if (flag_flowrate == 10) {
//                        V_out = 0;
//                        flag_flowrate = 0;
//                        TMR3_COUNT_FLOWRATE = 0;
//                        valve_gain_repeat_cnt++;
//                        if (valve_gain_repeat_cnt >= 1) {
//                            CONTROL_MODE = MODE_NO_ACT;
//                            valve_gain_repeat_cnt = 0;
//                        }
//
//                    }
//                    break;
//                }
//
//            }
            case MODE_PRESSURE_SENSOR_NULLING: {
                // DAC Voltage reference set
                if (TMR3_COUNT_PRES_NULL < TMR_FREQ_5k * 2) {
                    CUR_PRES_A_sum += pres_A.sen;
                    CUR_PRES_B_sum += pres_B.sen;

                    if (TMR3_COUNT_PRES_NULL % 10 == 0) {
                        CUR_PRES_A_mean = CUR_PRES_A_sum / 10.0f;
                        CUR_PRES_B_mean = CUR_PRES_B_sum / 10.0f;
                        CUR_PRES_A_sum = 0;
                        CUR_PRES_B_sum = 0;

                        float VREF_NullingGain = 0.0003f;
                        PRES_A_VREF = PRES_A_VREF + VREF_NullingGain * CUR_PRES_A_mean;
                        PRES_B_VREF = PRES_B_VREF + VREF_NullingGain * CUR_PRES_B_mean;

                        if (PRES_A_VREF > 3.3f) PRES_A_VREF = 3.3f;
                        if (PRES_A_VREF < 0.0f) PRES_A_VREF = 0.0f;
                        if (PRES_B_VREF > 3.3f) PRES_B_VREF = 3.3f;
                        if (PRES_B_VREF < 0.0f) PRES_B_VREF = 0.0f;

                        dac_1 = PRES_A_VREF / 3.3f;
                        dac_2 = PRES_B_VREF / 3.3f;
                    }
                } else {
                    CONTROL_UTILITY_MODE = MODE_NO_ACT;
                    TMR3_COUNT_PRES_NULL = 0;
                    CUR_PRES_A_sum = 0;
                    CUR_PRES_B_sum = 0;
                    CUR_PRES_A_mean = 0;
                    CUR_PRES_B_mean = 0;

//                    ROM_RESET_DATA();
                    spi_eeprom_write(RID_PRES_A_SENSOR_VREF, (int16_t) (PRES_A_VREF * 1000.0f));
                    spi_eeprom_write(RID_PRES_B_SENSOR_VREF, (int16_t) (PRES_B_VREF * 1000.0f));

                    dac_1 = PRES_A_VREF / 3.3f;
                    dac_2 = PRES_B_VREF / 3.3f;
                    //pc.printf("nulling end");
                }
                TMR3_COUNT_PRES_NULL++;
                break;
            }

//            case MODE_PRESSURE_SENSOR_CALIB: {
//                if (TMR3_COUNT_PRES_CALIB < 2 * TMR_FREQ_5k) {
//                    V_out = -VALVE_VOLTAGE_LIMIT * 1000.0f;
//                    if (TMR3_COUNT_PRES_CALIB >= TMR_FREQ_5k) {
//                        CUR_PRES_A_sum += CUR_PRES_A;
//                    }
//                } else if (TMR3_COUNT_PRES_CALIB < 4 * TMR_FREQ_5k) {
//                    V_out = VALVE_VOLTAGE_LIMIT * 1000.0f;
//                    if (TMR3_COUNT_PRES_CALIB >= 3 * TMR_FREQ_5k) {
//                        CUR_PRES_B_sum += CUR_PRES_B;
//                    }
//                } else {
//                    CONTROL_MODE = MODE_NO_ACT;
//                    TMR3_COUNT_PRES_CALIB = 0;
//                    V_out = 0;
//                    PRES_SENSOR_A_PULSE_PER_BAR = CUR_PRES_A_sum / ((float) TMR_FREQ_5k - 1.0f) - PRES_A_NULL;
//                    PRES_SENSOR_A_PULSE_PER_BAR = PRES_SENSOR_A_PULSE_PER_BAR / ((float) PRES_SUPPLY - 1.0f);
//                    PRES_SENSOR_B_PULSE_PER_BAR = CUR_PRES_B_sum / ((float) TMR_FREQ_5k - 1.0f) - PRES_B_NULL;
//                    PRES_SENSOR_B_PULSE_PER_BAR = PRES_SENSOR_B_PULSE_PER_BAR / ((float) PRES_SUPPLY - 1.0f);
//                    CUR_PRES_A_sum = 0;
//                    CUR_PRES_B_sum = 0;
//                    CUR_PRES_A_mean = 0;
//                    CUR_PRES_B_mean = 0;
//
//                    ROM_RESET_DATA();
//
//                    //spi_eeprom_write(RID_PRES_SENSOR_A_PULSE_PER_BAR, (int16_t) (PRES_SENSOR_A_PULSE_PER_BAR * 100.0f));
//                    //spi_eeprom_write(RID_PRES_SENSOR_B_PULSE_PER_BAR, (int16_t) (PRES_SENSOR_B_PULSE_PER_BAR * 100.0f));
//                }
//                TMR3_COUNT_PRES_CALIB++;
//                break;
//            }

//            case MODE_ROTARY_FRICTION_TUNING: {
//                if (TMR3_COUNT_ROTARY_FRIC_TUNE % (5 * TMR_FREQ_5k) == 0) freq_fric_tune = 4.0f + 3.0f * sin(2 * 3.14159f * 0.5f * TMR3_COUNT_ROTARY_FRIC_TUNE * 0.0001f * 0.05f);
//                V_out = PWM_out * sin(2 * 3.14159f * freq_fric_tune * TMR3_COUNT_ROTARY_FRIC_TUNE * 0.0001f);
//                if (V_out > 0) V_out = VALVE_VOLTAGE_LIMIT * 1000.0f;
//                else V_out = -VALVE_VOLTAGE_LIMIT * 1000.0f;
//                TMR3_COUNT_ROTARY_FRIC_TUNE++;
//                if (TMR3_COUNT_ROTARY_FRIC_TUNE > TUNING_TIME * TMR_FREQ_5k) {
//                    TMR3_COUNT_ROTARY_FRIC_TUNE = 0;
//                    V_out = 0.0f;
//                    CONTROL_MODE = MODE_NO_ACT;
//                }
//                break;
//            }

            case MODE_DDV_POS_VS_PWM_ID: {
                CONTROL_MODE = MODE_VALVE_OPEN_LOOP;
                VALVE_ID_timer = VALVE_ID_timer + 1;

                if(VALVE_ID_timer < TMR_FREQ_5k*1) {
                    Vout.ref = 3000.0f * sin(2.0f*3.14f*VALVE_ID_timer/TMR_FREQ_5k * 100.0f);
                } else if(VALVE_ID_timer < TMR_FREQ_5k*2) {
                    Vout.ref = 1000.0f*(ID_index_array[ID_index]);
                } else if(VALVE_ID_timer == TMR_FREQ_5k*2) {
                    VALVE_POS_TMP = 0;
                    data_num = 0;
                } else if(VALVE_ID_timer < TMR_FREQ_5k*3) {
                    data_num = data_num + 1;
                    VALVE_POS_TMP = VALVE_POS_TMP + value;
                } else if(VALVE_ID_timer == TMR_FREQ_5k*3) {
                    Vout.ref = 0.0f;
                } else {
                    VALVE_POS_AVG[ID_index] = VALVE_POS_TMP / data_num;
                    VALVE_ID_timer = 0;
                    ID_index= ID_index +1;
                }

