Sungwoo Kim
/
HydraulicControlBoard_Learning
for learning
CAN/function_CAN.cpp
- Committer:
- Lightvalve
- Date:
- 2021-02-22
- Revision:
- 254:725d7435dfa3
- Parent:
- 253:0246366e0dcb
- Child:
- 256:7c8cc8b56b88
File content as of revision 254:725d7435dfa3:
#include "function_CAN.h" #include "setting.h" #include "function_utilities.h" #include "SPI_EEP_ENC.h" #include "stm32f4xx_flash.h" #include "FlashWriter.h" // CAN ID Setting Variables int CID_RX_CMD = 100; int CID_RX_REF_POSITION = 200; int CID_RX_REF_VALVE_POS = 300; int CID_RX_REF_PWM = 400; int CID_TX_INFO = 1100; int CID_TX_POSITION = 1200; int CID_TX_TORQUE = 1300; int CID_TX_PRES = 1400; int CID_TX_VOUT = 1500; int CID_TX_VALVE_POSITION = 1600; // variables uint8_t can_index = 0; extern DigitalOut LED; extern float u_past[]; extern float x_past[]; extern float x_future[]; extern float f_past[]; extern float f_future[]; extern float input_NN[]; /******************************************************************************* * CAN functions ******************************************************************************/ void CAN_ID_INIT(void) { CID_RX_CMD = (int) (BNO + INIT_CID_RX_CMD); CID_RX_REF_POSITION = (int) (BNO + INIT_CID_RX_REF_POSITION); CID_RX_REF_VALVE_POS = (int) (BNO + INIT_CID_RX_REF_VALVE_POS); CID_RX_REF_PWM = (int) (BNO + INIT_CID_RX_REF_PWM); CID_TX_INFO = (int) (BNO + INIT_CID_TX_INFO); CID_TX_POSITION = (int) (BNO + INIT_CID_TX_POSITION); CID_TX_TORQUE = (int) (BNO + INIT_CID_TX_TORQUE); CID_TX_PRES = (int) (BNO + INIT_CID_TX_PRES); CID_TX_VOUT = (int) (BNO + INIT_CID_TX_VOUT); CID_TX_VALVE_POSITION = (int) (BNO + INIT_CID_TX_VALVE_POSITION); } void ReadCMD(int16_t CMD) { switch(CMD) { case CRX_ASK_INFO: { CAN_TX_INFO(); break; } case CRX_ASK_BNO: { CAN_TX_BNO(); break; } case CRX_SET_BNO: { BNO = (int16_t) msg.data[1]; //ROM_RESET_DATA(); spi_eeprom_write(RID_BNO, (int16_t) BNO); CAN_ID_INIT(); // can id init break; } case CRX_ASK_OPERATING_MODE: { CAN_TX_OPERATING_MODE(); break; } case CRX_SET_OPERATING_MODE: { OPERATING_MODE = (uint8_t) msg.data[1]; SENSING_MODE = (uint8_t) msg.data[2]; CURRENT_CONTROL_MODE = (uint8_t) msg.data[3]; FLAG_VALVE_DEADZONE = (uint8_t) msg.data[4]; // ROM_RESET_DATA(); spi_eeprom_write(RID_OPERATING_MODE, (int16_t) OPERATING_MODE); spi_eeprom_write(RID_SENSING_MODE, (int16_t) SENSING_MODE); spi_eeprom_write(RID_CURRENT_CONTROL_MODE, (int16_t) CURRENT_CONTROL_MODE); spi_eeprom_write(RID_FLAG_VALVE_DEADZONE, (int16_t) FLAG_VALVE_DEADZONE); break; } case CRX_SET_ENC_ZERO: { ENC_SET_ZERO(); break; } case CRX_SET_FET_ON: { break; } case CRX_SET_POS_TORQ_TRANS: { MODE_POS_FT_TRANS = (int16_t) msg.data[1]; /* MODE_POS_FT_TRANS == 0 : Position Control MODE_POS_FT_TRANS == 1 : Trasition(Position->Torque) MODE_POS_FT_TRANS == 2 : Torque Control (Convert to 2 automatically 3sec after transition) MODE_POS_FT_TRANS == 3 : Transition(Toque->Position) */ break; } case CRX_ASK_CAN_FREQ: { CAN_TX_CAN_FREQ(); break; } case CRX_SET_CAN_FREQ: { CAN_FREQ = (int16_t) (msg.data[1] | msg.data[2] << 8); ROM_RESET_DATA(); spi_eeprom_write(RID_CAN_FREQ, (int16_t) CAN_FREQ); break; } case CRX_ASK_CONTROL_MODE: { CAN_TX_CONTROL_MODE(); break; } case CRX_SET_CONTROL_MODE: { //CONTROL_MODE = (int16_t) (msg.data[1]); CONTROL_UTILITY_MODE = (int16_t) (msg.data[1]); if (CONTROL_MODE == 22) { //MODE_FIND_HOME FLAG_FIND_HOME = true; } break; } case CRX_SET_DATA_REQUEST: { int request_type = msg.data[2]; flag_data_request[request_type] = msg.data[1]; //pc.printf("can middle %d\n", request_type); // if (flag_data_request[1] == HIGH) SPI_VREF_DAC_WRITE(PRES_A_VREF, PRES_B_VREF, TORQUE_VREF, 0); // set DAC //if (flag_data_request[1] == HIGH) dac_1 = PRES_A_VREF/3.3; // if (flag_data_request[2] == HIGH) SPI_VREF_DAC_WRITE(PRES_A_VREF, PRES_B_VREF, TORQUE_VREF, 0); // set DAC //if (flag_data_request[2] == HIGH) dac_2 = PRES_B_VREF/3.3; // Position, Velocity, and Torque (ID:1200) if (flag_data_request[0] == HIGH) { if ((OPERATING_MODE & 0b01) == 0) { // Rotary Actuator if (SENSING_MODE == 0) { CAN_TX_POSITION_FT((int16_t) (pos.sen), (int16_t) (vel.sen/10.0f), (int16_t) (torq.sen*10.0f)); } else if (SENSING_MODE == 1) { CAN_TX_POSITION_PRESSURE((int16_t) (pos.sen), (int16_t) (vel.sen/10.0f), (int16_t) ((pres_A.sen)*5.0f), (int16_t) ((pres_B.sen)*5.0f)); } } else if ((OPERATING_MODE & 0b01) == 1) { // Linear Actuator if (SENSING_MODE == 0) { // CAN_TX_POSITION_FT((int16_t) (pos.sen/16.0f), (int16_t) (vel.sen/256.0f), (int16_t) (torq.sen * 10.0f * (float)(TORQUE_SENSOR_PULSE_PER_TORQUE))); CAN_TX_POSITION_FT((int16_t) (pos.sen/16.0f), (int16_t) (vel.sen/256.0f), (int16_t) (pos.ref*0.001f)); } else if (SENSING_MODE == 1) { CAN_TX_POSITION_PRESSURE((int16_t) (pos.sen/16.0f), (int16_t) (vel.sen/256.0f), (int16_t) ((pres_A.sen)*5.0f), (int16_t) ((pres_B.sen)*5.0f)); } } } if (flag_data_request[1] == HIGH) { CAN_TX_TORQUE((int16_t) (return_G[0]*100.0f)); //1300 } if (flag_data_request[2] == HIGH) { double t_value = 0.0f; double t_value_ref = 0.0f; if (CURRENT_CONTROL_MODE) { t_value = cur.sen; t_value_ref = I_REF_fil; } else { if(value>=(float) VALVE_CENTER) { t_value = 10000.0f*((double)value - (double)VALVE_CENTER)/((double)VALVE_MAX_POS - (double)VALVE_CENTER); } else { t_value = -10000.0f*((double)value - (double)VALVE_CENTER)/((double)VALVE_MIN_POS - (double)VALVE_CENTER); } if(valve_pos.ref>=(float) VALVE_CENTER) { t_value_ref = 10000.0f*((double)valve_pos.ref - (double)VALVE_CENTER)/((double)VALVE_MAX_POS - (double)VALVE_CENTER); } else { t_value_ref = -10000.0f*((double)valve_pos.ref - (double)VALVE_CENTER)/((double)VALVE_MIN_POS - (double)VALVE_CENTER); } } // CAN_TX_PRES((int16_t) (t_value), (int16_t) (t_value_ref)); // 1400 CAN_TX_PRES((int16_t) (VALVE_DEADZONE_PLUS), (int16_t) (t_value_ref)); // 1400 } // //If it doesn't rest, below can can not work. // for (int can_rest = 0; can_rest < 10000; can_rest++) { // ; // } // if (flag_data_request[3] == HIGH) { //PWM CAN_TX_PWM((int16_t) (torq.ref)); //1500 // CAN_TX_PWM((int16_t) (f_future[1])); //1500 } if (flag_data_request[4] == HIGH) { //valve position //CAN_TX_VALVE_POSITION((int16_t) pos.sen/(float)(ENC_PULSE_PER_POSITION), (int16_t) virt_pos, (int16_t) (logging2*1000.0f), (int16_t) (logging4*1000.0f)); //1600 CAN_TX_VALVE_POSITION((int16_t) (a_hat*0.0001f), (int16_t) 0, (int16_t) 0, (int16_t) 0); //1600 } break; } case CRX_ASK_JOINT_ENC_DIR: { CAN_TX_JOINT_ENC_DIR(); break; } case CRX_SET_JOINT_ENC_DIR: { DIR_JOINT_ENC = (int16_t) (msg.data[1] | msg.data[2] << 8); if (DIR_JOINT_ENC >= 0) DIR_JOINT_ENC = 1; else DIR_JOINT_ENC = -1; // ROM_RESET_DATA(); spi_eeprom_write(RID_JOINT_ENC_DIR, (int16_t) DIR_JOINT_ENC); break; } case CRX_ASK_VALVE_DIR: { CAN_TX_VALVE_DIR(); break; } case CRX_SET_VALVE_DIR: { DIR_VALVE = (int16_t) (msg.data[1] | msg.data[2] << 8); if (DIR_VALVE >= 0) DIR_VALVE = 1; else DIR_VALVE = -1; // ROM_RESET_DATA(); spi_eeprom_write(RID_VALVE_DIR, (int16_t) DIR_VALVE); break; } case CRX_ASK_VALVE_ENC_DIR: { CAN_TX_VALVE_ENC_DIR(); break; } case CRX_SET_VALVE_ENC_DIR: { DIR_VALVE_ENC = (int16_t) (msg.data[1] | msg.data[2] << 8); if (DIR_VALVE_ENC >= 0) DIR_VALVE_ENC = 1; else DIR_VALVE_ENC = -1; // ROM_RESET_DATA(); spi_eeprom_write(RID_VALVE_ENC_DIR, (int16_t) DIR_VALVE_ENC); break; } case CRX_ASK_VOLTAGE_SUPPLY: { CAN_TX_VOLTAGE_SUPPLY(); break; } case CRX_SET_VOLTAGE_SUPPLY: { SUPPLY_VOLTAGE = (double) ((int16_t) (msg.data[1] | msg.data[2] << 8)) / 10.0f; // ROM_RESET_DATA(); spi_eeprom_write(RID_VOLATGE_SUPPLY, (int16_t) (SUPPLY_VOLTAGE * 10.0f)); break; } case CRX_ASK_VOLTAGE_VALVE: { CAN_TX_VOLTAGE_VALVE(); break; } case CRX_SET_VOLTAGE_VALVE: { VALVE_VOLTAGE_LIMIT = (double) ((int16_t) (msg.data[1] | msg.data[2] << 8)) / 10.0f; // ROM_RESET_DATA(); spi_eeprom_write(RID_VOLTAGE_VALVE, (int16_t) (VALVE_VOLTAGE_LIMIT * 10.0f)); break; } case CRX_SET_HOMEPOS: { //CONTROL_MODE = 22; CONTROL_UTILITY_MODE = 22; break; } case CRX_ASK_PID_GAIN: { CAN_TX_PID_GAIN(msg.data[1]); break; } case CRX_SET_PID_GAIN: { if (msg.data[1] == 0) { P_GAIN_VALVE_POSITION = (int16_t) (msg.data[2] | msg.data[3] << 8); I_GAIN_VALVE_POSITION = (int16_t) (msg.data[4] | msg.data[5] << 8); D_GAIN_VALVE_POSITION = (int16_t) (msg.data[6] | msg.data[7] << 8); // ROM_RESET_DATA(); spi_eeprom_write(RID_P_GAIN_VALVE_POSITION, (int16_t) P_GAIN_VALVE_POSITION); spi_eeprom_write(RID_I_GAIN_VALVE_POSITION, (int16_t) I_GAIN_VALVE_POSITION); spi_eeprom_write(RID_D_GAIN_VALVE_POSITION, (int16_t) D_GAIN_VALVE_POSITION); } else if (msg.data[1] == 1) { P_GAIN_JOINT_POSITION = (int16_t) (msg.data[2] | msg.data[3] << 8); I_GAIN_JOINT_POSITION = (int16_t) (msg.data[4] | msg.data[5] << 8); D_GAIN_JOINT_POSITION = (int16_t) (msg.data[6] | msg.data[7] << 8); // ROM_RESET_DATA(); spi_eeprom_write(RID_P_GAIN_JOINT_POSITION, (int16_t) P_GAIN_JOINT_POSITION); spi_eeprom_write(RID_I_GAIN_JOINT_POSITION, (int16_t) I_GAIN_JOINT_POSITION); spi_eeprom_write(RID_D_GAIN_JOINT_POSITION, (int16_t) D_GAIN_JOINT_POSITION); } else if (msg.data[1] == 2) { P_GAIN_JOINT_TORQUE = (int16_t) (msg.data[2] | msg.data[3] << 8); I_GAIN_JOINT_TORQUE = (int16_t) (msg.data[4] | msg.data[5] << 8); D_GAIN_JOINT_TORQUE = (int16_t) (msg.data[6] | msg.data[7] << 8); // ROM_RESET_DATA(); spi_eeprom_write(RID_P_GAIN_JOINT_TORQUE, (int16_t) P_GAIN_JOINT_TORQUE); spi_eeprom_write(RID_I_GAIN_JOINT_TORQUE, (int16_t) I_GAIN_JOINT_TORQUE); spi_eeprom_write(RID_D_GAIN_JOINT_TORQUE, (int16_t) D_GAIN_JOINT_TORQUE); } else if (msg.data[1] == 3) { K_SPRING = (float) (((float) ((int16_t) (msg.data[2] | msg.data[3] << 8))) * 0.1f); D_DAMPER = (float) (((float) ((int16_t) (msg.data[4] | msg.data[5] << 8))) * 0.01f); // ROM_RESET_DATA(); //For Real-time changing // spi_eeprom_write(RID_K_SPRING, (int16_t) K_SPRING); // spi_eeprom_write(RID_D_DAMPER, (int16_t) D_DAMPER); } else if (msg.data[1] == 4) { P_GAIN_JOINT_TORQUE_FF = (int16_t) (msg.data[2] | msg.data[3] << 8); I_GAIN_JOINT_TORQUE_FF = (int16_t) (msg.data[4] | msg.data[5] << 8); D_GAIN_JOINT_TORQUE_FF = (int16_t) (msg.data[6] | msg.data[7] << 8); // ROM_RESET_DATA(); } break; } case CRX_ASK_VALVE_DEADZONE: { CAN_TX_VALVE_DEADZONE(); break; } case CRX_SET_VALVE_DEADZONE: { VALVE_CENTER = (int16_t) (msg.data[1] | msg.data[2] << 8); VALVE_DEADZONE_PLUS = (int16_t) (msg.data[3] | msg.data[4] << 8); VALVE_DEADZONE_MINUS = (int16_t) (msg.data[5] | msg.data[6] << 8); // ROM_RESET_DATA(); spi_eeprom_write(RID_VALVE_CNETER, (int16_t) VALVE_CENTER); spi_eeprom_write(RID_VALVE_DEADZONE_PLUS, (int16_t) (VALVE_DEADZONE_PLUS)); spi_eeprom_write(RID_VALVE_DEADZONE_MINUS, (int16_t) (VALVE_DEADZONE_MINUS)); break; } case CRX_ASK_VELOCITY_COMP_GAIN: { CAN_TX_VELOCITY_COMP_GAIN(); break; } case CRX_SET_VELOCITY_COMP_GAIN: { VELOCITY_COMP_GAIN = (int16_t) (msg.data[1] | msg.data[2] << 