forked
targets/TARGET_ONSEMI/TARGET_NCS36510/rtc.c
- Committer:
- Kojto
- Date:
- 2017-08-03
- Revision:
- 170:19eb464bc2be
- Parent:
- 167:e84263d55307
File content as of revision 170:19eb464bc2be:
/** ******************************************************************************* * @file rtc.c * @brief Implementation of a Rtc driver * @internal * @author ON Semiconductor * $Rev: 3525 $ * $Date: 2015-07-20 15:24:25 +0530 (Mon, 20 Jul 2015) $ ****************************************************************************** * Copyright 2016 Semiconductor Components Industries LLC (d/b/a �ON Semiconductor�). * All rights reserved. This software and/or documentation is licensed by ON Semiconductor * under limited terms and conditions. The terms and conditions pertaining to the software * and/or documentation are available at http://www.onsemi.com/site/pdf/ONSEMI_T&C.pdf * (�ON Semiconductor Standard Terms and Conditions of Sale, Section 8 Software�) and * if applicable the software license agreement. Do not use this software and/or * documentation unless you have carefully read and you agree to the limited terms and * conditions. By using this software and/or documentation, you agree to the limited * terms and conditions. * * THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED * OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. * ON SEMICONDUCTOR SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, * INCIDENTAL, OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER. * @endinternal * * @ingroup rtc * * @details * A real-time clock (RTC) is a computer clock ,that keeps track of the current time. The heart of the RTC is a series of * freely running counters one for each time unit, The series of counters is linked as follows: a roll over event of * the seconds counter produces a minutes enable pulse; a roll over event of the minutes counter produces an hours * enable pulse, etc.Note that all Counter registers are in an undefined state on power-up. * Use the Reset bit in the Control Register to reset the counters to their default values. * DIVISOR is the register containing the value to divide the clock frequency to produce 1Hz strobe ; 1Hz strobe is used * internally to time the incrementing of the Seconds Counter. * There is a set of register to set the values in the counter for each time unit.from where time is start to increment. * There is another set of register to set the ALARM ...Each of the Alarm Registers can be programmed with a value that * is used to compare to a Counter Register in order to produce an alarm (an interrupt) when the values match. * There is a programmable bit in each Alarm Register that determines if the alarm occurs upon a value match, or * if the alarm occurs upon a Counter increment condition. * */ #include "rtc.h" #include "mbed_assert.h" #include "lp_ticker_api.h" static volatile uint64_t last_time_read; /** * Convert sub seconds ticks to micro seconds. * The clock running at 32kHz, a tick is 1/32768 of a second. */ static inline uint32_t ticks_to_us(uint16_t ticks) { return (((uint64_t)ticks * RTC_SEC_TO_US) / RTC_CLOCK_HZ); } /** * Convert us into sub seconds ticks. * @note result might be troncated to be in the range [0 - RTC_SUB_SEC_MASK]. */ static inline uint16_t us_to_ticks(uint32_t us) { return (((uint64_t) us * RTC_CLOCK_HZ) / RTC_SEC_TO_US) & RTC_SUB_SEC_MASK; } #define RTC_TICK_THRESHOLD 5 /* See rtc.h for details */ void fRtcInit(void) { CLOCK_ENABLE(CLOCK_RTC); /* enable rtc peripheral */ CLOCKREG->CCR.BITS.RTCEN = True; /* Enable RTC clock 32K */ /* Reset RTC control register */ RTCREG->CONTROL.WORD = 0; /* Initialize