Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Diff: main.cpp
- Revision:
- 11:4e700bbf93d7
- Parent:
- 8:66f6deeb2556
- Child:
- 12:623ce727d4fa
--- a/main.cpp Tue Jan 03 22:29:43 2017 +0000
+++ b/main.cpp Wed Jan 18 23:35:49 2017 +0000
@@ -1,53 +1,1139 @@
//********************************************************
-//** BETA---------------
-//** Nucleo-144 Stm32F746 and Stm32F767 benchmark ******
-//** Limpack -port form Arduino IDE *****
-//** Jovan Ivkovic - 2016 ******
+//** RC Apha --- based on roylongbottom.org ARM ******
+//** Nucleo-64-144 Stm32F103 to F767 benchmark ******
+//** Limpack -port form Arduino IDE ******
+//** Jovan Ivkovic - 2017 ******
//********************************************************
+#define GCCARMDP
+
+#define UNROLL
+#define DP
+
+#ifdef SP
+#define REAL float
+#define ZERO 0.0
+#define ONE 1.0
+#define PREC "Single"
+#endif
+
+#ifdef DP
+#define REAL double
+#define ZERO 0.0e0
+#define ONE 1.0e0
+#define PREC "Double"
+#endif
+
+#ifdef ROLL
+#define ROLLING "Rolled"
+#endif
+#ifdef UNROLL
+#define ROLLING "Unrolled"
+#endif
+
+// VERSION
+
+#ifdef CNNT
+#define options "Non-optimised"
+#define opt "0"
+#else
+// #define options "Optimised"
+// #define options "Opt 3 32 Bit"
+#define options "vfpv4 32 Bit"
+#define opt "1"
+#endif
+
+#define NTIMES 10
+
#include "mbed.h"
-/* the following is optional depending on the timing function used */
-# include <stdlib.h>
-# include <stdio.h>
-# include <math.h>
+
+//---------------------------------
+DigitalOut myled(LED1);
+Serial pc(USBTX, USBRX); //USB is out of oreder on Embeded-Pi
+//Serial pc(PC_10,PC_11); //RX-TX D0,D1 Embeded-PI ports
+Timer timer;
+//--------------------------------
+
+void print_time (int row);
+void matgen (REAL a[], int lda, int n, REAL b[], REAL *norma);
+void dgefa (REAL a[], int lda, int n, int ipvt[], int *info);
+void dgesl (REAL a[],int lda,int n,int ipvt[],REAL b[],int job);
+void dmxpy (int n1, REAL y[], int n2, int ldm, REAL x[], REAL m[]);
+void daxpy (int n, REAL da, REAL dx[], int incx, REAL dy[], int incy);
+REAL epslon (REAL x);
+int idamax (int n, REAL dx[], int incx);
+void dscal (int n, REAL da, REAL dx[], int incx);
+REAL ddot (int n, REAL dx[], int incx, REAL dy[], int incy);
+
+static REAL atime[9][15];
+double runSecs = 1;
+
+void do_benchmark(void){
+
+ float t1,t2 = 0.0;
+ static REAL aa[20*20],a[20*21],b[20],x[20];
+ REAL cray,ops,total,norma,normx;
+ REAL resid,residn,eps,tm2,epsn,x1,x2;
+ REAL mflops;
+ static int ipvt[21],n,i,j,ntimes,info,lda,ldaa;
+ int endit, pass, loop;
+ REAL overhead1, overhead2, time2;
+ REAL max1, max2;
+ char was[5][20];
+ char expect[5][20];
+ char title[5][20];
+ int errors;
+ int nopause = 1;
+
+ /*
+ if (argc > 1) {
+ switch (argv[1][0]) {
+ case 'N':
+ nopause = 0;
+ break;
+ case 'n':
+ nopause = 0;
+ break;
+ }
+ }
+ */
+ pc.printf("\n");
+
+
+ // outfile = fopen("Linpack.txt","a+");
+ // if (outfile == NULL)
+ // {
+ // printf (" Cannot open results file \n\n");
+ // printf(" Press Enter\n\n");
+ // int g = getchar();
+ // exit (0);
+ //}
+
+
+
+#ifdef GCCARMDP
+ pc.printf(expect[0], " 1.7");
+ pc.printf(expect[1], " 7.41628980e-14");
+ pc.printf(expect[2], " 2.22044605e-16");
+ pc.printf(expect[3], " -1.49880108e-14");
+ pc.printf(expect[4], " -1.89848137e-14");
+#endif
+
+#ifdef GCCARMSP
+ pc.printf(expect[0], " 1.6");
+ pc.printf(expect[1], " 3.80277634e-05");
+ pc.printf(expect[2], " 1.19209290e-07");
+ pc.printf(expect[3], " -1.38282776e-05");
+ pc.printf(expect[4], " -7.51018524e-06");
+#endif
+
+ lda = 21;
+ ldaa = 20;
+ cray = .056;
+ n = 20;
+ pc.printf("----------------------------------------------\n");
+ pc.printf("%s ", ROLLING);
+ pc.printf("%s ", PREC);
+ pc.printf("Precision Linpack Benchmark - Linux Version in 'C/C++'\n\n");
+
+ pc.printf("Optimisation %s\n\n",options);
+
+ ops = (2.0e0*(n*n*n))/3.0 + 2.0*(n*n);
+
+ matgen(a,lda,n,b,&norma);
+ timer.start();
+ //start_time();
+ t1 = timer.read();
+ dgefa(a,lda,n,ipvt,&info);
+ //end_time();
+ t2 = timer.read();
+ timer.stop();
+ atime[0][0] = t2-t1; //secs
+
+ timer.reset();
+ timer.start();
+ t1 = timer.read();
+ dgesl(a,lda,n,ipvt,b,0);
+ t2 = timer.read();
+ timer.stop();
+ atime[1][0] = t2-t1; //secs
+ total = atime[0][0] + atime[1][0];
+
+ /* compute a residual to verify results. */
+
+ for (i = 0; i < n; i++) {
+ x[i] = b[i];
+ }
+ matgen(a,lda,n,b,&norma);
+ for (i = 0; i < n; i++) {
+ b[i] = -b[i];
+ }
+ dmxpy(n,b,n,lda,x,a);
+ resid = 0.0;
+ normx = 0.0;
+ for (i = 0; i < n; i++) {
+ resid = (resid > fabs((double)b[i]))
+ ? resid : fabs((double)b[i]);
+ normx = (normx > fabs((double)x[i]))
+ ? normx : fabs((double)x[i]);
+ }
+ eps = epslon(ONE);
+ residn = resid/( n*norma*normx*eps );
+ epsn = eps;
+ x1 = x[0] - 1;
+ x2 = x[n-1] - 1;
+
+ pc.printf("norm resid resid machep");
+ pc.printf(" x[0]-1 x[n-1]-1\n");
+ pc.printf("%6.1f %17.8e%17.8e%17.8e%17.8e\n\n",
+ (double)residn, (double)resid, (double)epsn,
+ (double)x1, (double)x2);