8); // ROM_RESET_DATA(); spi_eeprom_write(RID_VELOCITY_COMP_GAIN, (int16_t) VELOCITY_COMP_GAIN); break; } case CRX_ASK_COMPLIANCE_GAIN: { CAN_TX_COMPLIANCE_GAIN(); break; } case CRX_SET_COMPLIANCE_GAIN: { COMPLIANCE_GAIN = (int16_t) (msg.data[1] | msg.data[2] << 8); // ROM_RESET_DATA(); spi_eeprom_write(RID_COMPLIANCE_GAIN, (int16_t) COMPLIANCE_GAIN); break; } case CRX_ASK_VALVE_FF: { CAN_TX_VALVE_FF(); break; } case CRX_SET_VALVE_FF: { VALVE_FF = (int16_t) (msg.data[1] | msg.data[2] << 8); // ROM_RESET_DATA(); spi_eeprom_write(RID_VALVE_FF, (int16_t) VALVE_FF); break; } case CRX_ASK_BULK_MODULUS: { CAN_TX_BULK_MODULUS(); break; } case CRX_SET_BULK_MODULUS: { BULK_MODULUS = (int16_t) (msg.data[1] | msg.data[2] << 8); // ROM_RESET_DATA(); spi_eeprom_write(RID_BULK_MODULUS, (int16_t) BULK_MODULUS); break; } case CRX_ASK_CHAMBER_VOLUME: { CAN_TX_CHAMBER_VOLUME(); break; } case CRX_SET_CHAMBER_VOLUME: { CHAMBER_VOLUME_A = (int16_t) (msg.data[1] | msg.data[2] << 8); CHAMBER_VOLUME_B = (int16_t) (msg.data[3] | msg.data[4] << 8); // ROM_RESET_DATA(); spi_eeprom_write(RID_CHAMBER_VOLUME_A, (int16_t) CHAMBER_VOLUME_A); spi_eeprom_write(RID_CHAMBER_VOLUME_B, (int16_t) CHAMBER_VOLUME_B); break; } case CRX_ASK_PISTON_AREA: { CAN_TX_PISTON_AREA(); break; } case CRX_SET_PISTON_AREA: { PISTON_AREA_A = (int16_t) (msg.data[1] | msg.data[2] << 8); PISTON_AREA_B = (int16_t) (msg.data[3] | msg.data[4] << 8); PISTON_AREA_alpha = (double)PISTON_AREA_A/(double)PISTON_AREA_B; alpha3 = PISTON_AREA_alpha * PISTON_AREA_alpha*PISTON_AREA_alpha; // ROM_RESET_DATA(); spi_eeprom_write(RID_PISTON_AREA_A, (int16_t) PISTON_AREA_A); spi_eeprom_write(RID_PISTON_AREA_B, (int16_t) PISTON_AREA_B); break; } case CRX_ASK_PRES: { CAN_TX_PRES_A_AND_B(); // SPI_VREF_DAC_WRITE(PRES_A_VREF, PRES_B_VREF, TORQUE_VREF, 0); //dac_1 = PRES_A_VREF; //dac_2 = PRES_B_VREF; break; } case CRX_SET_PRES: { PRES_SUPPLY = (int16_t) (msg.data[1] | msg.data[2] << 8); PRES_RETURN = (int16_t) (msg.data[3] | msg.data[4] << 8); // ROM_RESET_DATA(); spi_eeprom_write(RID_PRES_SUPPLY, (int16_t) PRES_SUPPLY); spi_eeprom_write(RID_PRES_RETURN, (int16_t) PRES_RETURN); break; } case CRX_ASK_ENC_LIMIT: { CAN_TX_ENC_LIMIT(); break; } case CRX_SET_ENC_LIMIT: { ENC_LIMIT_MINUS = (int16_t) (msg.data[1] | msg.data[2] << 8); ENC_LIMIT_PLUS = (int16_t) (msg.data[3] | msg.data[4] << 8); // ROM_RESET_DATA(); spi_eeprom_write(RID_ENC_LIMIT_MINUS, (int16_t) ENC_LIMIT_MINUS); spi_eeprom_write(RID_ENC_LIMIT_PLUS, (int16_t) ENC_LIMIT_PLUS); break; } case CRX_ASK_STROKE: { CAN_TX_STROKE(); break; } case CRX_SET_STROKE: { STROKE = (int16_t) (msg.data[1] | msg.data[2] << 8); // ROM_RESET_DATA(); spi_eeprom_write(RID_STROKE, (int16_t) STROKE); break; } case CRX_ASK_VALVE_LIMIT: { CAN_TX_VALVE_LIMIT(); break; } case CRX_SET_VALVE_LIMIT: { VALVE_MIN_POS = (int16_t) (msg.data[1] | msg.data[2] << 8); VALVE_MAX_POS = (int16_t) (msg.data[3] | msg.data[4] << 8); // ROM_RESET_DATA(); spi_eeprom_write(RID_VALVE_MAX_POS, (int16_t) VALVE_MAX_POS); spi_eeprom_write(RID_VALVE_MIN_POS, (int16_t) VALVE_MIN_POS); break; } case CRX_ASK_ENC_PULSE_PER_POSITION: { CAN_TX_ENC_PULSE_PER_POSITION(); break; } case CRX_SET_ENC_PULSE_PER_POSITION: { ENC_PULSE_PER_POSITION = (int16_t) (msg.data[1] | msg.data[2] << 8); // ROM_RESET_DATA(); spi_eeprom_write(RID_ENC_PULSE_PER_POSITION, (int16_t) (ENC_PULSE_PER_POSITION)); break; } case CRX_ASK_TORQUE_SENSOR_PULSE_PER_TORQUE: { CAN_TX_TORQUE_SENSOR_PULSE_PER_TORQUE(); break; } case CRX_SET_TORQUE_SENSOR_PULSE_PER_TORQUE: { TORQUE_SENSOR_PULSE_PER_TORQUE = (float) ((int16_t) (msg.data[1] | msg.data[2] << 8) * 0.0001f); // ROM_RESET_DATA(); spi_eeprom_write(RID_TORQUE_SENSOR_PULSE_PER_TORQUE, (int16_t) (TORQUE_SENSOR_PULSE_PER_TORQUE*10000.0f)); break; } case CRX_ASK_PRES_SENSOR_PULSE_PER_PRES: { CAN_TX_PRES_SENSOR_PULSE_PER_PRES(); break; } case CRX_SET_PRES_SENSOR_PULSE_PER_PRES: { PRES_SENSOR_A_PULSE_PER_BAR = (float) ((int16_t) (msg.data[1] | msg.data[2] << 8)) * 0.01f; PRES_SENSOR_B_PULSE_PER_BAR = (float) ((int16_t) (msg.data[3] | msg.data[4] << 8)) * 0.01f; // ROM_RESET_DATA(); spi_eeprom_write(RID_PRES_SENSOR_A_PULSE_PER_BAR, (int16_t) (PRES_SENSOR_A_PULSE_PER_BAR * 100.0f)); spi_eeprom_write(RID_PRES_SENSOR_B_PULSE_PER_BAR, (int16_t) (PRES_SENSOR_B_PULSE_PER_BAR * 100.0f)); break; } case CRX_ASK_FRICTION: { CAN_TX_FRICTION(); break; } case CRX_SET_FRICTION: { FRICTION = (double) ((int16_t) (msg.data[1] | msg.data[2] << 8)) / 10.0f; // ROM_RESET_DATA(); spi_eeprom_write(RID_FRICTION, (int16_t) (FRICTION * 10.0f)); break; } case CRX_ASK_VALVE_GAIN_PLUS: { CAN_TX_VALVE_GAIN_PLUS(); break; } case CRX_SET_VALVE_GAIN_PLUS: { VALVE_GAIN_LPM_PER_V[0] = (double) msg.data[1] / 50.0f; VALVE_GAIN_LPM_PER_V[2] = (double) msg.data[2] / 50.0f; VALVE_GAIN_LPM_PER_V[4] = (double) msg.data[3] / 50.0f; VALVE_GAIN_LPM_PER_V[6] = (double) msg.data[4] / 50.0f; VALVE_GAIN_LPM_PER_V[8] = (double) msg.data[5] / 50.0f; // ROM_RESET_DATA(); spi_eeprom_write(RID_VALVE_GAIN_PLUS_1, (int16_t) (VALVE_GAIN_LPM_PER_V[0] * 100.0f)); spi_eeprom_write(RID_VALVE_GAIN_PLUS_2, (int16_t) (VALVE_GAIN_LPM_PER_V[2] * 100.0f)); spi_eeprom_write(RID_VALVE_GAIN_PLUS_3, (int16_t) (VALVE_GAIN_LPM_PER_V[4] * 100.0f)); spi_eeprom_write(RID_VALVE_GAIN_PLUS_4, (int16_t) (VALVE_GAIN_LPM_PER_V[6] * 100.0f)); spi_eeprom_write(RID_VALVE_GAIN_PLUS_5, (int16_t) (VALVE_GAIN_LPM_PER_V[8] * 