forked
targets/TARGET_NXP/TARGET_LPC43XX/analogin_api.c
- Committer:
- Kojto
- Date:
- 2017-08-03
- Revision:
- 170:19eb464bc2be
- Parent:
- 149:156823d33999
File content as of revision 170:19eb464bc2be:
/* mbed Microcontroller Library * Copyright (c) 2006-2013 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Ported to NXP LPC43XX by Micromint USA <support@micromint.com> */ #include "mbed_assert.h" #include "analogin_api.h" #include "cmsis.h" #include "pinmap.h" #include "mbed_error.h" #include "gpio_api.h" #define ANALOGIN_MEDIAN_FILTER 1 static inline int div_round_up(int x, int y) { return (x + (y - 1)) / y; } static const PinMap PinMap_ADC[] = { {P4_3, ADC0_0, 0}, {P4_1, ADC0_1, 0}, {PF_8, ADC0_2, 0}, {P7_5, ADC0_3, 0}, {P7_4, ADC0_4, 0}, {PF_10, ADC0_5, 0}, {PB_6, ADC0_6, 0}, {PC_3, ADC1_0, 0}, {PC_0, ADC1_1, 0}, {PF_9, ADC1_2, 0}, {PF_6, ADC1_3, 0}, {PF_5, ADC1_4, 0}, {PF_11, ADC1_5, 0}, {P7_7, ADC1_6, 0}, {PF_7, ADC1_7, 0}, {adc0_0, ADC_pin0_0, 0}, {adc0_1, ADC_pin0_1, 0}, {adc0_2, ADC_pin0_2, 0}, {adc0_3, ADC_pin0_3, 0}, {adc0_4, ADC_pin0_4, 0}, {adc0_5, ADC_pin0_5, 0}, {adc0_6, ADC_pin0_6, 0}, {adc0_7, ADC_pin0_7, 0}, {adc1_0, ADC_pin1_0, 0}, {adc1_1, ADC_pin1_1, 0}, {adc1_2, ADC_pin1_2, 0}, {adc1_3, ADC_pin1_3, 0}, {adc1_4, ADC_pin1_4, 0}, {adc1_5, ADC_pin1_5, 0}, {adc1_6, ADC_pin1_6, 0}, {adc1_7, ADC_pin1_7, 0}, {NC, NC, 0 } }; void analogin_init(analogin_t *obj, PinName pin) { ADCName name; name = (ADCName)pinmap_peripheral(pin, PinMap_ADC); MBED_ASSERT(obj->adc != (LPC_ADC_T *)NC); // Set ADC number if(name < ADC1_0) { obj->num = 0; } else if(name < ADC_pin0_0 && name > ADC0_6) { obj->num = 1; } else if(name < ADC_pin1_1 && name > ADC1_7) { obj->num = 0; } else if(name > ADC_pin0_7) { obj->num = 1; } //ADC register and channel obj->ch = name % (ADC0_7 + 1); obj->adc = (LPC_ADC_T *) (obj->num > 0) ? LPC_ADC1 : LPC_ADC0; // Reset pin function to GPIO if it is a GPIO pin. for adc only pins it is not necessary if(name < ADC_pin0_0) { gpio_set(pin); // Select ADC on analog function select register in SCU LPC_SCU->ENAIO[obj->num] |= (1 << obj->ch); } else { LPC_SCU->ENAIO[obj->num] &= ~(1 << obj->ch); } // Calculate minimum clock divider // clkdiv = divider - 1 uint32_t PCLK = SystemCoreClock; uint32_t adcRate = 400000; uint32_t clkdiv = div_round_up(PCLK, adcRate) - 1; // Set the generic software-controlled ADC settings obj->adc->CR = (0 << 0) // SEL: 0 = no channels selected | (clkdiv << 8) // CLKDIV: | (0 << 16) // BURST: 0 = software control | (1 << 21) // PDN: 1 = operational | (0 << 24) // START: 0 = no start | (0 << 27); // EDGE: not applicable } static inline uint32_t adc_read(analogin_t *obj) { uint32_t temp; uint8_t channel = obj->ch; LPC_ADC_T *pADC = obj->adc; // Select the appropriate channel and start conversion pADC->CR |= ADC_CR_CH_SEL(channel); temp = pADC->CR & ~ADC_CR_START_MASK; pADC->CR = temp | (ADC_CR_START_MODE_SEL(ADC_START_NOW)); // Wait for DONE bit and read data while (!(pADC->STAT & ADC_CR_CH_SEL(channel))); temp = pADC->DR[channel]; // Deselect channel and return result pADC->CR &= ~ADC_CR_START_MASK; pADC->CR &= ~ADC_CR_CH_SEL(channel); return ADC_DR_RESULT(temp); } static inline void order(uint32_t *a, uint32_t *b) { if (*a > *b) { uint32_t t = *a; *a = *b; *b = t; } } static inline uint32_t adc_read_u32(analogin_t *obj) { uint32_t value; #if ANALOGIN_MEDIAN_FILTER uint32_t v1 = adc_read(obj); uint32_t v2 = adc_read(obj); uint32_t v3 = adc_read(obj); order(&v1, &v2); order(&v2, &v3); order(&v1, &v2); value = v2; #else value = adc_read(obj); #endif return value; } uint16_t analogin_read_u16(analogin_t *obj) { uint32_t value = adc_read_u32(obj); return (value << 6) | ((value >> 4) & 0x003F); // 10 bit } float analogin_read(analogin_t *obj) { uint32_t value = adc_read_u32(obj); return (float)value * (1.0f / (float)ADC_RANGE); }