+
+ pc.printf("Times are reported for matrices of order %5d\n",n);
+ pc.printf("1 pass times for array with leading dimension of%5d\n\n",lda);
+ pc.printf(" dgefa dgesl total Mflops unit");
+ pc.printf(" ratio\n");
+
+ atime[2][0] = total;
+ if (total > 0.0) {
+ atime[3][0] = ops/(1.0e6*total);
+ atime[4][0] = 2.0/atime[3][0];
+ } else {
+ atime[3][0] = 0.0;
+ atime[4][0] = 0.0;
+ }
+ atime[5][0] = total/cray;
+
+ print_time(0);
+
+ /************************************************************************
+ * Calculate overhead of executing matgen procedure *
+ ************************************************************************/
+
+ pc.printf ("\nCalculating matgen overhead\n");
+ pass = -20;
+ loop = NTIMES;
+ do {
+ timer.start();
+ t1 = timer.read();
+ pass = pass + 1;
+ for ( i = 0 ; i < loop ; i++) {
+ matgen(a,lda,n,b,&norma);
+ }
+ t2 = timer.read();
+ timer.stop();
+ overhead1 = t2-t1; //sec
+ pc.printf ("%10d times %6.2f seconds\n", loop, overhead1);
+ if (overhead1 > runSecs) {
+ pass = 0;
+ }
+ if (pass < 0) {
+ if (overhead1 < 0.1) {
+ loop = loop * 10;
+ } else {
+ loop = loop * 2;
+ }
+ }
+ } while (pass < 0);
+
+ overhead1 = overhead1 / (double)loop;
+
+ pc.printf("Overhead for 1 matgen %12.5f seconds\n\n", overhead1);
+
+ /************************************************************************
+ * Calculate matgen/dgefa passes for runSecs seconds *
+ ************************************************************************/
+
+ pc.printf ("Calculating matgen/dgefa passes for %d seconds\n", (int)runSecs);
+ pass = -20;
+ ntimes = NTIMES;
+ do {
+ timer.start();
+ t1 = timer.read();
+ pass = pass + 1;
+ for ( i = 0 ; i < ntimes ; i++) {
+ matgen(a,lda,n,b,&norma);
+ dgefa(a,lda,n,ipvt,&info );
+ }
+ t2 = timer.read();
+ timer.stop();
+ time2 = t2-t1; //sec
+
+ pc.printf ("%10d times %6.2f seconds\n", ntimes, time2);
+ if (time2 > runSecs) {
+ pass = 0;
+ }
+ if (pass < 0) {
+ if (time2 < 0.1) {
+ ntimes = ntimes * 10;
+ } else {
+ ntimes = ntimes * 2;
+ }
+ }
+ } while (pass < 0);
+
+ ntimes = (int)(runSecs * (double)ntimes / time2);
+ if (ntimes == 0) ntimes = 1;
+
+ pc.printf ("Passes used %10d \n\n", ntimes);
+ pc.printf("Times for array with leading dimension of%4d\n\n",lda);
+ pc.printf(" dgefa dgesl total Mflops unit");
+ pc.printf(" ratio\n");
+
+ /************************************************************************
+ * Execute 5 passes *
+ ************************************************************************/
+
+ tm2 = ntimes * overhead1;
+ atime[3][6] = 0;
+
+ for (j=1 ; j<6 ; j++) {
+ timer.start();
+ t1 = timer.read();
+
+ for (i = 0; i < ntimes; i++) {
+ matgen(a,lda,n,b,&norma);
+ dgefa(a,lda,n,ipvt,&info );
+ }
+ t2 = timer.read();
+ timer.stop();
+ atime[0][j] = ((t2-t1) - tm2)/ntimes;
+
+ timer.start();
+ t1 = timer.read();
+ for (i = 0; i < ntimes; i++) {
+ dgesl(a,lda,n,ipvt,b,0);
+ }
+ t2 = timer.read();
+ timer.stop();
+
+ atime[1][j] = (t2-t1)/ntimes;
+ total = atime[0][j] + atime[1][j];
+ atime[2][j] = total;
+ atime[3][j] = ops/(1.0e6*total);
+ atime[4][j] = 2.0/atime[3][j];
+ atime[5][j] = total/cray;
+ atime[3][6] = atime[3][6] + atime[3][j];
-DigitalOut myled(LED1);
-Serial pc(USBTX, USBRX);
-Timer timer;
+ print_time(j);
+ }
+ atime[3][6] = atime[3][6] / 5.0;
+ pc.printf("Average %11.2f\n",
+ (double)atime[3][6]);
+
+ pc.printf("\nCalculating matgen2 overhead\n");
+
+ /************************************************************************
+ * Calculate overhead of executing matgen procedure *
+ ************************************************************************/
+
+ timer.start();
+ t1 = timer.read();
+ for ( i = 0 ; i < loop ; i++) {
+ matgen(aa,ldaa,n,b,&norma);
+ }
+ t2 = timer.read();
+ timer.stop();
+ overhead2 = t2-t1;
+ overhead2 = overhead2 / (double)loop;
+
+ pc.printf("Overhead for 1 matgen %12.5f seconds\n\n", overhead2);
+ pc.printf("Times for array with leading dimension of%4d\n\n",ldaa);
+ pc.printf(" dgefa dgesl total Mflops unit");
+ pc.printf(" ratio\n");
+
+ /************************************************************************
+ * Execute 5 passes *
+ ************************************************************************/
+
+ tm2 = ntimes * overhead2;
+ atime[3][12] = 0;
+
+ for (j=7 ; j<12 ; j++) {
+ timer.start();
+ t1 = timer.read();
+ for (i = 0; i < ntimes; i++) {
+ matgen(aa,ldaa,n,b,&norma);
+ dgefa(aa,ldaa,n,ipvt,&info );
+ }
+ t2 = timer.read();
+ timer.stop();
+ atime[0][j] = ((t2-t1) - tm2)/ntimes;
+
+ timer.start();
+ t1 = timer.read();
+ for (i = 0; i < ntimes; i++) {
+ dgesl(aa,ldaa,n,ipvt,b,0);
+ }
+ t2 = timer.read();
+ timer.stop();
+ atime[1][j] = (t2-t1)/ntimes;
+ total = atime[0][j] + atime[1][j];
+ atime[2][j] = total;
+ atime[3][j] = ops/(1.0e6*total);
+ atime[4][j] = 2.0/atime[3][j];
+ atime[5][j] = total/cray;
+ atime[3][12] = atime[3][12] + atime[3][j];
+
+ print_time(j);
+ }
+ atime[3][12] = atime[3][12] / 5.0;
+ pc.printf("Average %11.2f\n\n",
+ (double)atime[3][12]);