100.0f)); break; } case CRX_ASK_VALVE_GAIN_MINUS: { CAN_TX_VALVE_GAIN_MINUS(); break; } case CRX_SET_VALVE_GAIN_MINUS: { VALVE_GAIN_LPM_PER_V[1] = (double) msg.data[1] / 50.0f; VALVE_GAIN_LPM_PER_V[3] = (double) msg.data[2] / 50.0f; VALVE_GAIN_LPM_PER_V[5] = (double) msg.data[3] / 50.0f; VALVE_GAIN_LPM_PER_V[7] = (double) msg.data[4] / 50.0f; VALVE_GAIN_LPM_PER_V[9] = (double) msg.data[5] / 50.0f; // ROM_RESET_DATA(); spi_eeprom_write(RID_VALVE_GAIN_MINUS_1, (int16_t) (VALVE_GAIN_LPM_PER_V[1] * 100.0f)); spi_eeprom_write(RID_VALVE_GAIN_MINUS_2, (int16_t) (VALVE_GAIN_LPM_PER_V[3] * 100.0f)); spi_eeprom_write(RID_VALVE_GAIN_MINUS_3, (int16_t) (VALVE_GAIN_LPM_PER_V[5] * 100.0f)); spi_eeprom_write(RID_VALVE_GAIN_MINUS_4, (int16_t) (VALVE_GAIN_LPM_PER_V[7] * 100.0f)); spi_eeprom_write(RID_VALVE_GAIN_MINUS_5, (int16_t) (VALVE_GAIN_LPM_PER_V[9] * 100.0f)); break; } case CRX_ASK_DDV_VALVE_DEADZONE: { CAN_TX_DDV_VALVE_DEADZONE(); break; } case CRX_LOW_REF: { REFERENCE_MODE = msg.data[1]; REF_NUM = msg.data[2]; REF_PERIOD = (double) ((int16_t) (msg.data[3] | msg.data[4] << 8)) / 100.0f; if (REF_PERIOD <= 0.0f) REF_MOVE_TIME_5k = TMR_FREQ_5k / CAN_FREQ; else REF_MOVE_TIME_5k = (int) (REF_PERIOD * (double) TMR_FREQ_5k); REF_MAG = (double) ((int16_t) (msg.data[5] | msg.data[6] << 8)) / 100.0f; break; } case CRX_JUMP_STATUS: { MODE_JUMP_STATUS = msg.data[1]; break; } case CRX_SET_ERR_CLEAR: { for (int i = 0; i < num_err; i++) { flag_err[i] = FALSE; flag_err_old[i] = FALSE; } flag_err_rt = FALSE; break; } case CRX_ASK_HOMEPOS_OFFSET: { CAN_TX_HOMEPOS_OFFSET(); break; } case CRX_SET_HOMEPOS_OFFSET: { HOMEPOS_OFFSET = (int16_t) (msg.data[1] | msg.data[2] << 8); // ROM_RESET_DATA(); spi_eeprom_write(RID_HOMEPOS_OFFSET, (int16_t) HOMEPOS_OFFSET); break; } case CRX_ASK_HOMEPOS_VALVE_OPENING: { CAN_TX_HOMPOS_VALVE_OPENING(); break; } case CRX_SET_HOMEPOS_VALVE_OPENING: { HOMEPOS_VALVE_OPENING = (int16_t) (msg.data[1] | msg.data[2] << 8); // ROM_RESET_DATA(); spi_eeprom_write(RID_HOMEPOS_VALVE_OPENING, (int16_t) HOMEPOS_VALVE_OPENING); break; } case CRX_ASK_VALVE_PWM_VS_VALVE_POS: { can_index = (int16_t) msg.data[1]; CAN_TX_VALVE_PWM_VS_VALVE_POS(can_index); break; } case CRX_ASK_VALVE_POS_VS_FLOWRATE: { can_index = (int16_t) msg.data[1]; CAN_TX_VALVE_POS_VS_FLOWRATE(can_index); break; } case CRX_ASK_VALVE_POS_NUM: { CAN_TX_VALVE_POS_NUM(); break; } case CRX_SET_ROM: { ROM_RESET_DATA(); break; } case CRX_SET_VALVE_CENTER_OFFSET: { VALVE_CENTER_OFFSET = ((float) ((int16_t) (msg.data[1] | msg.data[2] << 8))); VALVE_CENTER = VALVE_CENTER + VALVE_CENTER_OFFSET; // ROM_RESET_DATA(); spi_eeprom_write(RID_VALVE_CNETER, (int16_t) VALVE_CENTER); break; } case CRX_SET_VALVE_DZ_MINUS_OFFSET: { VALVE_DZ_MINUS_OFFSET = ((float) ((int16_t) (msg.data[1] | msg.data[2] << 8))); VALVE_DEADZONE_MINUS = VALVE_DEADZONE_MINUS + VALVE_DZ_MINUS_OFFSET; // ROM_RESET_DATA(); spi_eeprom_write(RID_VALVE_DEADZONE_MINUS, (int16_t) (VALVE_DEADZONE_MINUS)); break; } case CRX_SET_VALVE_DZ_PLUS_OFFSET: { VALVE_DZ_PLUS_OFFSET = ((float) ((int16_t) (msg.data[1] | msg.data[2] << 8))); VALVE_DEADZONE_PLUS = VALVE_DEADZONE_PLUS + VALVE_DZ_PLUS_OFFSET; // ROM_RESET_DATA(); spi_eeprom_write(RID_VALVE_DEADZONE_PLUS, (int16_t) (VALVE_DEADZONE_PLUS)); break; } case CRX_SET_PID_GAIN_OPP: { if (msg.data[1] == 0) { P_GAIN_VALVE_POSITION = (int16_t) (msg.data[2] | msg.data[3] << 8); I_GAIN_VALVE_POSITION = (int16_t) (msg.data[4] | msg.data[5] << 8); D_GAIN_VALVE_POSITION = (int16_t) (msg.data[6] | msg.data[7] << 8); // ROM_RESET_DATA(); //spi_eeprom_write(RID_P_GAIN_VALVE_POSITION, (int16_t) P_GAIN_VALVE_POSITION); //spi_eeprom_write(RID_I_GAIN_VALVE_POSITION, (int16_t) I_GAIN_VALVE_POSITION); //spi_eeprom_write(RID_D_GAIN_VALVE_POSITION, (int16_t) D_GAIN_VALVE_POSITION); } else if (msg.data[1] == 1) { P_GAIN_JOINT_POSITION = (int16_t) (msg.data[2] | msg.data[3] << 8); I_GAIN_JOINT_POSITION = (int16_t) (msg.data[4] | msg.data[5] << 8); D_GAIN_JOINT_POSITION = (int16_t) (msg.data[6] | msg.data[7] << 8); // ROM_RESET_DATA(); //spi_eeprom_write(RID_P_GAIN_JOINT_POSITION, (int16_t) P_GAIN_JOINT_POSITION); //spi_eeprom_write(RID_I_GAIN_JOINT_POSITION, (int16_t) I_GAIN_JOINT_POSITION); //spi_eeprom_write(RID_D_GAIN_JOINT_POSITION, (int16_t) D_GAIN_JOINT_POSITION); } else if (msg.data[1] == 2) { P_GAIN_JOINT_TORQUE = (int16_t) (msg.data[2] | msg.data[3] << 8); I_GAIN_JOINT_TORQUE = (int16_t) (msg.data[4] | msg.data[5] << 8); D_GAIN_JOINT_TORQUE = (int16_t) (msg.data[6] | msg.data[7] << 8); // ROM_RESET_DATA(); //spi_eeprom_write(RID_P_GAIN_JOINT_TORQUE, (int16_t) P_GAIN_JOINT_TORQUE); //spi_eeprom_write(RID_I_GAIN_JOINT_TORQUE, (int16_t) I_GAIN_JOINT_TORQUE); //spi_eeprom_write(RID_D_GAIN_JOINT_TORQUE, (int16_t) D_GAIN_JOINT_TORQUE); } break; } case CRX_ASK_VALVE_MAX_MIN_POS: { //CAN_TX_DDV_VALVE_DEADZONE(); CAN_TX_DDV_VALVE_MAX_MIN_POS(); break; } case CRX_DELAY_TEST: { flag_delay_test = 1; break; } case CRX_SET_NN_CONTROL_FLAG: { NN_Control_Flag = (int16_t) msg.data[1]; CONTROL_UTILITY_MODE = 1; break; } case CRX_SET_FREQ_TEST: { cnt_freq_test = 0; CONTROL_UTILITY_MODE = 34; break; } case CRX_ASK_BUFFER: { cnt_buffer = (int16_t) (msg.data[1] | msg.data[2] << 8); CAN_TX_BUFFER(cnt_buffer); break; } case CRX_SET_STEP_TEST: { cnt_step_test = 0; CONTROL_UTILITY_MODE = 37; break; } case CRX_SET_CHANGE_EVERY_REFERNCE: { flag_every_reference = 