forked

targets/TARGET_STM/TARGET_STM32L1/analogin_api.c

Committer:
Kojto
Date:
2017-08-03
Revision:
170:19eb464bc2be
Parent:
160:d5399cc887bb

File content as of revision 170:19eb464bc2be:

/* mbed Microcontroller Library
 * Copyright (c) 2016, STMicroelectronics
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 * 3. Neither the name of STMicroelectronics nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
#include "mbed_assert.h"
#include "analogin_api.h"

#if DEVICE_ANALOGIN

#include "mbed_wait_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "mbed_error.h"
#include "PeripheralPins.h"

ADC_HandleTypeDef AdcHandle;

int adc_inited = 0;

void analogin_init(analogin_t *obj, PinName pin)
{
    RCC_OscInitTypeDef RCC_OscInitStruct;

    // Get the peripheral name from the pin and assign it to the object
    obj->adc = (ADCName)pinmap_peripheral(pin, PinMap_ADC);
    MBED_ASSERT(obj->adc != (ADCName)NC);

    // Get the pin function and assign the used channel to the object
    uint32_t function = pinmap_function(pin, PinMap_ADC);
    MBED_ASSERT(function != (uint32_t)NC);
    obj->channel = STM_PIN_CHANNEL(function);

    // Configure GPIO excepted for internal channels (Temperature, Vref, Vbat, ...)
    // ADC Internal Channels "pins" are described in PinNames.h and must have a value >= 0xF0
    if (pin < 0xF0) {
        pinmap_pinout(pin, PinMap_ADC);
    }

    // Save pin number for the read function
    obj->pin = pin;

    // The ADC initialization is done once
    if (adc_inited == 0) {
        adc_inited = 1;

        // Enable the HSI (to clock the ADC)
        RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
        RCC_OscInitStruct.HSIState       = RCC_HSI_ON;
        RCC_OscInitStruct.PLL.PLLState   = RCC_PLL_NONE;
        RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
        HAL_RCC_OscConfig(&RCC_OscInitStruct);

        AdcHandle.Instance = (ADC_TypeDef *)(obj->adc);

        // Enable ADC clock
        __ADC1_CLK_ENABLE();

        // Configure ADC
        AdcHandle.Init.ClockPrescaler        = ADC_CLOCK_ASYNC_DIV4;
        AdcHandle.Init.Resolution            = ADC_RESOLUTION12b;
        AdcHandle.Init.DataAlign             = ADC_DATAALIGN_RIGHT;
        AdcHandle.Init.ScanConvMode          = DISABLE;                       // Sequencer disabled (ADC conversion on only 1 channel: channel set on rank 1)
        AdcHandle.Init.EOCSelection          = EOC_SINGLE_CONV;               // On STM32L1xx ADC, overrun detection is enabled only if EOC selection is set to each conversion (or transfer by DMA enabled, this is not the case in this example).
        AdcHandle.Init.LowPowerAutoWait      = ADC_AUTOWAIT_UNTIL_DATA_READ;  // Enable the dynamic low power Auto Delay: new conversion start only when the previous conversion (for regular group) or previous sequence (for injected group) has been treated by user software.
        AdcHandle.Init.LowPowerAutoPowerOff  = ADC_AUTOPOWEROFF_IDLE_PHASE;   // Enable the auto-off mode: the ADC automatically powers-off after a conversion and automatically wakes-up when a new conversion is triggered (with startup time between trigger and start of sampling).
        AdcHandle.Init.ChannelsBank          = ADC_CHANNELS_BANK_A;
        AdcHandle.Init.ContinuousConvMode    = DISABLE;                       // Continuous mode disabled to have only 1 conversion at each conversion trig
        AdcHandle.Init.NbrOfConversion       = 1;                             // Parameter discarded because sequencer is disabled
        AdcHandle.Init.DiscontinuousConvMode = DISABLE;                       // Parameter discarded because sequencer is disabled
        AdcHandle.Init.NbrOfDiscConversion   = 1;                             // Parameter discarded because sequencer is disabled
        AdcHandle.Init.ExternalTrigConv      = 0;                             // Not used
        AdcHandle.Init.ExternalTrigConvEdge  = ADC_EXTERNALTRIGCONVEDGE_NONE;
        AdcHandle.Init.DMAContinuousRequests = DISABLE;

        if (HAL_ADC_Init(&AdcHandle) != HAL_OK) {
            error("Cannot initialize ADC");
        }
    }
}

static inline uint16_t adc_read(analogin_t *obj)
{
    ADC_ChannelConfTypeDef sConfig = {0};