+ pc.printf("##########################################\n");
+ pc.printf ("\nFrom File /proc/cpuinfo\n");
+ // pc.printf("%s\n", configdata[0]);
+ pc.printf ("\nFrom File /proc/version\n");
+ //pc.printf("%s\n", configdata[1]);
+
+ /************************************************************************
+ * Use minimum average as overall Mflops rating *
+ ************************************************************************/
+
+ mflops = atime[3][6];
+ if (atime[3][12] < mflops) mflops = atime[3][12];
+
+ pc.printf("\n");
+ pc.printf("%s ", ROLLING);
+ pc.printf("%s ", PREC);
+ pc.printf(" Precision %11.4f Mflops \n\n",mflops);
+
+ // local_time();
+
+
+ /************************************************************************
+ * Add results to output file Linpack.txt *
+ ************************************************************************/
+ pc.printf (" ########################################################\n\n");
+ pc.printf (" Linpack %s Precision %s Benchmark n @ 100\n", PREC, ROLLING);
+ //pc.printf (outfile, " Optimisation %s, %s\n", options, timeday);
+
+ max1 = 0;
+ for (i=1 ; i<6 ; i++) {
+ if (atime[3][i] > max1) max1 = atime[3][i];
+ }
+
+ max2 = 0;
+ for (i=7 ; i<12 ; i++) {
+ if (atime[3][i] > max2) max2 = atime[3][i];
+ }
+ if (max1 < max2) max2 = max1;
+
+ pc.printf(" Speed %10.4f MFLOPS\n\n", max2);
+ pc.printf(was[0], "%16.1f",(double)residn);
+ pc.printf(was[1], "%16.8e",(double)resid);
+ pc.printf(was[2], "%16.8e",(double)epsn);
+ pc.printf(was[3], "%16.8e",(double)x1);
+ pc.printf(was[4], "%16.8e",(double)x2);
+
+ pc.printf(title[0], "norm. resid");
+ pc.printf(title[1], "resid ");
+ pc.printf(title[2], "machep ");
+ pc.printf(title[3], "x[0]-1 ");
+ pc.printf(title[4], "x[n-1]-1 ");
+
+ if (strtol(opt, NULL, 10) == 0) {
+ pc.printf(expect[2], " 8.88178420e-016");
+ }
+ errors = 0;
+
+ for (i=0; i<5; i++) {
+ if (strcmp (expect[i], was[i]) != 0) {
+ pc.printf(" Variable %s Non-standard result was %s instead of %s\n",
+ title[i], was[i], expect[i]);
+ errors = errors + 1;
+ }
+ }
+ if (errors == 0) {
+ pc.printf(" Numeric results were as expected\n\n");
+ } else {
+ pc.printf(" Different numeric results - see linpack.txt\n\n");
+ pc.printf("\n Compiler #define or values in linpack.c might need to be changed\n\n");
+
+ }
+
+
+ pc.printf (" ########################################################\n\n");
+ pc.printf("\n");
+ pc.printf ("SYSTEM INFORMATION\n\nFrom File /proc/cpuinfo\n");
+ // pc.printf (outfile, "%s \n", configdata[0]);
+ pc.printf ("\nFrom File /proc/version\n");
+ // pc.printf (outfile, "%s \n", configdata[1]);
+ pc.printf ("\n");
+
+ pc.printf("\n");
+
+}
+
+/*----------------------*/
+void print_time (int row)
+
+{
+ pc.printf("%11.5f%11.5f%11.5f%11.2f%11.4f%11.4f\n", (double)atime[0][row],
+ (double)atime[1][row], (double)atime[2][row], (double)atime[3][row],
+ (double)atime[4][row], (double)atime[5][row]);
+ return;
+}
+
+/*----------------------*/
+
+void matgen (REAL a[], int lda, int n, REAL b[], REAL *norma)
+
+
+/* We would like to declare a[][lda], but c does not allow it. In this
+function, references to a[i][j] are written a[lda*i+j]. */
+
+{
+ int init, i, j;
+
+ init = 1325;
+ *norma = 0.0;
+ for (j = 0; j < n; j++) {
+ for (i = 0; i < n; i++) {
+ init = 3125*init % 65536;
+ a[lda*j+i] = (init - 32768.0)/16384.0;
+ *norma = (a[lda*j+i] > *norma) ? a[lda*j+i] : *norma;
+
+ /* alternative for some compilers
+ if (fabs(a[lda*j+i]) > *norma) *norma = fabs(a[lda*j+i]);
+ */
+ }
+ }
+ for (i = 0; i < n; i++) {
+ b[i] = 0.0;
+ }
+ for (j = 0; j < n; j++) {
+ for (i = 0; i < n; i++) {
+ b[i] = b[i] + a[lda*j+i];
+ }
+ }
+ return;
+}
+
+/*----------------------*/
+void dgefa(REAL a[], int lda, int n, int ipvt[], int *info)
+
+
+/* We would like to declare a[][lda], but c does not allow it. In this
+function, references to a[i][j] are written a[lda*i+j]. */
+/*
+ dgefa factors a double precision matrix by gaussian elimination.
+
+ dgefa is usually called by dgeco, but it can be called
+ directly with a saving in time if rcond is not needed.
+ (time for dgeco) = (1 + 9/n)*(time for dgefa) .
+
+ on entry
+
+ a REAL precision[n][lda]
+ the matrix to be factored.
+
+ lda integer
+ the leading dimension of the array a .
+
+ n integer
+ the order of the matrix a .
+
+ on return
+
+ a an upper triangular matrix and the multipliers
+ which were used to obtain it.
+ the factorization can be written a = l*u where
+ l is a product of permutation and unit lower
+ triangular matrices and u is upper triangular.
+
+ ipvt integer[n]
+ an integer vector of pivot indices.
+
+ info integer
+ = 0 normal value.
+ = k if u[k][k] .eq. 0.0 . this is not an error
+ condition for this subroutine, but it does
+ indicate that dgesl or dgedi will divide by zero
+ if called. use rcond in dgeco for a reliable
+ indication of singularity.
+
+ linpack. this version dated 08/14/78 .
+ cleve moler, university of new mexico, argonne national lab.