1; break; } default: break; } } void CAN_RX_HANDLER() { can.read(msg); unsigned int address = msg.id; if(address==CID_RX_CMD) { unsigned int CMD = msg.data[0]; ReadCMD(CMD); } else if(address==CID_RX_REF_POSITION) { int16_t temp_pos = (int16_t) (msg.data[0] | msg.data[1] << 8); int16_t temp_vel = (int16_t) (msg.data[2] | msg.data[3] << 8); int16_t temp_torq = (int16_t) (msg.data[4] | msg.data[5] << 8); if((OPERATING_MODE&0b001)==0) { // Rotary Actuator pos.ref = (double)temp_pos * 1.0f; vel.ref = (double)temp_vel * 10.0f; } else { //Linear Actuator pos.ref = (double)temp_pos * 10.0f; vel.ref = (double)temp_vel * 256.0f; } torq.ref = (double)temp_torq * 0.1f / TORQUE_SENSOR_PULSE_PER_TORQUE; //N torq.ref_diff = torq.ref - torq.ref_old; torq_dot.sen = torq.sen-totq_sen_past; torq.ref_old = torq.ref; totq_sen_past = torq.sen; ///////////////Make Data/////////////////// for(int i=0; i<num_array_u_past-1; i++) { u_past[i] = u_past[i+1]; } u_past[num_array_u_past-1] = output_normalized; for(int i=0; i<num_array_x_past-1; i++) { x_past[i] = x_past[i+1]; } x_past[num_array_x_past-1] = pos.sen / ENC_PULSE_PER_POSITION; //mm // for(int i=0;i<num_array_x_future-1;i++){ // x_future[i] = x_future[i+1]; // } // x_future[num_array_x_future-1] = pos.sen / ENC_PULSE_PER_POSITION; //mm for(int i=0; i<num_array_f_past-1; i++) { f_past[i] = f_past[i+1]; } f_past[num_array_f_past-1] = torq.sen; //N f_future[0] = torq.sen; //N if(flag_every_reference == 1) { for(int i=1; i<num_array_f_future-1; i++) { f_future[i] = 500.0f; } f_future[num_array_f_future-1] = 500.0f; //N } else { for(int i=1; i<num_array_f_future-1; i++) { f_future[i] = f_future[i+1]; } f_future[num_array_f_future-1] = torq.ref; //N } } else if(address==CID_RX_REF_VALVE_POS) { int16_t temp_ref_valve_pos = (int16_t) (msg.data[0] | msg.data[1] << 8); if (((OPERATING_MODE&0b110)>>1) == 0) { //Moog Valve valve_pos.ref = (double) temp_ref_valve_pos; } else if (((OPERATING_MODE&0b110)>>1) == 1) { //KNR Valve valve_pos.ref = (double) temp_ref_valve_pos; } else { //SW Valve if(temp_ref_valve_pos >= 0) { valve_pos.ref = (double)VALVE_CENTER + (double)temp_ref_valve_pos * ((double)VALVE_MAX_POS-(double)VALVE_CENTER)/10000.0f; } else { valve_pos.ref = (double)VALVE_CENTER - (double)temp_ref_valve_pos * ((double)VALVE_MIN_POS-(double)VALVE_CENTER)/10000.0f; } } } else if(address==CID_RX_REF_PWM) { int temp_ref_pwm = (int16_t) (msg.data[0] | msg.data[1] << 8); Vout.ref = (double) temp_ref_pwm; } } /****************************************************************************** Information Transmission Functions *******************************************************************************/ void CAN_TX_INFO(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 7; temp_msg.data[0] = (uint8_t) CTX_SEND_INFO; temp_msg.data[1] = (uint8_t) BNO; temp_msg.data[2] = (uint8_t) CAN_FREQ; temp_msg.data[3] = (uint8_t) (CAN_FREQ >> 8); temp_msg.data[4] = (uint8_t) (flag_err[7] << 7 | flag_err[6] << 6 | flag_err[5] << 5 | flag_err[4] << 4 | flag_err[3] << 3 | flag_err[2] << 2 | flag_err[1] << 1 | flag_err[0]); temp_msg.data[5] = (uint8_t) CONTROL_UTILITY_MODE; temp_msg.data[6] = (uint8_t) OPERATING_MODE; can.write(temp_msg); } void CAN_TX_BNO(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 2; temp_msg.data[0] = (uint8_t) CTX_SEND_BNO; temp_msg.data[1] = (uint8_t) BNO; can.write(temp_msg); } void CAN_TX_OPERATING_MODE(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 5; temp_msg.data[0] = (uint8_t) CTX_SEND_OPERATING_MODE; temp_msg.data[1] = (uint8_t) OPERATING_MODE; temp_msg.data[2] = (uint8_t) SENSING_MODE; temp_msg.data[3] = (uint8_t) CURRENT_CONTROL_MODE; temp_msg.data[4] = (uint8_t) FLAG_VALVE_DEADZONE; can.write(temp_msg); } void CAN_TX_CAN_FREQ(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 3; temp_msg.data[0] = (uint8_t) CTX_SEND_CAN_FREQ; temp_msg.data[1] = (uint8_t) CAN_FREQ; temp_msg.data[2] = (uint8_t) (CAN_FREQ >> 8); can.write(temp_msg); } void CAN_TX_CONTROL_MODE(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 2; temp_msg.data[0] = (uint8_t) CTX_SEND_CONTROL_MODE; temp_msg.data[1] = (uint8_t) CONTROL_UTILITY_MODE; can.write(temp_msg); } void CAN_TX_JOINT_ENC_DIR(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 3; temp_msg.data[0] = (uint8_t) CTX_SEND_JOINT_ENC_DIR; temp_msg.data[1] = (uint8_t) DIR_JOINT_ENC; temp_msg.data[2] = (uint8_t) (DIR_JOINT_ENC >> 8); can.write(temp_msg); } void CAN_TX_VALVE_DIR(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 3; temp_msg.data[0] = (uint8_t) CTX_SEND_VALVE_DIR; temp_msg.data[1] = (uint8_t) DIR_VALVE; temp_msg.data[2] = (uint8_t) (DIR_VALVE >> 8); can.write(temp_msg); } void CAN_TX_VALVE_ENC_DIR(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 3; temp_msg.data[0] = (uint8_t) CTX_SEND_VALVE_ENC_DIR; temp_msg.data[1] = (uint8_t) DIR_VALVE_ENC; temp_msg.data[2] = (uint8_t) (DIR_VALVE_ENC >> 8); can.write(temp_msg); } void CAN_TX_VOLTAGE_SUPPLY(void) { int16_t send_voltage_supply = (int16_t) (SUPPLY_VOLTAGE * 10.0f); CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 3; temp_msg.data[0] = (uint8_t) CTX_SEND_VOLTAGE_SUPPLY; temp_msg.data[1] = (uint8_t) (send_voltage_supply); temp_msg.data[2] = (uint8_t) (send_voltage_supply >> 8); can.write(temp_msg); } void CAN_TX_VOLTAGE_VALVE(void) { int16_t send_voltage_valve = (int16_t) (VALVE_VOLTAGE_LIMIT * 