all counters */ RTCREG->SECOND_COUNTER = 0; RTCREG->SUB_SECOND_COUNTER = 0; RTCREG->SECOND_ALARM = 0; RTCREG->SUB_SECOND_ALARM = 0; last_time_read = 0; /* Reset RTC Status register */ RTCREG->STATUS.WORD = 0; /* Clear interrupt status */ RTCREG->INT_CLEAR.WORD = ( (1 << RTC_INT_CLR_SUB_SEC_BIT_POS) | (1 << RTC_INT_CLR_SEC_BIT_POS) ); /* Wait previous write to complete */ while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True); /* Start sec & sub_sec counter */ RTCREG->CONTROL.WORD |= ( (True << RTC_CONTROL_SUBSEC_CNT_START_BIT_POS) | (True << RTC_CONTROL_SEC_CNT_START_BIT_POS) ); /* enable interruption associated with the rtc at NVIC level */ NVIC_SetVector(Rtc_IRQn,(uint32_t) fRtcHandler); /* TODO define lp_ticker_isr */ NVIC_ClearPendingIRQ(Rtc_IRQn); NVIC_EnableIRQ(Rtc_IRQn); /* Wait for RTC to finish writing register */ while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True); } /* See rtc.h for details */ void fRtcFree(void) { /* Disable interrupts and counter */ RTCREG->CONTROL.WORD = 0; /* disable interruption associated with the rtc */ NVIC_DisableIRQ(Rtc_IRQn); /* Wait for RTC to finish writing register */ while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True); } /* See rtc.h for details */ void fRtcSetInterrupt(uint32_t timestamp) { uint64_t current_time = fRtcRead(); /* compute delta between current time and timestamp. * Note: the current time used to compute the delta is relative (truncated * to 32 bits). */ int32_t delta = timestamp - (uint32_t) current_time; if (delta <= 0) { // event considered in the past, set the interrupt as pending. NVIC_SetPendingIRQ(Rtc_IRQn); return; } uint64_t full_timestamp = (current_time & ~UINT32_MAX) | timestamp; if ( (uint32_t)current_time > timestamp) { full_timestamp += ((uint64_t) UINT32_MAX) + 1; } uint32_t target_seconds = full_timestamp / RTC_SEC_TO_US; uint16_t target_ticks = us_to_ticks(full_timestamp); /* * If the interrupt is in more than one second from now then use the * second alarm, otherwise use the subsecond alarm. * In case of the second alarm is used, there is no need to preserve the * remaining subsecond because the irq handler should manage spurious * interrupts (like when the timestamp is in the past). In such case, irq * handler will schedule a new interrupt with the remaining us. */ NVIC_DisableIRQ(Rtc_IRQn); if (target_seconds != RTCREG->SECOND_COUNTER) { RTCREG->SECOND_ALARM = target_seconds; uint32_t rtc_control = RTCREG->CONTROL.WORD; rtc_control |= (1 << RTC_CONTROL_SEC_CNT_INT_BIT_POS); // enable seconds interrupt rtc_control &= ~(1 << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS); // disable sub sec interrupt RTCREG->CONTROL.WORD = rtc_control; } else { uint16_t current_ticks = RTCREG->SUB_SECOND_COUNTER; if (current_ticks == target_ticks || ((target_ticks > current_ticks) && ((target_ticks - current_ticks) < RTC_TICK_THRESHOLD)) || ((target_ticks < current_ticks) && ((RTC_SUB_SEC_MASK - (current_ticks - target_ticks)) < RTC_TICK_THRESHOLD))) { // target ticks too close; schedule the interrupt immediately NVIC_SetPendingIRQ(Rtc_IRQn); } else { RTCREG->SUB_SECOND_ALARM = target_ticks; uint32_t rtc_control = RTCREG->CONTROL.WORD; rtc_control &= ~(1 << RTC_CONTROL_SEC_CNT_INT_BIT_POS); // disable seconds interrupt rtc_control |= (1 << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS); // enable sub sec interrupt RTCREG->CONTROL.WORD = rtc_control; } } NVIC_EnableIRQ(Rtc_IRQn); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/ while(RTCREG->STATUS.WORD & ( (True << RTC_STATUS_SUB_SEC_ALARM_WRT_BIT_POS) | (True << RTC_STATUS_SEC_ALARM_WRT_BIT_POS) | (True << RTC_STATUS_CONTROL_WRT_BIT_POS) ) ); } /* See rtc.h for details */ void fRtcDisableInterrupt(void) { NVIC_DisableIRQ(Rtc_IRQn); } /* See rtc.h for details */ void fRtcEnableInterrupt(void) { NVIC_EnableIRQ(Rtc_IRQn); } /* See rtc.h for details */ void fRtcClearInterrupt(void) { /* Disable subsec/sec interrupt */ /* Clear sec & sub_sec interrupts */ RTCREG->INT_CLEAR.WORD = ((True << RTC_INT_CLR_SUB_SEC_BIT_POS) | (True << RTC_INT_CLR_SEC_BIT_POS)); while((RTCREG->STATUS.WORD & ((True << RTC_STATUS_SUB_SEC_INT_CLR_WRT_BIT_POS) | (True << RTC_STATUS_SEC_INT_CLR_WRT_BIT_POS)))); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/ } /* See rtc.h for details */ uint64_t fRtcRead(void) { /* Hardware Bug fix: The rollover of the sub-second counter initiates the increment of the second counter. * That means there is one cycle where the sub-second has rolled back to zero and the second counter has not incremented * and a read during that cycle will be incorrect. That will occur for one RTC cycle and that is about 31us of exposure. * If you read a zero in the sub-second counter then increment the second counter by 1. * Alternatively, subtract 1 from the Sub-seconds counter to align the Second and Sub-Second rollover. */ uint32_t seconds = RTCREG->SECOND_COUNTER; uint16_t ticks = (RTCREG->SUB_SECOND_COUNTER - 1) & SUB_SEC_MASK; /* * If seconds has changed while reading ticks, read them both again. */ while (seconds != RTCREG->SECOND_COUNTER) { seconds = RTCREG->SECOND_COUNTER; ticks = (RTCREG->SUB_SECOND_COUNTER - 1) & SUB_SEC_MASK; } uint64_t current_time = ((uint64_t) seconds * RTC_SEC_TO_US) + ticks_to_us(ticks); /*check that the time did not go backwards */ MBED_ASSERT(current_time >= last_time_read); last_time_read = current_time; return current_time; } /* See rtc.h for details */ void fRtcWrite(uint64_t RtcTimeus) { uint32_t Second = False; uint16_t SubSecond = False; /* Stop RTC */ RTCREG->CONTROL.WORD &= ~((True << RTC_CONTROL_SUBSEC_CNT_START_BIT_POS) | (True << RTC_CONTROL_SEC_CNT_START_BIT_POS)); if(RtcTimeus > RTC_SEC_TO_US) { /* TimeStamp is big enough to set second counter */ Second = ((RtcTimeus / RTC_SEC_TO_US) & RTC_SEC_MASK); } RTCREG->SECOND_COUNTER = Second; RtcTimeus = RtcTimeus - (Second * RTC_SEC_TO_US); if(RtcTimeus > False) { /* Convert TimeStamp to sub_seconds */ SubSecond = (uint16_t)((float)(RtcTimeus * RTC_CLOCK_HZ / RTC_SEC_TO_US)) & RTC_SUB_SEC_MASK; } /* Set SUB_SEC_ALARM */ RTCREG->SUB_SECOND_COUNTER = SubSecond; while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/ /* Start RTC */ RTCREG->CONTROL.WORD |= ((True << RTC_CONTROL_SUBSEC_CNT_START_BIT_POS) | (True << RTC_CONTROL_SEC_CNT_START_BIT_POS)); while(RTCREG->STATUS.BITS.BSY_ANY_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/ } /* See rtc.h for details */ void fRtcHandler(void) { /* Disable RTC interrupt */ NVIC_DisableIRQ(Rtc_IRQn); /* Clear sec & sub_sec interrupts */ RTCREG->INT_CLEAR.WORD = ( (True << RTC_INT_CLR_SUB_SEC_BIT_POS) | (True << RTC_INT_CLR_SEC_BIT_POS) ); /* Disable sub seconds and seconds interrupts */ RTCREG->CONTROL.WORD &= ~( (True << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS) | (True << RTC_CONTROL_SEC_CNT_INT_BIT_POS) ); NVIC_EnableIRQ(Rtc_IRQn); /* Wait for RTC to finish writing registers */ while(RTCREG->STATUS.WORD & ( (True << RTC_STATUS_CONTROL_WRT_BIT_POS) | (True << RTC_STATUS_SUB_SEC_INT_CLR_WRT_BIT_POS) | (True << RTC_STATUS_SEC_INT_CLR_WRT_BIT_POS) ) ); lp_ticker_irq_handler(); } boolean fIsRtcEnabled(void) { if(RTCREG->CONTROL.BITS.SUB_SEC_COUNTER_EN | RTCREG->CONTROL.BITS.SEC_COUNTER_EN) { return True; } else { return False; } }