+
+ functions
+
+ blas daxpy,dscal,idamax
+*/
+
+{
+ /* internal variables */
+
+ REAL t;
+ int j,k,kp1,l,nm1;
+
+
+ /* gaussian elimination with partial pivoting */
+
+ *info = 0;
+ nm1 = n - 1;
+ if (nm1 >= 0) {
+ for (k = 0; k < nm1; k++) {
+ kp1 = k + 1;
+
+ /* find l = pivot index */
+
+ l = idamax(n-k,&a[lda*k+k],1) + k;
+ ipvt[k] = l;
+
+ /* zero pivot implies this column already
+ triangularized */
+
+ if (a[lda*k+l] != ZERO) {
+
+ /* interchange if necessary */
-int do_benchmark( void );
-//double cpu_time( void );
-void daxpy( int n, double da, double dx[], int incx, double dy[], int incy );
-double ddot( int n, double dx[], int incx, double dy[], int incy );
-int dgefa( double a[], int lda, int n, int ipvt[] );
-void dgesl( double a[], int lda, int n, int ipvt[], double b[], int job );
-void dscal( int n, double sa, double x[], int incx );
-int idamax( int n, double dx[], int incx );
-double r8_abs( double x );
-double r8_epsilon( void );
-double r8_max( double x, double y );
-double r8_random(int iseed[4] );
-double *r8mat_gen ( int lda, int n );
+ if (l != k) {
+ t = a[lda*k+l];
+ a[lda*k+l] = a[lda*k+k];
+ a[lda*k+k] = t;
+ }
+
+ /* compute multipliers */
+
+ t = -ONE/a[lda*k+k];
+ dscal(n-(k+1),t,&a[lda*k+k+1],1);
+
+ /* row elimination with column indexing */
+
+ for (j = kp1; j < n; j++) {
+ t = a[lda*j+l];
+ if (l != k) {
+ a[lda*j+l] = a[lda*j+k];
+ a[lda*j+k] = t;
+ }
+ daxpy(n-(k+1),t,&a[lda*k+k+1],1,
+ &a[lda*j+k+1],1);
+ }
+ } else {
+ *info = k;
+ }
+ }
+ }
+ ipvt[n-1] = n-1;
+ if (a[lda*(n-1)+(n-1)] == ZERO) *info = n-1;
+ return;
+}
+
+/*----------------------*/
+
+void dgesl(REAL a[],int lda,int n,int ipvt[],REAL b[],int job )
+
+
+/* We would like to declare a[][lda], but c does not allow it. In this
+function, references to a[i][j] are written a[lda*i+j]. */
+
+/*
+ dgesl solves the double precision system
+ a * x = b or trans(a) * x = b
+ using the factors computed by dgeco or dgefa.
+
+ on entry
+
+ a double precision[n][lda]
+ the output from dgeco or dgefa.
+
+ lda integer
+ the leading dimension of the array a .
+
+ n integer
+ the order of the matrix a .
+
+ ipvt integer[n]
+ the pivot vector from dgeco or dgefa.
+
+ b double precision[n]
+ the right hand side vector.
+
+ job integer
+ = 0 to solve a*x = b ,
+ = nonzero to solve trans(a)*x = b where
+ trans(a) is the transpose.
+
+ on return
+
+ b the solution vector x .
+
+ error condition
+
+ a division by zero will occur if the input factor contains a
+ zero on the diagonal. technically this indicates singularity
+ but it is often caused by improper arguments or improper
+ setting of lda . it will not occur if the subroutines are
+ called correctly and if dgeco has set rcond .gt. 0.0
+ or dgefa has set info .eq. 0 .
+
+ to compute inverse(a) * c where c is a matrix
+ with p columns
+ dgeco(a,lda,n,ipvt,rcond,z)
+ if (!rcond is too small){
+ for (j=0,j<p,j++)
+ dgesl(a,lda,n,ipvt,c[j][0],0);
+ }
+
+ linpack. this version dated 08/14/78 .
+ cleve moler, university of new mexico, argonne national lab.
+
+ functions
+
+ blas daxpy,ddot
+*/
+{
+ /* internal variables */
+
+ REAL t;
+ int k,kb,l,nm1;
+
+ nm1 = n - 1;
+ if (job == 0) {
+
+ /* job = 0 , solve a * x = b
+ first solve l*y = b */
+
+ if (nm1 >= 1) {
+ for (k = 0; k < nm1; k++) {
+ l = ipvt[k];
+ t = b[l];
+ if (l != k) {
+ b[l] = b[k];
+ b[k] = t;
+ }
+ daxpy(n-(k+1),t,&a[lda*k+k+1],1,&b[k+1],1 );
+ }
+ }
+
+ /* now solve u*x = y */
+
+ for (kb = 0; kb < n; kb++) {
+ k = n - (kb + 1);
+ b[k] = b[k]/a[lda*k+k];
+ t = -b[k];
+ daxpy(k,t,&a[lda*k+0],1,&b[0],1 );
+ }
+ } else {
+
+ /* job = nonzero, solve trans(a) * x = b
+ first solve trans(u)*y = b */
+
+ for (k = 0; k < n; k++) {
+ t = ddot(k,&a[lda*k+0],1,&b[0],1);
+ b[k] = (b[k] - t)/a[lda*k+k];
+ }
+
+ /* now solve trans(l)*x = y */
+
+ if (nm1 >= 1) {
+ for (kb = 1; kb < nm1; kb++) {
+ k = n - (kb+1);
+ b[k] = b[k] + ddot(n-(k+1),&a[lda*k+k+1],1,&b[k+1],1);
+ l = ipvt[k];
+ if (l != k) {
+ t = b[l];
+ b[l] = b[k];
+ b[k] = t;
+ }
+ }
+ }
+ }
+ return;
+}
+
+/*----------------------*/
+
+void daxpy(int n, REAL da, REAL dx[], int incx, REAL dy[], int incy)
+/*
+ constant times a vector plus a vector.
+ jack dongarra, linpack, 3/11/78.
+*/
+
+{
+ int i,ix,iy,m,mp1;
+
+ mp1 = 0;
+ m = 0;
+
+ if(n <= 0) return;
+ if (da == ZERO) return;
+
+ if(incx != 1 || incy != 1) {
+
+ /* code for unequal increments or equal increments
+ not equal to 1 */
+
+ ix = 0;
+ iy = 0;
+ if(incx < 0) ix = (-n+1)*incx;
+ if(incy < 0)iy = (-n+1)*incy;
+ for (i = 0; i < n; i++) {
+ dy[iy] = dy[iy] + da*dx[ix];
+ ix = ix + incx;
+ iy = iy + incy;
+
+ }
+ return;
+ }
+
+ /* code for both increments equal to 1 */
+
+
+#ifdef ROLL
+
+ for (i = 0; i < n; i++) {
+ dy[i] = dy[i] + da*dx[i];
+ }
+
+
+#endif
+
+#ifdef UNROLL
+
+ m = n % 4;
+ if ( m != 0) {
+ for (i = 0; i < m; i++)
+ dy[i] = dy[i] + da*dx[i];
+
+ if (n < 4) return;
+ }
+ for (i = m; i < n; i = i + 4) {
+ dy[i] = dy[i] + da*dx[i];
+ dy[i+1] = dy[i+1] + da*dx[i+1];
+ dy[i+2] = dy[i+2] + da*dx[i+2];
+ dy[i+3] = dy[i+3] + da*dx[i+3];
+
+ }
+
+#endif
+ return;
+}
+
+/*----------------------*/
+
+REAL ddot(int n, REAL dx[], int incx, REAL dy[], int incy)
+/*
+ forms the dot product of two vectors.
+ jack dongarra, linpack, 3/11/78.