10.0f); CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 3; temp_msg.data[0] = (uint8_t) CTX_SEND_VOLTAGE_VALVE; temp_msg.data[1] = (uint8_t) send_voltage_valve; temp_msg.data[2] = (uint8_t) (send_voltage_valve >> 8); can.write(temp_msg); } void CAN_TX_PID_GAIN(int t_type) { // t_type = 0 : valve position control gain // t_type = 1 : joint position control gain // t_type = 2 : joint torque control gain int16_t sendPgain=0, sendIgain=0, sendDgain=0; if (t_type == 0) { sendPgain = (int16_t) (P_GAIN_VALVE_POSITION); sendIgain = (int16_t) (I_GAIN_VALVE_POSITION); sendDgain = (int16_t) (D_GAIN_VALVE_POSITION); } else if (t_type == 1) { sendPgain = (int16_t) (P_GAIN_JOINT_POSITION); sendIgain = (int16_t) (I_GAIN_JOINT_POSITION); sendDgain = (int16_t) (D_GAIN_JOINT_POSITION); } else if (t_type == 2) { sendPgain = (int16_t) (P_GAIN_JOINT_TORQUE); sendIgain = (int16_t) (I_GAIN_JOINT_TORQUE); sendDgain = (int16_t) (D_GAIN_JOINT_TORQUE); } else if (t_type == 3) { sendPgain = (int16_t) (K_SPRING * 10.0f); sendIgain = (int16_t) (D_DAMPER * 100.0f); } CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 8; temp_msg.data[0] = (uint8_t) CTX_SEND_PID_GAIN; temp_msg.data[1] = (uint8_t) t_type; temp_msg.data[2] = (uint8_t) sendPgain; temp_msg.data[3] = (uint8_t) (sendPgain >> 8); temp_msg.data[4] = (uint8_t) sendIgain; temp_msg.data[5] = (uint8_t) (sendIgain >> 8); temp_msg.data[6] = (uint8_t) sendDgain; temp_msg.data[7] = (uint8_t) (sendDgain >> 8); can.write(temp_msg); } void CAN_TX_VALVE_DEADZONE(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 7; temp_msg.data[0] = (uint8_t) CTX_SEND_VALVE_DEADZONE; temp_msg.data[1] = (uint8_t) VALVE_CENTER; temp_msg.data[2] = (uint8_t) (VALVE_CENTER >> 8); temp_msg.data[3] = (uint8_t) (int) (VALVE_DEADZONE_PLUS); temp_msg.data[4] = (uint8_t) ((int) (VALVE_DEADZONE_PLUS) >> 8); temp_msg.data[5] = (uint8_t) (int) (VALVE_DEADZONE_MINUS); temp_msg.data[6] = (uint8_t) ((int) (VALVE_DEADZONE_MINUS) >> 8); can.write(temp_msg); } void CAN_TX_VELOCITY_COMP_GAIN(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 3; temp_msg.data[0] = (uint8_t) CTX_SEND_VELOCITY_COMP_GAIN; temp_msg.data[1] = (uint8_t) VELOCITY_COMP_GAIN; temp_msg.data[2] = (uint8_t) (VELOCITY_COMP_GAIN >> 8); can.write(temp_msg); } void CAN_TX_COMPLIANCE_GAIN(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 3; temp_msg.data[0] = (uint8_t) CTX_SEND_COMPLIANCE_GAIN; temp_msg.data[1] = (uint8_t) COMPLIANCE_GAIN; temp_msg.data[2] = (uint8_t) (COMPLIANCE_GAIN >> 8); can.write(temp_msg); } void CAN_TX_VALVE_FF(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 3; temp_msg.data[0] = (uint8_t) CTX_SEND_VALVE_FF; temp_msg.data[1] = (uint8_t) VALVE_FF; temp_msg.data[2] = (uint8_t) (VALVE_FF >> 8); can.write(temp_msg); } void CAN_TX_BULK_MODULUS(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 3; temp_msg.data[0] = (uint8_t) CTX_SEND_BULK_MODULUS; temp_msg.data[1] = (uint8_t) BULK_MODULUS; temp_msg.data[2] = (uint8_t) (BULK_MODULUS >> 8); can.write(temp_msg); } void CAN_TX_CHAMBER_VOLUME(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 5; temp_msg.data[0] = (uint8_t) CTX_SEND_CHAMBER_VOLUME; temp_msg.data[1] = (uint8_t) CHAMBER_VOLUME_A; temp_msg.data[2] = (uint8_t) (CHAMBER_VOLUME_A >> 8); temp_msg.data[3] = (uint8_t) CHAMBER_VOLUME_B; temp_msg.data[4] = (uint8_t) (CHAMBER_VOLUME_B >> 8); can.write(temp_msg); } void CAN_TX_PISTON_AREA(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 5; temp_msg.data[0] = (uint8_t) CTX_SEND_PISTON_AREA; temp_msg.data[1] = (uint8_t) PISTON_AREA_A; temp_msg.data[2] = (uint8_t) (PISTON_AREA_A >> 8); temp_msg.data[3] = (uint8_t) PISTON_AREA_B; temp_msg.data[4] = (uint8_t) (PISTON_AREA_B >> 8); can.write(temp_msg); } void CAN_TX_PRES_A_AND_B(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 5; temp_msg.data[0] = (uint8_t) CTX_SEND_PRES; temp_msg.data[1] = (uint8_t) PRES_SUPPLY; temp_msg.data[2] = (uint8_t) (PRES_SUPPLY >> 8); temp_msg.data[3] = (uint8_t) PRES_RETURN; temp_msg.data[4] = (uint8_t) (PRES_RETURN >> 8); can.write(temp_msg); } void CAN_TX_ENC_LIMIT(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 5; temp_msg.data[0] = (uint8_t) CTX_SEND_ENC_LIMIT; temp_msg.data[1] = (uint8_t) ENC_LIMIT_MINUS; temp_msg.data[2] = (uint8_t) (ENC_LIMIT_MINUS >> 8); temp_msg.data[3] = (uint8_t) ENC_LIMIT_PLUS; temp_msg.data[4] = (uint8_t) (ENC_LIMIT_PLUS >> 8); can.write(temp_msg); } void CAN_TX_STROKE(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 3; temp_msg.data[0] = (uint8_t) CTX_SEND_STROKE; temp_msg.data[1] = (uint8_t) STROKE; temp_msg.data[2] = (uint8_t) (STROKE >> 8); can.write(temp_msg); } void CAN_TX_VALVE_LIMIT(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 5; temp_msg.data[0] = (uint8_t) CTX_SEND_VALVE_LIMIT; temp_msg.data[1] = (uint8_t) VALVE_MIN_POS; temp_msg.data[2] = (uint8_t) (VALVE_MIN_POS >> 8); temp_msg.data[3] = (uint8_t) VALVE_MAX_POS; temp_msg.data[4] = (uint8_t) (VALVE_MAX_POS >> 8); can.write(temp_msg); } void CAN_TX_ENC_PULSE_PER_POSITION(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 3; temp_msg.data[0] = (uint8_t) CTX_SEND_ENC_PULSE_PER_POSITION; int temp_enc_pulse_per_position = (int) (ENC_PULSE_PER_POSITION); temp_msg.data[1] = (uint8_t) temp_enc_pulse_per_position; temp_msg.data[2] = (uint8_t) (temp_enc_pulse_per_position >> 8); can.write(temp_msg); } void CAN_TX_TORQUE_SENSOR_PULSE_PER_TORQUE(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 