                if(ID_index>=25) {
                    int i;
                    VALVE_POS_AVG_OLD = VALVE_POS_AVG[0];
                    for(i=0; i<25; i++) {
                        VALVE_POS_VS_PWM[i] = (int16_t) (VALVE_POS_AVG[i]);
                        if(VALVE_POS_AVG[i] > VALVE_POS_AVG_OLD) {
                            VALVE_MAX_POS = VALVE_POS_AVG[i];
                            VALVE_POS_AVG_OLD = VALVE_MAX_POS;
                        } else if(VALVE_POS_AVG[i] < VALVE_POS_AVG_OLD) {
                            VALVE_MIN_POS = VALVE_POS_AVG[i];
                            VALVE_POS_AVG_OLD = VALVE_MIN_POS;
                        }
                    }
//                    ROM_RESET_DATA();
                    spi_eeprom_write(RID_VALVE_MAX_POS, (int16_t) VALVE_MAX_POS);
                    spi_eeprom_write(RID_VALVE_MIN_POS, (int16_t) VALVE_MIN_POS);
                    for(int i=0; i<25; i++) {
                        spi_eeprom_write(RID_VALVE_POS_VS_PWM_0 + i, (int16_t) VALVE_POS_VS_PWM[i]);
                    }
                    ID_index = 0;
                    CONTROL_UTILITY_MODE = MODE_NO_ACT;
                }


                break;
            }

            case MODE_DDV_DEADZONE_AND_CENTER: {
                CONTROL_MODE = MODE_VALVE_OPEN_LOOP;
                VALVE_DZ_timer = VALVE_DZ_timer + 1;
                if(first_check == 0) {
                    if(VALVE_DZ_timer < (int) (1.0f * (float) TMR_FREQ_5k)) {
                        Vout.ref = VALVE_VOLTAGE_LIMIT * 1000.0f;
                    } else if(VALVE_DZ_timer == (int) (1.0f * (float) TMR_FREQ_5k)) {
                        Vout.ref = VALVE_VOLTAGE_LIMIT * 1000.0f;
                        pos_plus_end = pos.sen;
                    } else if(VALVE_DZ_timer < (int) (2.0f * (float) TMR_FREQ_5k)) {
                        Vout.ref = -VALVE_VOLTAGE_LIMIT * 1000.0f;
                    } else if(VALVE_DZ_timer == (int) (2.0f * (float) TMR_FREQ_5k)) {
                        Vout.ref = -VALVE_VOLTAGE_LIMIT * 1000.0f;
                        pos_minus_end = pos.sen;
                    } else if(VALVE_DZ_timer < (int) (3.0f * (float) TMR_FREQ_5k)) {
                        Vout.ref = (float) P_GAIN_JOINT_POSITION * (0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end - (float) pos.sen)/(float) ENC_PULSE_PER_POSITION;
                    } else if(VALVE_DZ_timer < (int) (4.0f * (float) TMR_FREQ_5k)) {
                        Vout.ref = (float) P_GAIN_JOINT_POSITION * (0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end - (float) pos.sen)/(float) ENC_PULSE_PER_POSITION;
                        data_num = data_num + 1;
                        VALVE_POS_TMP = VALVE_POS_TMP + value;
                    } else if(VALVE_DZ_timer == (int) (4.0f * (float) TMR_FREQ_5k)) {
                        Vout.ref = (float) P_GAIN_JOINT_POSITION * (0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end - (float) pos.sen)/(float) ENC_PULSE_PER_POSITION;
                        DDV_POS_AVG = VALVE_POS_TMP / data_num;
                        START_POS = pos.sen;
                        VALVE_POS_TMP = 0;
                        data_num = 0;

                    } else if(VALVE_DZ_timer < (int) (5.0f * (float) TMR_FREQ_5k)) {
                        valve_pos.ref = DDV_POS_AVG;
                        VALVE_POS_CONTROL(valve_pos.ref);

                    } else if(VALVE_DZ_timer < (int) (6.0f * (float) TMR_FREQ_5k)) {
                        valve_pos.ref = DDV_POS_AVG;
                        VALVE_POS_CONTROL(valve_pos.ref);

                    } else if(VALVE_DZ_timer == (int) (6.0f * (float) TMR_FREQ_5k)) {
                        valve_pos.ref = DDV_POS_AVG;
                        VALVE_POS_CONTROL(valve_pos.ref);
                        FINAL_POS = pos.sen;

                        if((FINAL_POS - START_POS)>200) {
                            DZ_case = 1;
                        } else if((FINAL_POS - START_POS)<-200) {
                            DZ_case = -1;
                        } else {
                            DZ_case = 0;
                        }

                        CAN_TX_PRES((int16_t) (DZ_case), (int16_t) (6));

                        first_check = 1;
                        DZ_DIRECTION = 1;
                        VALVE_DZ_timer = 0;
                        Ref_Valve_Pos_Old = DDV_POS_AVG;
                        DZ_NUM = 1;
                        DZ_index = 1;

                    }
                } else {
                    if((DZ_case == -1 && DZ_NUM == 1) | (DZ_case == 1 && DZ_NUM == 1)) {
                        if(VALVE_DZ_timer < (int) (1.0 * (float) TMR_FREQ_5k)) {
                            Vout.ref = (float) P_GAIN_JOINT_POSITION * (0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end - (float) pos.sen)/(float) ENC_PULSE_PER_POSITION;
                            //pos.ref = 0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end;
                            //CONTROL_MODE = MODE_JOINT_CONTROL;
                        } else if(VALVE_DZ_timer == (int) (1.0f * (float) TMR_FREQ_5k)) {
                            START_POS = pos.sen;
                        } else if(VALVE_DZ_timer < (int) (2.0f * (float) TMR_FREQ_5k)) {
                            valve_pos.ref = Ref_Valve_Pos_Old  - DZ_case * DZ_DIRECTION * 64 / DZ_index;
                            if(valve_pos.ref <= VALVE_MIN_POS) {
                                valve_pos.ref = VALVE_MIN_POS;
                            } else if(valve_pos.ref >= VALVE_MAX_POS) {
                                valve_pos.ref = VALVE_MAX_POS;
                            }
                            VALVE_POS_CONTROL(valve_pos.ref);

                        } else if(VALVE_DZ_timer == (int) (2.0f * (float) TMR_FREQ_5k)) {
                            Ref_Valve_Pos_Old = valve_pos.ref;
                            FINAL_POS = pos.sen;

                            if((FINAL_POS - START_POS)>100) {
                                DZ_DIRECTION = 1 * DZ_case;
                            } else if((FINAL_POS - START_POS)<-100) {
                                DZ_DIRECTION = -1 * DZ_case;
                            } else {
                                DZ_DIRECTION = 1 * DZ_case;
                            }

                            VALVE_DZ_timer = 0;
                            DZ_index= DZ_index *2;
                            if(DZ_index >= 128) {
                                FIRST_DZ = valve_pos.ref;
                                DZ_NUM = 2;
                                Ref_Valve_Pos_Old = FIRST_DZ;
                                DZ_index = 1;
                                DZ_DIRECTION = 1;
                            }
                        }
                    } else if((DZ_case == -1 && DZ_NUM == 2) | (DZ_case == 1 && DZ_NUM == 2)) {
                        if(VALVE_DZ_timer < (int) (1.0f * (float) TMR_FREQ_5k)) {
                            Vout.ref = (float) P_GAIN_JOINT_POSITION * (0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end - (float) pos.sen)/(float) ENC_PULSE_PER_POSITION;
                            //pos.ref = 0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end;
                            //CONTROL_MODE = MODE_JOINT_CONTROL;
                        } else if(VALVE_DZ_timer == (int) (1.0f * (float) TMR_FREQ_5k)) {
                            START_POS = pos.sen;
                        } else if(VALVE_DZ_timer < (int) (2.0f * (float) TMR_FREQ_5k)) {
                            valve_pos.ref = Ref_Valve_Pos_Old  - DZ_case * DZ_DIRECTION * 64 / DZ_index;
                            if(valve_pos.ref <= VALVE_MIN_POS) {
                                valve_pos.ref = VALVE_MIN_POS;
                            } else if(valve_pos.ref >= VALVE_MAX_POS) {
                                valve_pos.ref = VALVE_MAX_POS;
                            }
                            VALVE_POS_CONTROL(valve_pos.ref);