+*/
+
+{
+ REAL dtemp;
+ int i,ix,iy,m,mp1;
+
+ mp1 = 0;
+ m = 0;
+
+ dtemp = ZERO;
+
+ if(n <= 0) return(ZERO);
+
+ if(incx != 1 || incy != 1) {
+
+ /* code for unequal increments or equal increments
+ not equal to 1 */
+
+ ix = 0;
+ iy = 0;
+ if (incx < 0) ix = (-n+1)*incx;
+ if (incy < 0) iy = (-n+1)*incy;
+ for (i = 0; i < n; i++) {
+ dtemp = dtemp + dx[ix]*dy[iy];
+ ix = ix + incx;
+ iy = iy + incy;
+
+ }
+ return(dtemp);
+ }
+
+ /* code for both increments equal to 1 */
+
+
+#ifdef ROLL
+
+ for (i=0; i < n; i++)
+ dtemp = dtemp + dx[i]*dy[i];
+
+ return(dtemp);
+
+#endif
-//static FILE uartout = {0} ;
+#ifdef UNROLL
+
+
+ m = n % 5;
+ if (m != 0) {
+ for (i = 0; i < m; i++)
+ dtemp = dtemp + dx[i]*dy[i];
+ if (n < 5) return(dtemp);
+ }
+ for (i = m; i < n; i = i + 5) {
+ dtemp = dtemp + dx[i]*dy[i] +
+ dx[i+1]*dy[i+1] + dx[i+2]*dy[i+2] +
+ dx[i+3]*dy[i+3] + dx[i+4]*dy[i+4];
+ }
+ return(dtemp);
+
+#endif
+
+}
+
+/*----------------------*/
+void dscal(int n, REAL da, REAL dx[], int incx)
+
+/* scales a vector by a constant.
+ jack dongarra, linpack, 3/11/78.
+*/
+
+{
+ int i,m,mp1,nincx;
+
+ mp1 = 0;
+ m = 0;
+
+ if(n <= 0)return;
+ if(incx != 1) {
+
+ /* code for increment not equal to 1 */
+
+ nincx = n*incx;
+ for (i = 0; i < nincx; i = i + incx)
+ dx[i] = da*dx[i];
+
+ return;
+ }
+
+ /* code for increment equal to 1 */
+
+
+#ifdef ROLL
+
+ for (i = 0; i < n; i++)
+ dx[i] = da*dx[i];
+
+
+#endif
+
+#ifdef UNROLL
+
+
+ m = n % 5;
+ if (m != 0) {
+ for (i = 0; i < m; i++)
+ dx[i] = da*dx[i];
+ if (n < 5) return;
+ }
+ for (i = m; i < n; i = i + 5) {
+ dx[i] = da*dx[i];
+ dx[i+1] = da*dx[i+1];
+ dx[i+2] = da*dx[i+2];
+ dx[i+3] = da*dx[i+3];
+ dx[i+4] = da*dx[i+4];
+ }
+
+#endif
+
+}
+
+/*----------------------*/
+int idamax(int n, REAL dx[], int incx)
+
+/*
+ finds the index of element having max. absolute value.
+ jack dongarra, linpack, 3/11/78.
+*/
+
+
+{
+ REAL dmax;
+ int i, ix, itemp;
+
+ if( n < 1 ) return(-1);
+ if(n ==1 ) return(0);
+ if(incx != 1) {
+
+ /* code for increment not equal to 1 */
+
+ ix = 1;
+ dmax = fabs((double)dx[0]);
+ ix = ix + incx;
+ for (i = 1; i < n; i++) {
+ if(fabs((double)dx[ix]) > dmax) {
+ itemp = i;
+ dmax = fabs((double)dx[ix]);
+ }
+ ix = ix + incx;
+ }
+ } else {
+
+ /* code for increment equal to 1 */
+
+ itemp = 0;
+ dmax = fabs((double)dx[0]);
+ for (i = 1; i < n; i++) {
+ if(fabs((double)dx[i]) > dmax) {
+ itemp = i;
+ dmax = fabs((double)dx[i]);
+ }
+ }
+ }
+ return (itemp);
+}
+
+/*----------------------*/
+REAL epslon (REAL x)
+
+/*
+ estimate unit roundoff in quantities of size x.
+*/
-//static int uart_putchar (char c, FILE *stream)
-//{
-// Serial.write(c) ;
-// return 0 ;
-//}
+{
+ REAL a,b,c,eps;
+ /*
+ this program should function properly on all systems
+ satisfying the following two assumptions,
+ 1. the base used in representing dfloating point
+ numbers is not a power of three.
+ 2. the quantity a in statement 10 is represented to
+ the accuracy used in dfloating point variables
+ that are stored in memory.
+ the statement number 10 and the go to 10 are intended to
+ force optimizing compilers to generate code satisfying
+ assumption 2.
+ under these assumptions, it should be true that,
+ a is not exactly equal to four-thirds,
+ b has a zero for its last bit or digit,
+ c is not exactly equal to one,
+ eps measures the separation of 1.0 from
+ the next larger dfloating point number.
+ the developers of eispack would appreciate being informed
+ about any systems where these assumptions do not hold.
+
+ *****************************************************************
+ this routine is one of the auxiliary routines used by eispack iii
+ to avoid machine dependencies.
+ *****************************************************************
+
+ this version dated 4/6/83.
+ */
+
+ a = 4.0e0/3.0e0;
+ eps = ZERO;
+ while (eps == ZERO) {
+ b = a - ONE;
+ c = b + b + b;
+ eps = fabs((double)(c-ONE));
+ }
+ return(eps*fabs((double)x));
+}
+
+/*----------------------*/
+void dmxpy (int n1, REAL y[], int n2, int ldm, REAL x[], REAL m[])
+
+
+/* We would like to declare m[][ldm], but c does not allow it. In this
+function, references to m[i][j] are written m[ldm*i+j]. */
+
+/*
+ purpose:
+ multiply matrix m times vector x and add the result to vector y.