3; temp_msg.data[0] = (uint8_t) CTX_SEND_TORQUE_SENSOR_PULSE_PER_TORQUE; int temp_torque_sensor_pulse_per_torque = (int) (TORQUE_SENSOR_PULSE_PER_TORQUE * 10000.0f); temp_msg.data[1] = (uint8_t) temp_torque_sensor_pulse_per_torque; temp_msg.data[2] = (uint8_t) (temp_torque_sensor_pulse_per_torque >> 8); can.write(temp_msg); } void CAN_TX_PRES_SENSOR_PULSE_PER_PRES(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 5; temp_msg.data[0] = (uint8_t) CTX_SEND_PRES_SENSOR_PULSE_PER_BAR; temp_msg.data[1] = (uint8_t) (int) (PRES_SENSOR_A_PULSE_PER_BAR * 100.0f); temp_msg.data[2] = (uint8_t) ((int) (PRES_SENSOR_A_PULSE_PER_BAR * 100.0f) >> 8); temp_msg.data[3] = (uint8_t) (int) (PRES_SENSOR_B_PULSE_PER_BAR * 100.0f); temp_msg.data[4] = (uint8_t) ((int) (PRES_SENSOR_B_PULSE_PER_BAR * 100.0f) >> 8); can.write(temp_msg); } void CAN_TX_FRICTION(void) { CANMessage temp_msg; int16_t send_friction; send_friction = (int16_t) (FRICTION * 10.0f); temp_msg.id = CID_TX_INFO; temp_msg.len = 3; temp_msg.data[0] = (uint8_t) CTX_SEND_FRICTION; temp_msg.data[1] = (uint8_t) send_friction; temp_msg.data[2] = (uint8_t) (send_friction >> 8); can.write(temp_msg); } void CAN_TX_VALVE_GAIN_PLUS(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 6; temp_msg.data[0] = (uint8_t) CTX_SEND_VALVE_GAIN_PLUS; temp_msg.data[1] = (uint8_t) (VALVE_GAIN_LPM_PER_V[0] * 50.0f); temp_msg.data[2] = (uint8_t) (VALVE_GAIN_LPM_PER_V[2] * 50.0f); temp_msg.data[3] = (uint8_t) (VALVE_GAIN_LPM_PER_V[4] * 50.0f); temp_msg.data[4] = (uint8_t) (VALVE_GAIN_LPM_PER_V[6] * 50.0f); temp_msg.data[5] = (uint8_t) (VALVE_GAIN_LPM_PER_V[8] * 50.0f); can.write(temp_msg); } void CAN_TX_DDV_VALVE_DEADZONE(void) { CANMessage temp_msg; float temp_valve_deadzone_minus = 0.0f; float temp_valve_deadzone_plus = 0.0f; float temp_ddv_center = 0.0f; //temp_valve_deadzone_plus = 10000.0f*((double)VALVE_DEADZONE_PLUS-(double)VALVE_CENTER)/((double)VALVE_MAX_POS-(double)VALVE_CENTER); //temp_valve_deadzone_minus = -10000.0f*((double)VALVE_DEADZONE_MINUS-(double)VALVE_CENTER)/((double)VALVE_MIN_POS-(double)VALVE_CENTER); temp_valve_deadzone_plus = (double)VALVE_DEADZONE_PLUS; temp_valve_deadzone_minus = (double)VALVE_DEADZONE_MINUS; temp_ddv_center = (double)VALVE_CENTER; temp_msg.id = CID_TX_INFO; temp_msg.len = 7; temp_msg.data[0] = (uint8_t) CTX_SEND_DDV_VALVE_DEADZONE; temp_msg.data[1] = (uint8_t) temp_valve_deadzone_minus; temp_msg.data[2] = (uint8_t) ((int) (temp_valve_deadzone_minus) >> 8); temp_msg.data[3] = (uint8_t) (temp_valve_deadzone_plus); temp_msg.data[4] = (uint8_t) ((int) (temp_valve_deadzone_plus) >> 8); temp_msg.data[5] = (uint8_t) (temp_ddv_center); temp_msg.data[6] = (uint8_t) ((int) (temp_ddv_center) >> 8); can.write(temp_msg); } void CAN_TX_VALVE_GAIN_MINUS(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 6; temp_msg.data[0] = (uint8_t) CTX_SEND_VALVE_GAIN_MINUS; temp_msg.data[1] = (uint8_t) (VALVE_GAIN_LPM_PER_V[1] * 50.0f); temp_msg.data[2] = (uint8_t) (VALVE_GAIN_LPM_PER_V[3] * 50.0f); temp_msg.data[3] = (uint8_t) (VALVE_GAIN_LPM_PER_V[5] * 50.0f); temp_msg.data[4] = (uint8_t) (VALVE_GAIN_LPM_PER_V[7] * 50.0f); temp_msg.data[5] = (uint8_t) (VALVE_GAIN_LPM_PER_V[9] * 50.0f); can.write(temp_msg); } void CAN_TX_REFENCE_MODE(void) { CANMessage temp_msg; temp_msg.id = CID_TX_INFO; temp_msg.len = 6; temp_msg.data[0] = (uint8_t) CTX_SEND_REFENCE_MODE; temp_msg.data[1] = (uint8_t) REFERENCE_MODE; temp_msg.data[2] = (uint8_t) (int) (REFERENCE_FREQ * 100.0f); temp_msg.data[3] = (uint8_t) ((int) (REFERENCE_FREQ * 100.0f) >> 8); temp_msg.data[4] = (uint8_t) (int) (REFERENCE_MAG * 100.0f); temp_msg.data[5] = (uint8_t) ((int) (REFERENCE_MAG * 100.0f) >> 8); can.write(temp_msg); } void CAN_TX_HOMEPOS_OFFSET(void) { CANMessage temp_msg; int16_t send_homepos_offset; send_homepos_offset = (int16_t) (HOMEPOS_OFFSET); temp_msg.id = CID_TX_INFO; temp_msg.len = 3; temp_msg.data[0] = (uint8_t) CTX_SEND_HOMEPOS_OFFSET; temp_msg.data[1] = (uint8_t) send_homepos_offset; temp_msg.data[2] = (uint8_t) (send_homepos_offset >> 8); can.write(temp_msg); } void CAN_TX_HOMPOS_VALVE_OPENING(void) { CANMessage temp_msg; int16_t send_homepos_valve_opening; send_homepos_valve_opening = (int16_t) (HOMEPOS_VALVE_OPENING); temp_msg.id = CID_TX_INFO; temp_msg.len = 3; temp_msg.data[0] = (uint8_t) CTX_SEND_HOMEPOS_VALVE_OPENING; temp_msg.data[1] = (uint8_t) send_homepos_valve_opening; temp_msg.data[2] = (uint8_t) (send_homepos_valve_opening >> 8); can.write(temp_msg); } void CAN_TX_VALVE_PWM_VS_VALVE_POS(int8_t canindex) { CANMessage temp_msg; int16_t valve_pos_vs_pwm; // valve_pos_vs_pwm = (int16_t) (VALVE_POS_VS_PWM[canindex]); if(VALVE_POS_VS_PWM[canindex]>= (float) VALVE_CENTER) { valve_pos_vs_pwm = 10000.0f*((double)VALVE_POS_VS_PWM[canindex]-(double)VALVE_CENTER)/((double)VALVE_MAX_POS-(double)VALVE_CENTER); } else { valve_pos_vs_pwm = -10000.0f*((double)VALVE_POS_VS_PWM[canindex]-(double)VALVE_CENTER)/((double)VALVE_MIN_POS-(double)VALVE_CENTER); } int16_t PWM_VALVE_ID; PWM_VALVE_ID = ID_index_array[canindex] * 1000; temp_msg.id = CID_TX_INFO; temp_msg.len = 5; temp_msg.data[0] = (uint8_t) CTX_VALVE_PWM_VS_VALVE_POS; temp_msg.data[1] = (uint8_t) PWM_VALVE_ID; temp_msg.data[2] = (uint8_t) (PWM_VALVE_ID >> 8); temp_msg.data[3] = (uint8_t) valve_pos_vs_pwm; temp_msg.data[4] = (uint8_t) (valve_pos_vs_pwm >> 8); can.write(temp_msg); } void