                        } else if(VALVE_DZ_timer == (int) (2.0f * (float) TMR_FREQ_5k)) {
                            Vout.ref = 0.0f;
                        } else if(VALVE_DZ_timer > (int) (2.0f * (float) TMR_FREQ_5k)) {
                            Ref_Valve_Pos_Old = valve_pos.ref;
                            FINAL_POS = pos.sen;

                            if((FINAL_POS - START_POS)>100) {
                                DZ_DIRECTION = 1 * DZ_case;
                            } else if((FINAL_POS - START_POS)<-100) {
                                DZ_DIRECTION = -1 * DZ_case;
                            } else {
                                DZ_DIRECTION = -1 * DZ_case;
                            }

                            VALVE_DZ_timer = 0;
                            DZ_index= DZ_index * 2;
                            if(DZ_index >= 128) {
                                SECOND_DZ = valve_pos.ref;
                                VALVE_CENTER = (int) (0.5f * (float) (FIRST_DZ) + 0.5f * (float) (SECOND_DZ));
                                first_check = 0;
                                VALVE_DEADZONE_MINUS = (float) FIRST_DZ;
                                VALVE_DEADZONE_PLUS = (float) SECOND_DZ;

//                                ROM_RESET_DATA();
                                spi_eeprom_write(RID_VALVE_CNETER, (int16_t) VALVE_CENTER);
                                spi_eeprom_write(RID_VALVE_MAX_POS, (int16_t) VALVE_MAX_POS);
                                spi_eeprom_write(RID_VALVE_MIN_POS, (int16_t) VALVE_MIN_POS);

                                CONTROL_UTILITY_MODE = MODE_NO_ACT;
                                DZ_index = 1;
                            }
                        }
                    } else if(DZ_case == 0 && DZ_NUM ==1) {
                        if(VALVE_DZ_timer < (int) (1.0f * (float) TMR_FREQ_5k)) {
                            Vout.ref = (float) P_GAIN_JOINT_POSITION * (0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end - (float) pos.sen)/(float) ENC_PULSE_PER_POSITION;
                            //pos.ref = 0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end;
                            //CONTROL_MODE = MODE_JOINT_CONTROL;
                        } else if(VALVE_DZ_timer == (int) (1.0f * (float) TMR_FREQ_5k)) {
                            START_POS = pos.sen;
                        } else if(VALVE_DZ_timer < (int) (2.0f * (float) TMR_FREQ_5k)) {
                            valve_pos.ref = Ref_Valve_Pos_Old  - DZ_DIRECTION * 64 / DZ_index;
                            if(valve_pos.ref <= VALVE_MIN_POS) {
                                valve_pos.ref = VALVE_MIN_POS;
                            } else if(valve_pos.ref >= VALVE_MAX_POS) {
                                valve_pos.ref = VALVE_MAX_POS;
                            }
                            VALVE_POS_CONTROL(valve_pos.ref);

                        } else if(VALVE_DZ_timer == (int) (2.0f * (float) TMR_FREQ_5k)) {
                            Ref_Valve_Pos_Old = valve_pos.ref;
                            FINAL_POS = pos.sen;

                            if((FINAL_POS - START_POS)>100) {
                                DZ_DIRECTION = 1;
                            } else if((FINAL_POS - START_POS)<-100) {
                                DZ_DIRECTION = -1;
                            } else {
                                DZ_DIRECTION = 1;
                            }
                            VALVE_DZ_timer = 0;
                            DZ_index= DZ_index *2;
                            if(DZ_index >= 128) {
                                FIRST_DZ = valve_pos.ref;
                                DZ_NUM = 2;
                                Ref_Valve_Pos_Old = FIRST_DZ;
                                DZ_index = 1;
                                DZ_DIRECTION = 1;
                            }
                        }
                    } else {
                        if(VALVE_DZ_timer < (int) (1.0f * (float) TMR_FREQ_5k)) {
                            Vout.ref = (float) P_GAIN_JOINT_POSITION * (0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end - (float) pos.sen)/(float) ENC_PULSE_PER_POSITION;
                            //pos.ref = 0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end;
                            //CONTROL_MODE = MODE_JOINT_CONTROL;
                        } else if(VALVE_DZ_timer == (int) (1.0f * (float) TMR_FREQ_5k)) {
                            START_POS = pos.sen;
                        } else if(VALVE_DZ_timer < (int) (2.0f * (float) TMR_FREQ_5k)) {
                            valve_pos.ref = Ref_Valve_Pos_Old  + DZ_DIRECTION * 64 / DZ_index;
                            if(valve_pos.ref <= VALVE_MIN_POS) {
                                valve_pos.ref = VALVE_MIN_POS;
                            } else if(valve_pos.ref > VALVE_MAX_POS) {
                                valve_pos.ref = VALVE_MAX_POS - 1;
                            }
                            VALVE_POS_CONTROL(valve_pos.ref);

                        } else if(VALVE_DZ_timer == (int) (2.0f * (float) TMR_FREQ_5k)) {
                            Vout.ref = 0.0f;
                        } else if(VALVE_DZ_timer > (int) (2.0f * (float) TMR_FREQ_5k)) {
                            Ref_Valve_Pos_Old = valve_pos.ref;
                            FINAL_POS = pos.sen;

                            if((FINAL_POS - START_POS)>100) {
                                DZ_DIRECTION = 1;
                            } else if((FINAL_POS - START_POS)<-100) {
                                DZ_DIRECTION = -1;
                            } else {
                                DZ_DIRECTION = 1;
                            }

                            VALVE_DZ_timer = 0;
                            DZ_index= DZ_index *2;
                            if(DZ_index >= 128) {
                                SECOND_DZ = valve_pos.ref;
                                VALVE_CENTER = (int) (0.5f * (float) (FIRST_DZ) + 0.5f * (float) (SECOND_DZ));
                                first_check = 0;
                                VALVE_DEADZONE_MINUS = (float) FIRST_DZ;
                                VALVE_DEADZONE_PLUS = (float) SECOND_DZ;

//                                ROM_RESET_DATA();
                                spi_eeprom_write(RID_VALVE_CNETER, (int16_t) VALVE_CENTER);
                                spi_eeprom_write(RID_VALVE_MAX_POS, (int16_t) VALVE_MAX_POS);
                                spi_eeprom_write(RID_VALVE_MIN_POS, (int16_t) VALVE_MIN_POS);

                                CONTROL_UTILITY_MODE = MODE_NO_ACT;
                                DZ_index = 1;
                            }
                        }
                    }
                }
                break;
            }

            case MODE_DDV_POS_VS_FLOWRATE: {
                CONTROL_MODE = MODE_VALVE_OPEN_LOOP;
                VALVE_FR_timer = VALVE_FR_timer + 1;
                if(first_check == 0) {
                    if(VALVE_FR_timer < (int) (1.0f * (float) TMR_FREQ_5k)) {
                        Vout.ref = VALVE_VOLTAGE_LIMIT * 1000.0f;
                        //CAN_TX_PRES((int16_t) (VALVE_FR_timer), (int16_t) (6));
                    } else if(VALVE_FR_timer == (int) (1.0f * (float) TMR_FREQ_5k)) {
                        Vout.ref = VALVE_VOLTAGE_LIMIT * 1000.0f;
                        pos_plus_end = pos.sen;
                        //                    CAN_TX_PRES((int16_t) (V_out), (int16_t) (7));
                    } else if(VALVE_FR_timer < (int) (2.0f * (float) TMR_FREQ_5k)) {
                        Vout.ref = -VALVE_VOLTAGE_LIMIT * 1000.0f;
                    } else if(VALVE_FR_timer == (int) (2.0f * (float) TMR_FREQ_5k)) {
                        //                    CAN_TX_PRES((int16_t) (V_out), (int16_t) (8));
                        Vout.ref = -VALVE_VOLTAGE_LIMIT * 1000.0f;
                        pos_minus_end = pos.sen;
                        first_check = 1;
                        VALVE_FR_timer = 0;
                        valve_pos.ref = (float) VALVE_CENTER;
                        ID_index = 0;
                        max_check = 0;
                        min_check = 0;
                    }
                } else {
                    if(VALVE_FR_timer < (int) (1.0f * (float) TMR_FREQ_5k)) {
                        //V_out = (float) P_GAIN_JOINT_POSITION * (0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end - (float) pos.sen)/(float) ENC_PULSE_PER_POSITION;
                        pos.ref = 0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end;
                        CONTROL_MODE = MODE_JOINT_CONTROL;
                    } else if(VALVE_FR_timer == (int) (1.0f * (float) TMR_FREQ_5k)) {
                        data_num = 0;
                        valve_pos.ref = 10.0f*((float) ID_index_array[ID_index]) + (float) VALVE_CENTER;