+
+ parameters:
+
+ n1 integer, number of elements in vector y, and number of rows in
+ matrix m
+
+ y double [n1], vector of length n1 to which is added
+ the product m*x
+
+ n2 integer, number of elements in vector x, and number of columns
+ in matrix m
+
+ ldm integer, leading dimension of array m
+
+ x double [n2], vector of length n2
+
+ m double [ldm][n2], matrix of n1 rows and n2 columns
-//void setup() {
-// Serial.begin(9600);
-// fdev_setup_stream (&uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE);
-// stdout = &uartout ;
-//}
+ ----------------------------------------------------------------------
+*/
+{
+ int j,i,jmin;
+ /* cleanup odd vector */
+
+ j = n2 % 2;
+ if (j >= 1) {
+ j = j - 1;
+ for (i = 0; i < n1; i++)
+ y[i] = (y[i]) + x[j]*m[ldm*j+i];
+ }
+
+ /* cleanup odd group of two vectors */
+
+ j = n2 % 4;
+ if (j >= 2) {
+ j = j - 1;
+ for (i = 0; i < n1; i++)
+ y[i] = ( (y[i])
+ + x[j-1]*m[ldm*(j-1)+i]) + x[j]*m[ldm*j+i];
+ }
+
+ /* cleanup odd group of four vectors */
+
+ j = n2 % 8;
+ if (j >= 4) {
+ j = j - 1;
+ for (i = 0; i < n1; i++)
+ y[i] = ((( (y[i])
+ + x[j-3]*m[ldm*(j-3)+i])
+ + x[j-2]*m[ldm*(j-2)+i])
+ + x[j-1]*m[ldm*(j-1)+i]) + x[j]*m[ldm*j+i];
+ }
+
+ /* cleanup odd group of eight vectors */
+ j = n2 % 16;
+ if (j >= 8) {
+ j = j - 1;
+ for (i = 0; i < n1; i++)
+ y[i] = ((((((( (y[i])
+ + x[j-7]*m[ldm*(j-7)+i]) + x[j-6]*m[ldm*(j-6)+i])
+ + x[j-5]*m[ldm*(j-5)+i]) + x[j-4]*m[ldm*(j-4)+i])
+ + x[j-3]*m[ldm*(j-3)+i]) + x[j-2]*m[ldm*(j-2)+i])
+ + x[j-1]*m[ldm*(j-1)+i]) + x[j] *m[ldm*j+i];
+ }
+
+ /* main loop - groups of sixteen vectors */
+
+ jmin = (n2%16)+16;
+ for (j = jmin-1; j < n2; j = j + 16) {
+ for (i = 0; i < n1; i++)
+ y[i] = ((((((((((((((( (y[i])
+ + x[j-15]*m[ldm*(j-15)+i])
+ + x[j-14]*m[ldm*(j-14)+i])
+ + x[j-13]*m[ldm*(j-13)+i])
+ + x[j-12]*m[ldm*(j-12)+i])
+ + x[j-11]*m[ldm*(j-11)+i])
+ + x[j-10]*m[ldm*(j-10)+i])
+ + x[j- 9]*m[ldm*(j- 9)+i])
+ + x[j- 8]*m[ldm*(j- 8)+i])
+ + x[j- 7]*m[ldm*(j- 7)+i])
+ + x[j- 6]*m[ldm*(j- 6)+i])
+ + x[j- 5]*m[ldm*(j- 5)+i])
+ + x[j- 4]*m[ldm*(j- 4)+i])
+ + x[j- 3]*m[ldm*(j- 3)+i])
+ + x[j- 2]*m[ldm*(j- 2)+i])
+ + x[j- 1]*m[ldm*(j- 1)+i])
+ + x[j] *m[ldm*j+i];
+ }
+ return;
+}
+//*----------------------------------------
int main()
{
- pc.baud(115200);
- //pc.baud(9600);
-
+ pc.baud(9600);
while(1) {
pc.printf("Starting benchmark...\n");
@@ -57,1079 +1143,3 @@
pc.printf(" kraj \n\n");
}
}
-
-/******************************************************************************/
-
-int do_benchmark ( void )
-{
-
-/******************************************************************************/
- /*
- Purpose:
-
- MAIN is the main program for LINPACK_BENCH.
-
- Discussion:
-
- LINPACK_BENCH drives the double precision LINPACK benchmark program.
-
- Modified:
-
- 25 July 2008
-
- Parameters:
-
- N is the problem size.
- */
-
-# define N 2
-# define LDA ( N + 1 )
-
- //static double a[90];
- static double *a;
- static double a_max;
- //static double b[9];
- static double *b;
- static double b_max;
- const double cray = 0.056;
- static double eps;
- int i;
- int info;
- static int *ipvt;
- int j;
- int job;
- double ops;
- static double *resid;
- double resid_max;
- double residn;
- static double *rhs;
- double t1 = 0.0;
- double t2 = 0.0;
- static double time[6];
- double total;
- double *x;
-
- pc.printf ( "\n" );
- pc.printf ( "LINPACK_BENCH\n" );
- pc.printf ( " C version\n" );
- pc.printf ( "\n" );
- pc.printf ( " The LINPACK benchmark.\n" );
- pc.printf ( " Language: C\n" );
- pc.printf ( " Datatype: Double precision real\n" );
- pc.printf ( " Matrix order N = %d\n", N );
- pc.printf ( " Leading matrix dimension LDA = %d\n", LDA );
-
- // ops = ( double ) ( 2 * N * N * N ) / 3.0 + 2.0 * ( double ) ( N * N );
- ops = ( double ) ( 2L * N * N * N ) / 3.0 + 2.0 * ( double ) ( (long)N * N ); // Arduino C
-
- /*
- Allocate space for arrays.
- */
- a = r8mat_gen ( LDA, N );
- //r8mat_gen ( LDA, N, a);
-
- a_max = 0.0;
- for ( j = 0; j < N; j++ ) {
- for ( i = 0; i < N; i++ ) {
- a_max = r8_max ( a_max, a[i+j*LDA] );
- }
- }
-
- for ( i = 0; i < N; i++ ) {
- x[i] = 1.0;
- }
-
- for ( i = 0; i < N; i++ ) {
- b[i] = 0.0;
- for ( j = 0; j < N; j++ ) {
- b[i] = b[i] + a[i+j*LDA] * x[j];
- }
- }
-
- timer.start();
-
- //*****************
- t1 = ( double ) timer.read_us() / 1000000.0;
-
- info = dgefa ( a, LDA, N, ipvt );
-
- t2 = ( double ) timer.read_us() / 1000000.0;
-
- if ( info != 0 ) {
- pc.printf ( "\n" );
- pc.printf ( "LINPACK_BENCH - Fatal error!\n" );
- pc.printf ( " The matrix A is apparently singular.\n" );
- pc.printf ( " Abnormal end of execution.\n" );
- return 1;
- }
- time[0] = t2 - t1;
-
-
- timer.reset();
-
- //*********
-
- t1 = ( double ) timer.read_us() / 1000000.0;
-
- job = 0;
- dgesl ( a, LDA, N, ipvt, b, job );
-
- t2 = ( double ) timer.read_us() / 1000000.0;
- time[1] = t2 - t1;
-
- total = time[0] + time[1];
-
- timer.stop();
-
- //*********
-
- /*
- Compute a residual to verify results.