    AdcHandle.Instance = (ADC_TypeDef *)(obj->adc);

    // Configure ADC channel
    switch (obj->channel) {
        case 0:
            sConfig.Channel = ADC_CHANNEL_0;
            break;
        case 1:
            sConfig.Channel = ADC_CHANNEL_1;
            break;
        case 2:
            sConfig.Channel = ADC_CHANNEL_2;
            break;
        case 3:
            sConfig.Channel = ADC_CHANNEL_3;
            break;
        case 4:
            sConfig.Channel = ADC_CHANNEL_4;
            break;
        case 5:
            sConfig.Channel = ADC_CHANNEL_5;
            break;
        case 6:
            sConfig.Channel = ADC_CHANNEL_6;
            break;
        case 7:
            sConfig.Channel = ADC_CHANNEL_7;
            break;
        case 8:
            sConfig.Channel = ADC_CHANNEL_8;
            break;
        case 9:
            sConfig.Channel = ADC_CHANNEL_9;
            break;
        case 10:
            sConfig.Channel = ADC_CHANNEL_10;
            break;
        case 11:
            sConfig.Channel = ADC_CHANNEL_11;
            break;
        case 12:
            sConfig.Channel = ADC_CHANNEL_12;
            break;
        case 13:
            sConfig.Channel = ADC_CHANNEL_13;
            break;
        case 14:
            sConfig.Channel = ADC_CHANNEL_14;
            break;
        case 15:
            sConfig.Channel = ADC_CHANNEL_15;
            break;
        case 16:
            sConfig.Channel = ADC_CHANNEL_TEMPSENSOR;
            break;
        case 17:
            sConfig.Channel = ADC_CHANNEL_VREFINT;
            break;
        case 18:
            sConfig.Channel = ADC_CHANNEL_18;
            break;
        case 19:
            sConfig.Channel = ADC_CHANNEL_19;
            break;
        case 20:
            sConfig.Channel = ADC_CHANNEL_20;
            break;
        case 21:
            sConfig.Channel = ADC_CHANNEL_21;
            break;
        case 22:
            sConfig.Channel = ADC_CHANNEL_22;
            break;
        case 23:
            sConfig.Channel = ADC_CHANNEL_23;
            break;
        case 24:
            sConfig.Channel = ADC_CHANNEL_24;
            break;
        case 25:
            sConfig.Channel = ADC_CHANNEL_25;
            break;
        case 26:
            sConfig.Channel = ADC_CHANNEL_26;
            break;
#ifdef ADC_CHANNEL_27
        case 27:
            sConfig.Channel = ADC_CHANNEL_27;
            break;
#endif
#ifdef ADC_CHANNEL_28
        case 28:
            sConfig.Channel = ADC_CHANNEL_28;
            break;
#endif
#ifdef ADC_CHANNEL_29
        case 29:
            sConfig.Channel = ADC_CHANNEL_29;
            break;
#endif
#ifdef ADC_CHANNEL_30
        case 30:
            sConfig.Channel = ADC_CHANNEL_30;
            break;
#endif
#ifdef ADC_CHANNEL_31
        case 31:
            sConfig.Channel = ADC_CHANNEL_31;
            break;
#endif
        default:
            return 0;
    }

    sConfig.Rank         = ADC_REGULAR_RANK_1;
    sConfig.SamplingTime = ADC_SAMPLETIME_16CYCLES;

    HAL_ADC_ConfigChannel(&AdcHandle, &sConfig);

    HAL_ADC_Start(&AdcHandle); // Start conversion

    // Wait end of conversion and get value
    if (HAL_ADC_PollForConversion(&AdcHandle, 10) == HAL_OK) {
        return (HAL_ADC_GetValue(&AdcHandle));
    } else {
        return 0;
    }
}

uint16_t analogin_read_u16(analogin_t *obj)
{
    uint16_t value = adc_read(obj);
    // 12-bit to 16-bit conversion
    value = ((value << 4) & (uint16_t)0xFFF0) | ((value >> 8) & (uint16_t)0x000F);
    return value;
}

float analogin_read(analogin_t *obj)
{
    uint16_t value = adc_read(obj);
    return (float)value * (1.0f / (float)0xFFF); // 12 bits range
}

#endif