                        VALVE_POS_CONTROL(valve_pos.ref);
                        START_POS = pos.sen;
                    } else if(VALVE_FR_timer < (int) (5.0f * (float) TMR_FREQ_5k)) {
                        valve_pos.ref = 10.0f*((float) ID_index_array[ID_index]) + (float) VALVE_CENTER;
                        VALVE_POS_CONTROL(valve_pos.ref);
                        data_num = data_num + 1;
                        if(abs(0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end - (float) pos.sen) > 20000.0f) {
                            FINAL_POS = pos.sen;
                            one_period_end = 1;
                        }
                    } else if(VALVE_FR_timer == (int) (5.0f * (float) TMR_FREQ_5k)) {
                        FINAL_POS = pos.sen;
                        one_period_end = 1;
                        V_out = 0.0f;
                    }

                    if(one_period_end == 1) {
                        if(valve_pos.ref > VALVE_MAX_POS) {
                            max_check = 1;
                        } else if(valve_pos.ref < VALVE_MIN_POS) {
                            min_check = 1;
                        }
                        JOINT_VEL[ID_index] = (FINAL_POS - START_POS) / data_num * TMR_FREQ_5k;   //  pulse/sec

                        VALVE_FR_timer = 0;
                        one_period_end = 0;
                        ID_index= ID_index +1;
                        V_out = 0.0f;
                    }

                    if(max_check == 1 && min_check == 1) {

                        VALVE_POS_NUM = ID_index;
//                        ROM_RESET_DATA();
                        for(int i=0; i<100; i++) {
                            spi_eeprom_write(RID_VALVE_POS_VS_FLOWRATE_0 + i, (int16_t) (JOINT_VEL[i] & 0xFFFF));
                            spi_eeprom_write(RID_VALVE_POS_VS_FLOWRATE_0_1 + i, (int16_t) ((JOINT_VEL[i] >> 16) & 0xFFFF));
                        }
                        ID_index = 0;
                        first_check = 0;
                        VALVE_FR_timer = 0;
                        CONTROL_UTILITY_MODE = MODE_NO_ACT;
//                        CAN_TX_PRES((int16_t) (VALVE_FR_timer), (int16_t) (6));
                    }
                }
                break;
            }

            case MODE_SYSTEM_ID: {
                freq_sysid_Iref = (double) cnt_sysid * DT_TMR3 * 3.0f;
                valve_pos.ref = 2500.0f * sin(2.0f * 3.14159f * freq_sysid_Iref * (double) cnt_sysid * DT_TMR3);
                CONTROL_MODE = MODE_VALVE_OPEN_LOOP;
                cnt_sysid++;
                if (freq_sysid_Iref >= 300) {
                    cnt_sysid = 0;
                    CONTROL_UTILITY_MODE = MODE_NO_ACT;
                }
                break;
            }

            case MODE_FREQ_TEST: {
                float valve_pos_ref = 2500.0f * sin(2.0f * 3.141592f * freq_test_valve_ref * (float) cnt_freq_test * DT_TMR3);
                if(valve_pos_ref >= 0) {
                    valve_pos.ref = (double)VALVE_CENTER + (double)valve_pos_ref * ((double)VALVE_MAX_POS-(double)VALVE_CENTER)/10000.0f;
                } else {
                    valve_pos.ref = (double)VALVE_CENTER - (double)valve_pos_ref * ((double)VALVE_MIN_POS-(double)VALVE_CENTER)/10000.0f;
                }
                ref_array[cnt_freq_test] = valve_pos_ref;
                if(value>=(float) VALVE_CENTER) {
                    pos_array[cnt_freq_test] = 10000.0f*((double)value - (double)VALVE_CENTER)/((double)VALVE_MAX_POS - (double)VALVE_CENTER);
                } else {
                    pos_array[cnt_freq_test] = -10000.0f*((double)value - (double)VALVE_CENTER)/((double)VALVE_MIN_POS - (double)VALVE_CENTER);
                }

                CONTROL_MODE = MODE_VALVE_POSITION_CONTROL;
                cnt_freq_test++;
                if (freq_test_valve_ref * (float) cnt_freq_test * DT_TMR3 > 2) {
                    buffer_data_size = cnt_freq_test;
                    cnt_freq_test = 0;
                    cnt_send_buffer = 0;
                    freq_test_valve_ref = freq_test_valve_ref * 1.05f;
                    if (freq_test_valve_ref >= 400) {
                        CONTROL_UTILITY_MODE = MODE_NO_ACT;
                        CONTROL_MODE = MODE_NO_ACT;
                        CAN_TX_PWM((int16_t) (1)); //1300
                    }
                    CONTROL_MODE = MODE_NO_ACT;
                    CONTROL_UTILITY_MODE = MODE_SEND_OVER;

                }
                break;
            }
            case MODE_SEND_BUFFER: {
//                if (TMR2_COUNT_CAN_TX % (int) ((int) TMR_FREQ_5k/CAN_FREQ) == 0) {
//                    CAN_TX_PRES((int16_t) (pos_array[cnt_send_buffer]), (int16_t) (ref_array[cnt_send_buffer])); // 1400
//                    if(cnt_send_buffer>=buffer_data_size) {
//                        CONTROL_UTILITY_MODE = MODE_FREQ_TEST;
//                    }
//                    cnt_send_buffer++;
//                }

                break;
            }
            case MODE_SEND_OVER: {
                CAN_TX_TORQUE((int16_t) (buffer_data_size)); //1300
                CONTROL_UTILITY_MODE = MODE_NO_ACT;
                CONTROL_MODE = MODE_NO_ACT;
                break;
            }

            case MODE_STEP_TEST: {
                float valve_pos_ref = 0.0f;
                if (cnt_step_test < (int) (1.0f * (float) TMR_FREQ_5k)) {
                    valve_pos_ref = 0.0f;
                } else {
                    valve_pos_ref = 10000.0f;
                }
                if(valve_pos_ref >= 0) {
                    valve_pos.ref = (double)VALVE_CENTER + (double)valve_pos_ref * ((double)VALVE_MAX_POS-(double)VALVE_CENTER)/10000.0f;
                } else {
                    valve_pos.ref = (double)VALVE_CENTER - (double)valve_pos_ref * ((double)VALVE_MIN_POS-(double)VALVE_CENTER)/10000.0f;
                }
                ref_array[cnt_step_test] = valve_pos_ref;
                if(value>=(float) VALVE_CENTER) {
                    pos_array[cnt_step_test] = 10000.0f*((double)value - (double)VALVE_CENTER)/((double)VALVE_MAX_POS - (double)VALVE_CENTER);
                } else {
                    pos_array[cnt_step_test] = -10000.0f*((double)value - (double)VALVE_CENTER)/((double)VALVE_MIN_POS - (double)VALVE_CENTER);
                }