- */
- a = r8mat_gen ( LDA, N );
- //r8mat_gen ( LDA, N, a);
-
- for ( i = 0; i < N; i++ ) {
- x[i] = 1.0;
- }
-
- for ( i = 0; i < N; i++ ) {
- rhs[i] = 0.0;
- for ( j = 0; j < N; j++ ) {
- rhs[i] = rhs[i] + a[i+j*LDA] * x[j];
- }
- }
-
- for ( i = 0; i < N; i++ ) {
- resid[i] = -rhs[i];
- for ( j = 0; j < N; j++ ) {
- resid[i] = resid[i] + a[i+j*LDA] * b[j];
- }
- }
-
- resid_max = 0.0;
- for ( i = 0; i < N; i++ ) {
- resid_max = r8_max ( resid_max, r8_abs ( resid[i] ) );
- }
-
- b_max = 0.0;
- for ( i = 0; i < N; i++ ) {
- b_max = r8_max ( b_max, r8_abs ( b[i] ) );
- }
-
- eps = r8_epsilon ( );
-
- residn = resid_max / ( double ) N / a_max / b_max / eps;
-
- time[2] = total;
-
- time[3] = ( double ) ops / ( 1000000.0 * total );
- /*
- if ( total > 0.0 )
- {
- time[3] = ( double ) ops / ( 1000000.0 * total );
- }
- else
- {
- time[3] = -1.0;
- }
- */
-
- time[4] = 2.0 / time[3];
- time[5] = total / cray;
-
- //pc.printf( " \n\n ");
- pc.printf( "\n Norm. Resid Resid MACHEP X[1] X[N]\n" );
- //pc.printf( "\n MACHEP X[1] X[N]\n" );
- pc.printf(" %4.6f ", residn);
- pc.printf(" %4.6f ", resid_max);
- pc.printf(" %14e", eps);
- pc.printf(" %14f", b[0]);
- pc.printf(" %14f ",b[N-1]);
- pc.printf("\n\n");
- //pc.printf( " %14f %14f %14e %14f %14f \n", residn, resid_max, eps, b[0], b[N-1] );
-
- pc.printf( " \n\n ");
- pc.printf( " Factor Solve Total MFLOPS Unit Cray-Ratio \n\n" );
-
- for(int ii=0; ii<6; ii++) {
- pc.printf(" %9f", time[ii]);
- }
-
- //pc.printf( " %9f %9f %9f %9f %9f %9f\n", time[0], time[1], time[2], time[3], time[4], time[5] );
-
- /*
- Terminate.
- Free Mem
- */
-
- free ( a );
- free ( b );
- free ( ipvt );
- free ( resid );
- free ( rhs );
- free ( x );
-
- pc.printf( "\n" );
- pc.printf( "LINPACK_BENCH\n" );
- pc.printf( " Normal end of execution.\n" );
-
- pc.printf( "\n" );
-
- return 0;
-# undef LDA
-# undef N
-}
-
-/******************************************************************************/
-
-//double cpu_time ( void )
-
-/******************************************************************************/
-/*
- Purpose:
-
- CPU_TIME returns the current reading on the CPU clock.
-
- Discussion:
-
- The CPU time measurements available through this routine are often
- not very accurate. In some cases, the accuracy is no better than
- a hundredth of a second.
-
- koristi mbed.Timer
-
-*/
-//{
-// double vreme;
-
-// vreme = timer.read_ms() / 1000;
-
-// return vreme;
-//}
-/******************************************************************************/
-
-
-void daxpy ( int n, double da, double dx[], int incx, double dy[], int incy )
-{
-
- /******************************************************************************/
- /*
- Purpose:
-
- DAXPY computes constant times a vector plus a vector.
-
- Discussion:
-
- This routine uses unrolled loops for increments equal to one.
-
- Modified:
-
- 30 March 2007
-
- Author:
-
- FORTRAN77 original by Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart.
- C version by John Burkardt
-
- Reference:
-
- Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
- LINPACK User's Guide,
- SIAM, 1979.
-
- Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
- Basic Linear Algebra Subprograms for Fortran Usage,
- Algorithm 539,
- ACM Transactions on Mathematical Software,
- Volume 5, Number 3, September 1979, pages 308-323.
-
- Parameters:
-
- Input, int N, the number of elements in DX and DY.
-
- Input, double DA, the multiplier of DX.
-
- Input, double DX[*], the first vector.
-
- Input, int INCX, the increment between successive entries of DX.
-
- Input/output, double DY[*], the second vector.
- On output, DY[*] has been replaced by DY[*] + DA * DX[*].
-
- Input, int INCY, the increment between successive entries of DY.
- */
- int i;
- int ix;
- int iy;
- int m;
-
- if ( n <= 0 ) {
- return;
- }
-
- if ( da == 0.0 ) {
- return;
- }
- /*
- Code for unequal increments or equal increments
- not equal to 1.
- */
- if ( incx != 1 || incy != 1 ) {
- if ( 0 <= incx ) {
- ix = 0;
- } else {
- ix = ( - n + 1 ) * incx;
- }
-
- if ( 0 <= incy ) {
- iy = 0;
- } else {
- iy = ( - n + 1 ) * incy;
- }
-
- for ( i = 0; i < n; i++ ) {
- dy[iy] = dy[iy] + da * dx[ix];
- ix = ix + incx;
- iy = iy + incy;
- }
- }
- /*
- Code for both increments equal to 1.
- */
- else {
- m = n % 4;
-
- for ( i = 0; i < m; i++ ) {
- dy[i] = dy[i] + da * dx[i];
- }
-
- for ( i = m; i < n; i = i + 4 ) {
- dy[i ] = dy[i ] + da * dx[i ];
- dy[i+1] = dy[i+1] + da * dx[i+1];
- dy[i+2] = dy[i+2] + da * dx[i+2];
- dy[i+3] = dy[i+3] + da * dx[i+3];
- }
- }
- return;
-}
-/******************************************************************************/
-
-double ddot ( int n, double dx[], int incx, double dy[], int incy )
-{
-
- /******************************************************************************/
- /*
- Purpose:
-
- DDOT forms the dot product of two vectors.
-
- Discussion:
-
- This routine uses unrolled loops for increments equal to one.
-
- Modified:
-
- 30 March 2007
-
- Author:
-
- FORTRAN77 original by Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart.
- C version by John Burkardt
-
- Reference:
-
- Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
- LINPACK User's Guide,
- SIAM, 1979.
-
- Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
- Basic Linear Algebra Subprograms for Fortran Usage,
- Algorithm 539,
- ACM Transactions on Mathematical Software,
- Volume 5, Number 3, September 1979, pages 308-323.
-
- Parameters:
-
- Input, int N, the number of entries in the vectors.
-
- Input, double DX[*], the first vector.
-
- Input, int INCX, the increment between successive entries in DX.
-
- Input, double DY[*], the second vector.
-
- Input, int INCY, the increment between successive entries in DY.
-
- Output, double DDOT, the sum of the product of the corresponding
- entries of DX and DY.
- */
-
- double dtemp;
- int i;
- int ix;
- int iy;
- int m;
-
- dtemp = 0.0;
-
- if ( n <= 0 ) {
- return dtemp;
- }
- /*
- Code for unequal increments or equal increments
- not equal to 1.
- */
- if ( incx != 1 || incy != 1 ) {
- if ( 0 <= incx ) {
- ix = 0;
- } else {
- ix = ( - n + 1 ) * incx;
- }
-
- if ( 0 <= incy ) {
- iy = 0;
- } else {
- iy = ( - n + 1 ) * incy;
- }
-
- for ( i = 0; i < n; i++ ) {
- dtemp = dtemp + dx[ix] * dy[iy];
- ix = ix + incx;
- iy = iy + incy;
- }
- }
- /*
- Code for both increments equal to 1.
