Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Diff: main.cpp
- Revision:
- 0:bc5b57f59735
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/main.cpp Thu Sep 21 14:20:17 2017 +0000 @@ -0,0 +1,265 @@ +#include "mbed.h" +#include "MPU9250.h" +#include "TextLCD.h" + +struct UART_buf +{ + uint8_t STA; + uint8_t MODE; + uint8_t CMD; + uint8_t LEN; + uint8_t DATA[32]; + uint8_t END; + +}; + +union Data_DB{ + int16_t data16; + uint8_t data8[2]; +}Data_Tr; + +MPU9250 mpu9250; + +Ticker Sensor_Timer; + +Serial SerialUART(PA_2, PA_3); // tx, rx + +// rs, rw, e, d0-d3 +TextLCD lcd(PB_12, PB_13, PB_14, PB_15, PA_9, PA_10, PA_11); + +uint8_t Buffer[37]; +volatile uint8_t Sensor_flag = 0; + +UART_buf RX_BUF; + +void SerialUARTRX_ISR(void); +void Timer_setting(uint8_t cmd, uint8_t value); +void Sensor_Read(void); + +int main() +{ + SerialUART.baud(115200); + + //Set up I2C + i2c.frequency(400000); // use fast (400 kHz) I2C + + // Read the WHO_AM_I register, this is a good test of communication + uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250 + //SerialUART.printf("I AM 0x%x\n\r", whoami); SerialUART.printf("I SHOULD BE 0x71\n\r"); + + if (whoami == 0x71) // WHO_AM_I should always be 0x68 + { + /*SerialUART.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami); + SerialUART.printf("MPU9250 is online...\n\r");*/ + lcd.printf("MPU9250 is 0x%x\n",whoami); + lcd.printf(" Connected "); + + wait(1); + + mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration + mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values + /*SerialUART.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]); + SerialUART.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]); + SerialUART.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]); + SerialUART.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]); + SerialUART.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]); + SerialUART.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]); */ + mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers + /*SerialUART.printf("x gyro bias = %f\n\r", gyroBias[0]); + SerialUART.printf("y gyro bias = %f\n\r", gyroBias[1]); + SerialUART.printf("z gyro bias = %f\n\r", gyroBias[2]); + SerialUART.printf("x accel bias = %f\n\r", accelBias[0]); + SerialUART.printf("y accel bias = %f\n\r", accelBias[1]); + SerialUART.printf("z accel bias = %f\n\r", accelBias[2]);*/ + wait(2); + mpu9250.initMPU9250(); + //SerialUART.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature + mpu9250.initAK8963(magCalibration); + /*SerialUART.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer + SerialUART.printf("Accelerometer full-scale range = %f g\n\r", 2.0f*(float)(1<<Ascale)); + pSerialUARTc.printf("Gyroscope full-scale range = %f deg/s\n\r", 250.0f*(float)(1<<Gscale)); + if(Mscale == 0) SerialUART.printf("Magnetometer resolution = 14 bits\n\r"); + if(Mscale == 1) SerialUART.printf("Magnetometer resolution = 16 bits\n\r"); + if(Mmode == 2) SerialUART.printf("Magnetometer ODR = 8 Hz\n\r"); + if(Mmode == 6) SerialUART.printf("Magnetometer ODR = 100 Hz\n\r");*/ + wait(1); + } + else + { + //SerialUART.printf("Could not connect to MPU9250: \n\r"); + //SerialUART.printf("%#x \n", whoami); + + lcd.printf("MPU9250 is 0x%x\n",whoami); + lcd.printf(" No connection "); + + while(1) ; // Loop forever if communication doesn't happen + } + + mpu9250.getAres(); // Get accelerometer sensitivity + mpu9250.getGres(); // Get gyro sensitivity + mpu9250.getMres(); // Get magnetometer sensitivity +/* pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes); + pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes); + pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes);*/ +// magbias[0] = +470.; // User environmental x-axis correction in milliGauss, should be automatically calculated +// magbias[1] = +120.; // User environmental x-axis correction in milliGauss +// magbias[2] = +125.; // User environmental x-axis correction in milliGauss + + SerialUART.attach(&SerialUARTRX_ISR); + + //Timer_setting(0x06, 200); + Sensor_Timer.attach(&Sensor_Read, 0.05); + + while(1) + { + if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) { // On interrupt, check if data ready interrupt + + mpu9250.readAccelData(accelCount); // Read the x/y/z adc values + mpu9250.readGyroData(gyroCount); // Read the x/y/z adc values + mpu9250.readMagData(magCount); // Read the x/y/z adc values + // Now we'll calculate the accleration value into actual g's + if(Sensor_flag) + { + Sensor_flag = 0; + + ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set + ay = (float)accelCount[1]*aRes - accelBias[1]; + az = (float)accelCount[2]*aRes - accelBias[2]; + + // Calculate the gyro value into actual degrees per second + gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set + gy = (float)gyroCount[1]*gRes - gyroBias[1]; + gz = (float)gyroCount[2]*gRes - gyroBias[2]; + + // Calculate the magnetometer values in milliGauss + // Include factory calibration per data sheet and user environmental corrections + mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]; // get actual magnetometer value, this depends on scale being set + my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1]; + mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2]; + + Buffer[0] = 0x76; + Buffer[1] = 0x02; + Buffer[2] = 0x01; + Buffer[3] = 18; + Data_Tr.data16 = (int16_t)gx; + Buffer[4] = Data_Tr.data8[1]; + Buffer[5] = Data_Tr.data8[0]; + Data_Tr.data16 = (int16_t)gy; + Buffer[6] = Data_Tr.data8[1]; + Buffer[7] = Data_Tr.data8[0]; + Data_Tr.data16 = (int16_t)gz; + Buffer[8] = Data_Tr.data8[1]; + Buffer[9] = Data_Tr.data8[0]; + Data_Tr.data16 = (int16_t)(ax * 1000); + Buffer[10] = Data_Tr.data8[1]; + Buffer[11] = Data_Tr.data8[0]; + Data_Tr.data16 = (int16_t)(ay * 1000); + Buffer[12] = Data_Tr.data8[1]; + Buffer[13] = Data_Tr.data8[0]; + Data_Tr.data16 = (int16_t)(az * 1000); + Buffer[14] = Data_Tr.data8[1]; + Buffer[15] = Data_Tr.data8[0]; + Data_Tr.data16 = (int16_t)mx; + Buffer[16] = Data_Tr.data8[1]; + Buffer[17] = Data_Tr.data8[0]; + Data_Tr.data16 = (int16_t)my; + Buffer[18] = Data_Tr.data8[1]; + Buffer[19] = Data_Tr.data8[0]; + Data_Tr.data16 = (int16_t)mz; + Buffer[20] = Data_Tr.data8[1]; + Buffer[21] = Data_Tr.data8[0]; + Buffer[22] = 0x3E; + + for(int i=0; i<23; i++) + SerialUART.putc(Buffer[i]); + } + } + } +} + +void SerialUARTRX_ISR(void) +{ + static uint8_t RX_count = 0, RX_Len = 32, RX_Status = 0; + uint8_t rx_da = SerialUART.getc(); + switch(RX_Status) + { + case 0: + if(rx_da == 0x76) + { + RX_BUF.STA = rx_da; + RX_Status++; + } + break; + case 1: + RX_BUF.MODE = rx_da; + RX_Status++; + break; + case 2: + RX_BUF.CMD = rx_da; + RX_Status++; + break; + case 3: + RX_BUF.LEN = rx_da; + RX_Len = RX_BUF.LEN; + RX_Status++; + if(RX_Len == 0) + RX_Status++; + break; + case 4: + RX_BUF.DATA[RX_count] = rx_da; + RX_count++; + if(RX_count == RX_Len) + { + RX_Status++; + RX_count = 0; + RX_Len = 32; + } + break; + case 5: + if(rx_da == 0x3E) + { + RX_BUF.END = rx_da; + RX_Status = 0; + switch(RX_BUF.MODE) + { + case 0x04: + Timer_setting(RX_BUF.CMD, RX_BUF.DATA[0]); + break; + } + } + break; + } +} + +void Timer_setting(uint8_t cmd, uint8_t value) +{ + double Time_value = 0; + switch(cmd) + { + case 0x01: + Time_value = 30; + break; + case 0x02: + Time_value = 60; + break; + case 0x03: + Time_value = 120; + break; + case 0x04: + Time_value = 300; + break; + case 0x05: + Time_value = 600; + break; + case 0x06: + Time_value = value; + Time_value = 1.0/Time_value; + break; + } + Sensor_Timer.attach(&Sensor_Read, Time_value); +} + +void Sensor_Read(void) +{ + Sensor_flag = 1; +} \ No newline at end of file