                CONTROL_MODE = MODE_VALVE_POSITION_CONTROL;
                cnt_step_test++;
                if (cnt_step_test > (int) (2.0f * (float) TMR_FREQ_5k)) {
                    buffer_data_size = cnt_step_test;
                    cnt_step_test = 0;
                    cnt_send_buffer = 0;
                    CONTROL_UTILITY_MODE = MODE_SEND_OVER;
                    CONTROL_MODE = MODE_NO_ACT;
                }
//                if (cnt_step_test > (int) (2.0f * (float) TMR_FREQ_5k))
//                {
//                    CONTROL_UTILITY_MODE = MODE_NO_ACT;
//                    CONTROL_MODE = MODE_NO_ACT;
//                    CAN_TX_PWM((int16_t) (1)); //1300
//                }

                break;
            }

            default:
                break;
        }

        // CONTROL MODE ------------------------------------------------------------

        switch (CONTROL_MODE) {
            case MODE_NO_ACT: {
                V_out = 0.0f;
                break;
            }

            case MODE_VALVE_POSITION_CONTROL: {
                if (OPERATING_MODE == 5) { //SW Valve
                    ////For Test LIMC//////////////////////////////////////////
//                    VALVE_POS_CONTROL(valve_pos.ref);
                    for(int i=0; i<9; i++){
                        valve_ref_pos_buffer[i] = valve_ref_pos_buffer[i+1];
                    }
                    valve_ref_pos_buffer[9] = valve_pos.ref;
                    VALVE_POS_CONTROL(valve_ref_pos_buffer[0]);
                    ////////////////////////////////////////////////////////////
                    
                    V_out = Vout.ref;
                } else if (CURRENT_CONTROL_MODE == 0) { //PWM
                    V_out = valve_pos.ref;
                } else {
                    I_REF = valve_pos.ref * 0.001f;
                }
                break;
            }

            case MODE_JOINT_CONTROL: {

                double torq_ref = 0.0f;
                pos.err = (pos.ref - pos.sen)/(float)(ENC_PULSE_PER_POSITION); //[mm]
                vel.err = (0.0f - vel.sen)/(float)(ENC_PULSE_PER_POSITION); //[mm/s]
                pos.err_sum += pos.err/(float) TMR_FREQ_5k; //[mm]

                //K & D Low Pass Filter
                float alpha_K_D = 1.0f/(1.0f + 5000.0f/(2.0f*3.14f*30.0f)); // f_cutoff : 30Hz
                K_LPF = K_LPF*(1.0f-alpha_K_D)+K_SPRING*(alpha_K_D);
                D_LPF = D_LPF*(1.0f-alpha_K_D)+D_DAMPER*(alpha_K_D);

//                torq_ref = torq.ref + K_LPF * pos.err - D_LPF * vel.sen / ENC_PULSE_PER_POSITION; //[N]
                torq_ref = torq.ref;

                // torque feedback
                torq.err = torq_ref - torq.sen; //[N]
                torq.err_sum += torq.err/(float) TMR_FREQ_5k; //[N]

                if (((OPERATING_MODE&0b110)>>1) == 0 || ((OPERATING_MODE&0b110)>>1) == 1) {

                    double I_REF_POS = 0.0f;
                    double I_REF_FORCE_FB = 0.0f; // I_REF by Force Feedback
                    double I_REF_VC = 0.0f; // I_REF for velocity compensation

                    double temp_vel_pos = 0.0f;
                    double temp_vel_torq = 0.0f;
                    double wn_Pos = 2.0f * PI * 5.0f; // f_cut : 5Hz Position Control

                    if ((OPERATING_MODE & 0x01) == 0) { // Rotary Mode
                        temp_vel_pos = (0.01f * (double) P_GAIN_JOINT_POSITION * wn_Pos * pos.err + 0.01f * (double) I_GAIN_JOINT_POSITION * wn_Pos * pos.err_sum + 0.01f * (double) VELOCITY_COMP_GAIN * vel.ref / ENC_PULSE_PER_POSITION) * PI / 180.0f; // rad/s
                        //                            L when P-gain = 100, f_cut = 10Hz                                 L feedforward velocity
                    } else if ((OPERATING_MODE & 0x01) == 1) {
                        temp_vel_pos = (0.01f * (double) P_GAIN_JOINT_POSITION * wn_Pos * pos.err + 0.01f * (double) I_GAIN_JOINT_POSITION * wn_Pos * pos.err_sum + 0.01f * (double) VELOCITY_COMP_GAIN * vel.ref / ENC_PULSE_PER_POSITION); // mm/s
                        //                            L when P-gain = 100, f_cut = 10Hz                                 L feedforward velocity
                    }
                    if (temp_vel_pos > 0.0f) I_REF_POS = temp_vel_pos * ((double) PISTON_AREA_A * 0.00006f / (K_v * sqrt(2.0f * alpha3 / (alpha3 + 1.0f))));
                    else I_REF_POS = temp_vel_pos * ((double) PISTON_AREA_B * 0.00006f / (K_v * sqrt(2.0f / (alpha3 + 1.0f))));

                    // velocity compensation for torque control
                    if ((OPERATING_MODE & 0x01) == 0) { // Rotary Mode
                        I_REF_FORCE_FB = 0.001f * ((double) P_GAIN_JOINT_TORQUE * torq.err + (double) I_GAIN_JOINT_TORQUE * torq.err_sum);
                        //                temp_vel_torq = (0.01 * (double) VELOCITY_COMP_GAIN * (double) CUR_VELOCITY / (double) ENC_PULSE_PER_POSITION) * PI / 180.0; // rad/s
                        temp_vel_torq = (0.01f * (double) VELOCITY_COMP_GAIN * vel.ref / (double) ENC_PULSE_PER_POSITION) * PI / 180.0f; // rad/s
                        //                                                          L feedforward velocity
                    } else if ((OPERATING_MODE & 0x01) == 1) {
                        I_REF_FORCE_FB = 0.001f * 0.01f*((double) P_GAIN_JOINT_TORQUE * torq.err + (double) I_GAIN_JOINT_TORQUE * torq.err_sum); // Linear Actuators are more sensitive.
                        //                temp_vel_torq = (0.01 * (double) VELOCITY_COMP_GAIN * (double) CUR_VELOCITY / (double) ENC_PULSE_PER_POSITION); // mm/s
                        temp_vel_torq = (0.01f * (double) VELOCITY_COMP_GAIN * vel.ref / (double) ENC_PULSE_PER_POSITION); // mm/s
                        //                                                          L feedforward velocity
                    }
                    if (temp_vel_torq > 0.0f) I_REF_VC = temp_vel_torq * ((double) PISTON_AREA_A * 0.00006f / (K_v * sqrt(2.0f * alpha3 / (alpha3 + 1.0f))));
                    else I_REF_VC = temp_vel_torq * ((double) PISTON_AREA_B * 0.00006f / (K_v * sqrt(2.0f / (alpha3 + 1.0f))));
                    //                                                  L   velocity(rad/s or mm/s) >> I_ref(mA)
                    //            Ref_Joint_FT_dot = (Ref_Joint_FT_Nm - Ref_Joint_FT_Nm_old) / TMR_DT_5k;
                    //            Ref_Joint_FT_Nm_old = Ref_Joint_FT_Nm;

                    I_REF = (1.0f - alpha_trans) * I_REF_POS + alpha_trans * (I_REF_VC + I_REF_FORCE_FB);