CAN_TX_VALVE_POS_VS_FLOWRATE(int8_t canindex) { CANMessage temp_msg; int32_t valve_pos_vs_flowrate; valve_pos_vs_flowrate = (int32_t) (JOINT_VEL[canindex]); int16_t VALVE_POS_VALVE_ID = ID_index_array[canindex] * 10 + VALVE_CENTER; int16_t temp_valve_pos = 0; if(VALVE_POS_VALVE_ID>=VALVE_CENTER) { temp_valve_pos = (int16_t) (10000.0f*((double)VALVE_POS_VALVE_ID-(double)VALVE_CENTER)/((double)VALVE_MAX_POS-(double)VALVE_CENTER)); } else { temp_valve_pos = (int16_t) (-10000.0f*((double)VALVE_POS_VALVE_ID-(double)VALVE_CENTER)/((double)VALVE_MIN_POS-(double)VALVE_CENTER)); } temp_msg.id = CID_TX_INFO; temp_msg.len = 8; temp_msg.data[0] = (uint8_t) CTX_VALVE_POS_VS_FLOWRATE; temp_msg.data[1] = (uint8_t) temp_valve_pos; temp_msg.data[2] = (uint8_t) (temp_valve_pos >> 8); temp_msg.data[5] = (uint8_t) valve_pos_vs_flowrate; temp_msg.data[6] = (uint8_t) (valve_pos_vs_flowrate >> 8); temp_msg.data[7] = (uint8_t) (valve_pos_vs_flowrate >> 16); temp_msg.data[7] = (uint8_t) (valve_pos_vs_flowrate >> 24); can.write(temp_msg); } void CAN_TX_VALVE_POS_NUM(void) { CANMessage temp_msg; int32_t valve_pos_num; valve_pos_num = (int16_t) VALVE_POS_NUM; temp_msg.id = CID_TX_INFO; temp_msg.len = 3; temp_msg.data[0] = (uint8_t) CTX_VALVE_POS_NUM; temp_msg.data[1] = (uint8_t) valve_pos_num; temp_msg.data[2] = (uint8_t) (valve_pos_num >> 8); can.write(temp_msg); } void CAN_TX_DDV_VALVE_MAX_MIN_POS(void) { CANMessage temp_msg; float temp_valve_max_pos = 0.0f; float temp_valve_min_pos = 0.0f; float temp_ddv_center = 0.0f; temp_valve_max_pos = VALVE_MAX_POS; temp_valve_min_pos = VALVE_MIN_POS; temp_ddv_center = VALVE_CENTER; temp_msg.id = CID_TX_INFO; temp_msg.len = 7; temp_msg.data[0] = (uint8_t) CTX_VALVE_MAX_MIN_POS; temp_msg.data[1] = (uint8_t) temp_valve_max_pos; temp_msg.data[2] = (uint8_t) ((int) (temp_valve_max_pos) >> 8); temp_msg.data[3] = (uint8_t) (temp_valve_min_pos); temp_msg.data[4] = (uint8_t) ((int) (temp_valve_min_pos) >> 8); temp_msg.data[5] = (uint8_t) (temp_ddv_center); temp_msg.data[6] = (uint8_t) ((int) (temp_ddv_center) >> 8); can.write(temp_msg); } void CAN_TX_BUFFER(int16_t t_cnt_buffer) { CANMessage temp_msg; int16_t send_pos_array, send_ref_array; send_pos_array = (int16_t) (pos_array[t_cnt_buffer]); send_ref_array = (int16_t) (ref_array[t_cnt_buffer]); temp_msg.id = CID_TX_INFO; temp_msg.len = 5; temp_msg.data[0] = (uint8_t) CTX_SEND_BUFFER; temp_msg.data[1] = (uint8_t) send_pos_array; temp_msg.data[2] = (uint8_t) (send_pos_array >> 8); temp_msg.data[3] = (uint8_t) (send_ref_array); temp_msg.data[4] = (uint8_t) ((send_ref_array) >> 8); can.write(temp_msg); } /****************************************************************************** Sensor & State Transmission Functions *******************************************************************************/ void CAN_TX_POSITION_FT(int16_t t_pos, int16_t t_vel, int16_t t_torq) { CANMessage temp_msg; temp_msg.id = CID_TX_POSITION; temp_msg.len = 6; temp_msg.data[0] = (uint8_t) t_pos; temp_msg.data[1] = (uint8_t) (t_pos >> 8); temp_msg.data[2] = (uint8_t) t_vel; temp_msg.data[3] = (uint8_t) (t_vel >> 8); temp_msg.data[4] = (uint8_t) t_torq; temp_msg.data[5] = (uint8_t) (t_torq >> 8); can.write(temp_msg); } void CAN_TX_POSITION_PRESSURE(int16_t t_pos, int16_t t_vel, int16_t t_pa, int16_t t_pb) { CANMessage temp_msg; temp_msg.id = CID_TX_POSITION; temp_msg.len = 8; temp_msg.data[0] = (uint8_t) t_pos; temp_msg.data[1] = (uint8_t) (t_pos >> 8); temp_msg.data[2] = (uint8_t) t_vel; temp_msg.data[3] = (uint8_t) (t_vel >> 8); temp_msg.data[4] = (uint8_t) t_pa; temp_msg.data[5] = (uint8_t) (t_pa >> 8); temp_msg.data[6] = (uint8_t) t_pb; temp_msg.data[7] = (uint8_t) (t_pb >> 8); can.write(temp_msg); } //void CAN_TX_TORQUE(int16_t t_valve_pos, int16_t t_vout) { // CANMessage temp_msg; // // temp_msg.id = CID_TX_TORQUE; // temp_msg.len = 4; // temp_msg.data[0] = (uint8_t) t_valve_pos; // temp_msg.data[1] = (uint8_t) (t_valve_pos >> 8); // temp_msg.data[2] = (uint8_t) t_vout; // temp_msg.data[3] = (uint8_t) (t_vout >> 8); // // can.write(temp_msg); //} void CAN_TX_TORQUE(int16_t t_valve_pos) { CANMessage temp_msg; temp_msg.id = CID_TX_TORQUE; temp_msg.len = 2; temp_msg.data[0] = (uint8_t) t_valve_pos; temp_msg.data[1] = (uint8_t) (t_valve_pos >> 8); can.write(temp_msg); } void CAN_TX_PRES(int16_t t_pres_a, int16_t t_pres_b) { CANMessage temp_msg; temp_msg.id = CID_TX_PRES; temp_msg.len = 4; temp_msg.data[0] = (uint8_t) t_pres_a; temp_msg.data[1] = (uint8_t) (t_pres_a >> 8); temp_msg.data[2] = (uint8_t) t_pres_b; temp_msg.data[3] = (uint8_t) (t_pres_b >> 8); can.write(temp_msg); } void CAN_TX_PWM(int16_t t_pwm) { CANMessage temp_msg; temp_msg.id = CID_TX_VOUT; temp_msg.len = 2; temp_msg.data[0] = (uint8_t) t_pwm; temp_msg.data[1] = (uint8_t) (t_pwm >> 8); can.write(temp_msg); } void CAN_TX_VALVE_POSITION(int16_t t_valve_pos_1, int16_t t_valve_pos_2, int16_t t_ref_valve_pos, int16_t t_pwm) { CANMessage temp_msg; temp_msg.id = CID_TX_VALVE_POSITION; temp_msg.len = 8; temp_msg.data[0] = (uint8_t) t_valve_pos_1; temp_msg.data[1] = (uint8_t) (t_valve_pos_1 >> 8); temp_msg.data[2] = (uint8_t) t_valve_pos_2; temp_msg.data[3] = (uint8_t) (t_valve_pos_2 >> 8); temp_msg.data[4] = (uint8_t) t_ref_valve_pos; temp_msg.data[5] = (uint8_t) (t_ref_valve_pos >> 8); temp_msg.data[6] = (uint8_t) t_pwm; temp_msg.data[7] = (uint8_t) (t_pwm >> 8); can.write(temp_msg); }