                    // Anti-windup for FT
                    if (I_GAIN_JOINT_TORQUE != 0) {
                        double I_MAX = 10.0f; // Maximum Current : 10mV
                        double Ka = 2.0f / ((double) I_GAIN_JOINT_TORQUE * 0.001f);
                        if (I_REF > I_MAX) {
                            double I_rem = I_REF - I_MAX;
                            I_rem = Ka*I_rem;
                            I_REF = I_MAX;
                            torq.err_sum = torq.err_sum - I_rem /(float) TMR_FREQ_5k;
                        } else if (I_REF < -I_MAX) {
                            double I_rem = I_REF - (-I_MAX);
                            I_rem = Ka*I_rem;
                            I_REF = -I_MAX;
                            torq.err_sum = torq.err_sum - I_rem /(float) TMR_FREQ_5k;
                        }
                    }

                } else {
                    float VALVE_POS_RAW_FORCE_FB = 0.0f;
                    float VALVE_POS_RAW_FORCE_FF = 0.0f;
                    float VALVE_POS_RAW = 0.0f;

                    VALVE_POS_RAW_FORCE_FB = alpha_trans*(((float) P_GAIN_JOINT_TORQUE * torq.err + (float) I_GAIN_JOINT_TORQUE * torq.err_sum + (float) D_GAIN_JOINT_TORQUE * (torq.ref_diff - torq_dot.sen)) * 0.01f + DDV_JOINT_POS_FF(vel.sen))+ (1.0f-alpha_trans) * (P_GAIN_JOINT_POSITION * 0.01f * pos.err + DDV_JOINT_POS_FF(vel.ref));

                    VALVE_POS_RAW_FORCE_FF = P_GAIN_JOINT_TORQUE_FF * torq_ref * 0.001f + D_GAIN_JOINT_TORQUE_FF * (torq_ref - torq_ref_past) * 0.0001f;

                    VALVE_POS_RAW = VALVE_POS_RAW_FORCE_FB + VALVE_POS_RAW_FORCE_FF;


                    if (VALVE_POS_RAW >= 0) {
                        valve_pos.ref = VALVE_POS_RAW + VALVE_DEADZONE_PLUS;
                    } else {
                        valve_pos.ref = VALVE_POS_RAW + VALVE_DEADZONE_MINUS;
                    }

                    if(I_GAIN_JOINT_TORQUE != 0) {
                        double Ka = 2.0f / (double) I_GAIN_JOINT_TORQUE * 100.0f;
                        if(valve_pos.ref>VALVE_MAX_POS) {
                            double valve_pos_rem = valve_pos.ref - VALVE_MAX_POS;
                            valve_pos_rem = valve_pos_rem * Ka;
                            valve_pos.ref = VALVE_MAX_POS;
                            torq.err_sum = torq.err_sum - valve_pos_rem/(float) TMR_FREQ_5k;
                        } else if(valve_pos.ref < VALVE_MIN_POS) {
                            double valve_pos_rem = valve_pos.ref - VALVE_MIN_POS;
                            valve_pos_rem = valve_pos_rem * Ka;
                            valve_pos.ref = VALVE_MIN_POS;
                            torq.err_sum = torq.err_sum - valve_pos_rem/(float) TMR_FREQ_5k;
                        }
                    }

                    VALVE_POS_CONTROL(valve_pos.ref);

//                    Vout.ref = (float) P_GAIN_JOINT_POSITION * 0.01f * ((float) pos.err);
                    V_out = (float) Vout.ref;

                }

                torq_ref_past = torq_ref;


                break;
            }

            case MODE_VALVE_OPEN_LOOP: {
                V_out = (float) Vout.ref;
                break;
            }

            case MODE_JOINT_ADAPTIVE_BACKSTEPPING: {


                float Va = (1256.6f + Amm * pos.sen/(float)(ENC_PULSE_PER_POSITION)) * 0.000000001f; // 4mm pipe * 100mm + (25mm Cylinder 18mm Rod) * x,      unit : m^3
                float Vb = (1256.6f + Amm  * (79.0f - pos.sen/(float)(ENC_PULSE_PER_POSITION))) * 0.000000001f; // 4mm pipe * 100mm + (25mm Cylinder 18mm Rod) * (79.0mm-x),      unit : m^3

                V_adapt = 1.0f / (1.0f/Va + 1.0f/Vb); //initial 0.0000053f

                //float f3 = -Amm*Amm*beta*0.000001f*0.000001f/V_adapt * vel.sen/(float)(ENC_PULSE_PER_POSITION)*0.001f; // unit : N/s    //xdot=10mm/s일때 -137076
                float f3_hat = -a_hat * vel.sen/(float)(ENC_PULSE_PER_POSITION)*0.001f; // unit : N/s    //xdot=10mm/s일때 -137076

                float g3_prime = 0.0f;
                if (torq.sen > Amm*(Ps-Pt)*0.000001f) {
                    g3_prime = 1.0f;
                } else if (torq.sen < -Amm*(Ps-Pt)*0.000001f) {
                    g3_prime = -1.0f;
                } else {
                    if ((value-VALVE_CENTER) > 0) {
                        g3_prime = sqrt(Ps-Pt-torq.sen/Amm*1000000.0f);
//                        g3_prime = sqrt(Ps-Pt);
                    } else {
                        g3_prime = sqrt(Ps-Pt+torq.sen/Amm*1000000.0f);
//                        g3_prime = sqrt(Ps-Pt);
                    }
                }
                float tau = 0.01f;
                float K_valve = 0.0004f;

                float x_v = 0.0f;   //x_v : -1~1
                if(value>=VALVE_CENTER) {
                    x_v = 1.0f*((double)value - (double)VALVE_CENTER)/((double)VALVE_MAX_POS - (double)VALVE_CENTER);
                } else {
                    x_v = -1.0f*((double)value - (double)VALVE_CENTER)/((double)VALVE_MIN_POS - (double)VALVE_CENTER);
                }
                float f4 = -x_v/tau;
                float g4 = K_valve/tau;

                float torq_ref_dot = torq.ref_diff * 500.0f;

                pos.err = (pos.ref - pos.sen)/(float)(ENC_PULSE_PER_POSITION); //[mm]
                vel.err = (0.0f - vel.sen)/(float)(ENC_PULSE_PER_POSITION); //[mm/s]
                pos.err_sum += pos.err/(float) TMR_FREQ_5k; //[mm]

                torq.err = torq.ref - torq.sen; //[N]
                torq.err_sum += torq.err/(float) TMR_FREQ_5k; //[N]

                float k3 = 2000.0f; //2000  //20000
                float k4 = 10.0f;
                float rho3 = 3.2f;
                float rho4 = 10000000.0f;  //25000000.0f;
                float x_4_des = (-f3_hat + torq_ref_dot - k3*(-torq.err))/(gamma_hat*g3_prime);
                if (x_4_des > 1) x_4_des = 1;
                else if (x_4_des < -1) x_4_des = -1;

                if (x_4_des > 0) {
                    valve_pos.ref = x_4_des * (float)(VALVE_MAX_POS - VALVE_CENTER) + (float) VALVE_CENTER;
                } else {
                    valve_pos.ref = x_4_des * (float)(VALVE_CENTER - VALVE_MIN_POS) + (float) VALVE_CENTER;
                }

                float x_4_des_dot = (x_4_des - x_4_des_old)*(float) TMR_FREQ_5k;
                x_4_des_old = x_4_des;
                float V_input = 0.0f;
                V_out = (-f4 + x_4_des_dot - k4*(x_v-x_4_des)- rho3/rho4*gamma_hat*g3_prime*(-torq.err))/g4;
//                //V_out LPF
//                float alpha_V_out = 1.0f/(1.0f + 5000.0f/(2.0f*3.14f*50.0f)); // f_cutoff : 50Hz
//                V_out = V_out*(1.0f-alpha_V_out)+V_input*(alpha_V_out);

//                float rho_gamma = 5000.0f;//5000 for change //50000 for not change
//                float gamma_hat_dot = rho3*(-torq.err)/rho_gamma*((-f3+torq_ref_dot-k3*(-torq.err))/gamma_hat + g3_prime*(x_v-x_4_des));
//                gamma_hat = gamma_hat + gamma_hat_dot / (float) TMR_FREQ_5k;
//
//                if(gamma_hat > 10000.0f) gamma_hat = 10000.0f;
//                else if(gamma_hat < 100.0f) gamma_hat = 100.0f;

                float rho_a = 0.00001f;
                float a_hat_dot = -rho3/rho_a*vel.sen/(float)(ENC_PULSE_PER_POSITION)*0.001f*(-torq.err);
                a_hat = a_hat + a_hat_dot / (float) TMR_FREQ_5k;

                if(a_hat > -3000000.0f) a_hat = -3000000.0f;
                else if(a_hat < -30000000.0f) a_hat = -30000000.0f;

                break;
            }

            case MODE_RL: {
                //t.reset();
                //t.start();

//                if(LED == 0) LED = 1;
//                else LED = 0;

                if (Update_Done_Flag == 1) {
                    //Gather Data on each loop
//                  pos.err = (pos.ref - pos.sen)/(float)(ENC_PULSE_PER_POSITION); //[mm]
//                  train_set_x[RL_timer] = pos.sen/(float)(ENC_PULSE_PER_POSITION)/35.0f - 1.0f;   //-1.0~1.0
//                  train_set_error[RL_timer] = pos.err/70.0f;      //-1.0~1.0
                    pos.err = pos.sen/(float)(ENC_PULSE_PER_POSITION)  - virt_pos; //[mm]
                    train_set_x[RL_timer] = virt_pos/70.0f;   //-1.0~1.0
                    train_set_error[RL_timer] = pos.err/70.0f;      //-1.0~1.0
                    //train_set_count[RL_timer] = (float) RL_timer / (batch_size *num_batch);  //-1.0~1.0
                    //float temp_array[3] = {train_set_x[RL_timer], train_set_error[RL_timer], train_set_count[RL_timer]};
                    float temp_array[2] = {train_set_x[RL_timer], train_set_error[RL_timer]};
                    Actor_Network(temp_array);
                    for (int i=0; i<num_hidden_unit1; i++) {
                        hx_a_sum_array[RL_timer][i] = hx_a_sum[i];
                    }
                    for (int i=0; i<num_hidden_unit2; i++) {
                        hxh_a_sum_array[RL_timer][i] = hxh_a_sum[i];
                    }
                    hxhh_a_sum_array[RL_timer][0] = hxhh_a_sum[0];
                    hxhh_a_sum_array[RL_timer][1] = hxhh_a_sum[1];
                    mean_array[RL_timer] = mean;
                    deviation_array[RL_timer] = deviation;
                    action_array[RL_timer] = rand_normal(mean_array[RL_timer], deviation_array[RL_timer]);

                    virt_pos = virt_pos + (action_array[RL_timer] - 5.0f) * 1000.0f * 0.0002f;
                    if (virt_pos > 70 ) {
                        virt_pos = 70.0f;
                    } else if(virt_pos < -70) {
                        virt_pos = -70.0f;
                    }

                    RL_timer++;


                    if (RL_timer >= batch_size) {
                        RL_timer = 0;
                        batch++;
                        for(int i=0; i<batch_size; i++) {
                            state_array[i][0] = train_set_x[i];
                            state_array[i][1] = train_set_error[i];
                            //state_array[i][2] = train_set_count[i];
                        }
                        Update_Case = 1;
                        Update_Done_Flag = 0;
                        logging1 = virt_pos;

                        if(batch >= num_batch) {
                            batch = 0;
                            RL_timer = 0;
                            Update_Case = 2;
                            Update_Done_Flag = 0;
                            virt_pos = 10.0f;
                        }
                    }
                }

                else {
                    pos.err = pos.sen/(float)(ENC_PULSE_PER_POSITION) - virt_pos; //[mm]
                    float temp_array[3] = {0.0f};
                    temp_array[0] = virt_pos/70.0f;   //-1.0~1.0
                    temp_array[1] = pos.err/70.0f;      //-1.0~1.0
                    //temp_array[2] = (float) RL_timer / (batch_size *num_batch);  //-1.0~1.0
                    Actor_Network(temp_array);
                    action = rand_normal(mean, deviation);
                    //logging1 = action;
                    //logging2 = mean;
                    //logging4 = deviation;
                    virt_pos = virt_pos + (action-5.0f) * 1000.0f * 0.0002f;
                    if (virt_pos > 70) {
                        virt_pos = 70.0f;
                    } else if(virt_pos < -70) {
                        virt_pos = -70.0f;
                    }

                    logging3 = virt_pos;
                }

                //t.stop();
                //logging1 = t.read()*1000.0f;    //msec

                break;
            }

            default:
                break;
        }


        if (((OPERATING_MODE&0b110)>>1) == 0 || ((OPERATING_MODE&0b110)>>1) == 1) { //Moog Valve or KNR Valve

            ////////////////////////////////////////////////////////////////////////////
            ////////////////////////////  CURRENT CONTROL //////////////////////////////
            ////////////////////////////////////////////////////////////////////////////
            if (CURRENT_CONTROL_MODE) {
                double alpha_update_Iref = 1.0f / (1.0f + 5000.0f / (2.0f * 3.14f * 300.0f)); // f_cutoff : 500Hz
                I_REF_fil = (1.0f - alpha_update_Iref) * I_REF_fil + alpha_update_Iref*I_REF;

                I_ERR = I_REF_fil - cur.sen;
                I_ERR_INT = I_ERR_INT + (I_ERR) * 0.0002f;


                // Moog Valve Current Control Gain
                double R_model = 500.0f; // ohm
                double L_model = 1.2f;
                double w0 = 2.0f * 3.14f * 150.0f;
                double KP_I = 0.1f * L_model*w0;
                double KI_I = 0.1f * R_model*w0;

                // KNR Valve Current Control Gain
                if (((OPERATING_MODE & 0b110)>>1) == 1) { // KNR Valve
                    R_model = 163.0f; // ohm
                    L_model = 1.0f;
                    w0 = 2.0f * 3.14f * 80.0f;
                    KP_I = 1.0f * L_model*w0;
                    KI_I = 0.08f * R_model*w0;
                }

                double FF_gain = 1.0f;

                VALVE_PWM_RAW = KP_I * 2.0f * I_ERR + KI_I * 2.0f* I_ERR_INT;
                //        VALVE_PWM_RAW = VALVE_PWM_RAW + FF_gain * (R_model*I_REF); // Unit : mV
                I_REF_fil_diff = I_REF_fil - I_REF_fil_old;
                I_REF_fil_old = I_REF_fil;
//                VALVE_PWM_RAW = VALVE_PWM_RAW + FF_gain * (R_model * I_REF_fil + L_model * I_REF_fil_diff * 5000.0f); // Unit : mV
                VALVE_PWM_RAW = VALVE_PWM_RAW + FF_gain * (R_model * I_REF_fil); // Unit : mV
                double V_MAX = 12000.0f; // Maximum Voltage : 12V = 12000mV

                double Ka = 3.0f / KP_I;
                if (VALVE_PWM_RAW > V_MAX) {
                    V_rem = VALVE_PWM_RAW - V_MAX;
                    V_rem = Ka*V_rem;
                    VALVE_PWM_RAW = V_MAX;
                    I_ERR_INT = I_ERR_INT - V_rem * 0.0002f;
                } else if (VALVE_PWM_RAW < -V_MAX) {
                    V_rem = VALVE_PWM_RAW - (-V_MAX);
                    V_rem = Ka*V_rem;
                    VALVE_PWM_RAW = -V_MAX;
                    I_ERR_INT = I_ERR_INT - V_rem * 0.0002f;
                }
                Cur_Valve_Open_pulse = cur.sen / mA_PER_pulse;
            } else {
                VALVE_PWM_RAW = I_REF * mV_PER_mA;
                Cur_Valve_Open_pulse = I_REF / mA_PER_pulse;
            }

            ////////////////////////////////////////////////////////////////////////////
            /////////////////  Dead Zone Cancellation & Linearization //////////////////
            ////////////////////////////////////////////////////////////////////////////
            // Dead Zone Cancellation (Mechanical Valve dead-zone)
            if (FLAG_VALVE_DEADZONE) {
                if (VALVE_PWM_RAW > 0) VALVE_PWM_RAW = VALVE_PWM_RAW + VALVE_DEADZONE_PLUS * mV_PER_pulse; // unit: mV
                else if (VALVE_PWM_RAW < 0) VALVE_PWM_RAW = VALVE_PWM_RAW + VALVE_DEADZONE_MINUS * mV_PER_pulse; // unit: mV

                VALVE_PWM_VALVE_DZ = VALVE_PWM_RAW + (double)VALVE_CENTER * mV_PER_pulse; // unit: mV

            } else {
                VALVE_PWM_VALVE_DZ = VALVE_PWM_RAW;
            }

            // Output Voltage Linearization
            double CUR_PWM_nonlin = VALVE_PWM_VALVE_DZ; // Unit : mV
            double CUR_PWM_lin = PWM_duty_byLT(CUR_PWM_nonlin);  // -8000~8000

            // Dead Zone Cancellation (Electrical dead-zone)
            if (CUR_PWM_lin > 0) V_out = (float) (CUR_PWM_lin + 169.0f);
            else if (CUR_PWM_lin < 0) V_out = (float) (CUR_PWM_lin - 174.0f);
            else V_out = (float) (CUR_PWM_lin);
        } else {            //////////////////////////sw valve
            // Output Voltage Linearization
//            double CUR_PWM_nonlin = V_out; // Unit : mV
//            double CUR_PWM_lin = PWM_duty_byLT(CUR_PWM_nonlin);  // -8000~8000

            // Dead Zone Cancellation (Electrical dead-zone)
//            if (CUR_PWM_lin > 0) V_out = (float) (CUR_PWM_lin + 169.0f);
//            else if (CUR_PWM_lin < 0) V_out = (float) (CUR_PWM_lin - 174.0f);
//            else V_out = (float) (CUR_PWM_lin);

            if (V_out > 0 ) V_out = (V_out + 180.0f)/0.8588f;
            else if (V_out < 0) V_out = (V_out - 200.0f)/0.8651f;
            else V_out = 0.0f;
        }

//        if(V_out > 0.0f) V_out = (float) (V_out + 169.0f);
//        else if(V_out < 0.0f) V_out = (float) (V_out - 174.0f);
//        else V_out = V_out;

        /*******************************************************
        ***     PWM
        ********************************************************/
        if(DIR_VALVE<0) {
            V_out = -V_out;
        }

        if (V_out >= VALVE_VOLTAGE_LIMIT*1000.0f) {
            V_out = VALVE_VOLTAGE_LIMIT*1000.0f;
        } else if(V_out<=-VALVE_VOLTAGE_LIMIT*1000.0f) {
            V_out = -VALVE_VOLTAGE_LIMIT*1000.0f;
        }
        PWM_out= V_out/(SUPPLY_VOLTAGE*1000.0f); // Full duty : 12000.0mV

        // Saturation of output voltage to 12.0V
        if(PWM_out > 1.0f) PWM_out=1.0f;
        else if (PWM_out < -1.0f) PWM_out=-1.0f;

        if (PWM_out>0.0f) {
            dtc_v=0.0f;
            dtc_w=PWM_out;
        } else {
            dtc_v=-PWM_out;
            dtc_w=0.0f;
        }

        //pwm
        TIM4->CCR2 = (PWM_ARR)*(1.0f-dtc_v);
        TIM4->CCR1 = (PWM_ARR)*(1.0f-dtc_w);


        if (TMR2_COUNT_CAN_TX % (int) ((int) TMR_FREQ_5k/CAN_FREQ) == 0) {

            // Position, Velocity, and Torque (ID:1200)
            if (flag_data_request[0] == HIGH) {
                if ((OPERATING_MODE & 0b01) == 0) { // Rotary Actuator
                    if (SENSING_MODE == 0) {
                        CAN_TX_POSITION_FT((int16_t) (pos.sen), (int16_t) (vel.sen/10.0f), (int16_t) (torq.sen*10.0f));
                    } else if (SENSING_MODE == 1) {
                        CAN_TX_POSITION_PRESSURE((int16_t) (pos.sen), (int16_t) (vel.sen/10.0f), (int16_t) ((pres_A.sen)*5.0f), (int16_t) ((pres_B.sen)*5.0f));
                    }
                } else if ((OPERATING_MODE & 0b01) == 1) { // Linear Actuator
                    if (SENSING_MODE == 0) {
                        CAN_TX_POSITION_FT((int16_t) (pos.sen/10.0f), (int16_t) (vel.sen/256.0f), (int16_t) (torq.sen * 10.0f * (float)(TORQUE_SENSOR_PULSE_PER_TORQUE)));
                    } else if (SENSING_MODE == 1) {
                        CAN_TX_POSITION_PRESSURE((int16_t) (pos.sen/10.0f), (int16_t) (vel.sen/256.0f), (int16_t) ((pres_A.sen)*5.0f), (int16_t) ((pres_B.sen)*5.0f));
                    }
                }
            }
            if (flag_data_request[1] == HIGH) {
                CAN_TX_TORQUE((int16_t) (return_G[0]*100.0f)); //1300
            }


            if (flag_data_request[2] == HIGH) {
                double t_value = 0.0f;
                if(value>=(float) VALVE_CENTER) {
                    t_value = 10000.0f*((double)value - (double)VALVE_CENTER)/((double)VALVE_MAX_POS - (double)VALVE_CENTER);
                } else {
                    t_value = -10000.0f*((double)value - (double)VALVE_CENTER)/((double)VALVE_MIN_POS - (double)VALVE_CENTER);
                }
                double t_value_ref = 0.0f;
                if(valve_pos.ref>=(float) VALVE_CENTER) {
                    t_value_ref = 10000.0f*((double)valve_pos.ref - (double)VALVE_CENTER)/((double)VALVE_MAX_POS - (double)VALVE_CENTER);
                } else {
                    t_value_ref = -10000.0f*((double)valve_pos.ref - (double)VALVE_CENTER)/((double)VALVE_MIN_POS - (double)VALVE_CENTER);
                }


                CAN_TX_PRES((int16_t) (t_value), (int16_t) (t_value_ref)); // 1400
            }

            //If it doesn't rest, below can can not work.
            for (can_rest = 0; can_rest < 10000; can_rest++) {
                ;
            }

            if (flag_data_request[3] == HIGH) {
                //PWM
                CAN_TX_PWM((int16_t) (torq.ref)); //1500
//                CAN_TX_PWM((int16_t) (f_future[1])); //1500
            }

            if (flag_data_request[4] == HIGH) {
                //valve position
                //CAN_TX_VALVE_POSITION((int16_t) pos.sen/(float)(ENC_PULSE_PER_POSITION), (int16_t) virt_pos, (int16_t) (logging2*1000.0f), (int16_t) (logging4*1000.0f)); //1600
                CAN_TX_VALVE_POSITION((int16_t) (a_hat*0.0001f), (int16_t) 0, (int16_t) 0, (int16_t) 0); //1600
            }

            // Others : Reference position, Reference FT, PWM, Current  (ID:1300)
//        if (flag_data_request[1] == HIGH) {
//            CAN_TX_SOMETHING((int) (FORCE_VREF), (int16_t) (1), (int16_t) (2), (int16_t) (3));
//        }
            //if (flag_delay_test == 1){
            //CAN_TX_PRES((int16_t) (0),(int16_t) torq_ref);
            //}

            TMR2_COUNT_CAN_TX = 0;
        }
        TMR2_COUNT_CAN_TX++;

    }
    TIM3->SR = 0x0;  // reset the status register

}