- */
- else {
- m = n % 5;
-
- for ( i = 0; i < m; i++ ) {
- dtemp = dtemp + dx[i] * dy[i];
- }
-
- for ( i = m; i < n; i = i + 5 ) {
- dtemp = dtemp + dx[i ] * dy[i ]
- + dx[i+1] * dy[i+1]
- + dx[i+2] * dy[i+2]
- + dx[i+3] * dy[i+3]
- + dx[i+4] * dy[i+4];
- }
- }
- return dtemp;
-}
-/******************************************************************************/
-
-int dgefa ( double a[], int lda, int n, int ipvt[] )
-{
-
- /******************************************************************************/
- /*
- Purpose:
-
- DGEFA factors a real general matrix.
-
- Modified:
-
- 16 May 2005
-
- Author:
-
- C version by John Burkardt.
-
- Reference:
-
- Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
- LINPACK User's Guide,
- SIAM, (Society for Industrial and Applied Mathematics),
- 3600 University City Science Center,
- Philadelphia, PA, 19104-2688.
- ISBN 0-89871-172-X
-
- Parameters:
-
- Input/output, double A[LDA*N].
- On intput, the matrix to be factored.
- On output, an upper triangular matrix and the multipliers used to obtain
- it. The factorization can be written A=L*U, where L is a product of
- permutation and unit lower triangular matrices, and U is upper triangular.
-
- Input, int LDA, the leading dimension of A.
-
- Input, int N, the order of the matrix A.
-
- Output, int IPVT[N], the pivot indices.
-
- Output, int DGEFA, singularity indicator.
- 0, normal value.
- K, if U(K,K) == 0. This is not an error condition for this subroutine,
- but it does indicate that DGESL or DGEDI will divide by zero if called.
- Use RCOND in DGECO for a reliable indication of singularity.
- */
-
- int info;
- int j;
- int k;
- int l;
- double t;
- /*
- Gaussian elimination with partial pivoting.
- */
- info = 0;
-
- for ( k = 1; k <= n-1; k++ ) {
- /*
- Find L = pivot index.
- */
- l = idamax ( n-k+1, a+(k-1)+(k-1)*lda, 1 ) + k - 1;
- ipvt[k-1] = l;
- /*
- Zero pivot implies this column already triangularized.
- */
- if ( a[l-1+(k-1)*lda] == 0.0 ) {
- info = k;
- continue;
- }
- /*
- Interchange if necessary.
- */
- if ( l != k ) {
- t = a[l-1+(k-1)*lda];
- a[l-1+(k-1)*lda] = a[k-1+(k-1)*lda];
- a[k-1+(k-1)*lda] = t;
- }
- /*
- Compute multipliers.
- */
- t = -1.0 / a[k-1+(k-1)*lda];
-
- dscal ( n-k, t, a+k+(k-1)*lda, 1 );
- /*
- Row elimination with column indexing.
- */
- for ( j = k+1; j <= n; j++ ) {
- t = a[l-1+(j-1)*lda];
- if ( l != k ) {
- a[l-1+(j-1)*lda] = a[k-1+(j-1)*lda];
- a[k-1+(j-1)*lda] = t;
- }
- daxpy ( n-k, t, a+k+(k-1)*lda, 1, a+k+(j-1)*lda, 1 );
- }
-
- }
-
- ipvt[n-1] = n;
-
- if ( a[n-1+(n-1)*lda] == 0.0 ) {
- info = n;
- }
-
- return info;
-}
-/******************************************************************************/
-
-void dgesl ( double a[], int lda, int n, int ipvt[], double b[], int job )
-{
-
- /******************************************************************************/
- /*
- Purpose:
-
- DGESL solves a real general linear system A * X = B.
-
- Discussion:
-
- DGESL can solve either of the systems A * X = B or A' * X = B.
-
- The system matrix must have been factored by DGECO or DGEFA.
-
- A division by zero will occur if the input factor contains a
- zero on the diagonal. Technically this indicates singularity
- but it is often caused by improper arguments or improper
- setting of LDA. It will not occur if the subroutines are
- called correctly and if DGECO has set 0.0 < RCOND
- or DGEFA has set INFO == 0.
-
- Modified:
-
- 16 May 2005
-
- Author:
-
- C version by John Burkardt.
-
- Reference:
-
- Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
- LINPACK User's Guide,
- SIAM, (Society for Industrial and Applied Mathematics),
- 3600 University City Science Center,
- Philadelphia, PA, 19104-2688.
- ISBN 0-89871-172-X
-
- Parameters:
-
- Input, double A[LDA*N], the output from DGECO or DGEFA.
-
- Input, int LDA, the leading dimension of A.
-
- Input, int N, the order of the matrix A.
-
- Input, int IPVT[N], the pivot vector from DGECO or DGEFA.
-
- Input/output, double B[N].
- On input, the right hand side vector.
- On output, the solution vector.
-
- Input, int JOB.
- 0, solve A * X = B;
- nonzero, solve A' * X = B.
- */
-
- int k;
- int l;
- double t;
- /*
- Solve A * X = B.
- */
- if ( job == 0 ) {
- for ( k = 1; k <= n-1; k++ ) {
- l = ipvt[k-1];
- t = b[l-1];
-
- if ( l != k ) {
- b[l-1] = b[k-1];
- b[k-1] = t;
- }
-
- daxpy ( n-k, t, a+k+(k-1)*lda, 1, b+k, 1 );
-
- }
-
- for ( k = n; 1 <= k; k-- ) {
- b[k-1] = b[k-1] / a[k-1+(k-1)*lda];
- t = -b[k-1];
- daxpy ( k-1, t, a+0+(k-1)*lda, 1, b, 1 );
- }
- }
- /*
- Solve A' * X = B.
- */
- else {
- for ( k = 1; k <= n; k++ ) {
- t = ddot ( k-1, a+0+(k-1)*lda, 1, b, 1 );
- b[k-1] = ( b[k-1] - t ) / a[k-1+(k-1)*lda];
- }
-
- for ( k = n-1; 1 <= k; k-- ) {
- b[k-1] = b[k-1] + ddot ( n-k, a+k+(k-1)*lda, 1, b+k, 1 );
- l = ipvt[k-1];
-
- if ( l != k ) {
- t = b[l-1];
- b[l-1] = b[k-1];
- b[k-1] = t;
- }
- }
- }
- return;
-}
-/******************************************************************************/
-
-void dscal ( int n, double sa, double x[], int incx )
-{
-
- /******************************************************************************/
- /*
- Purpose:
-
- DSCAL scales a vector by a constant.
-
- Modified:
-
- 30 March 2007
-
- Author:
-
- FORTRAN77 original by Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart.
- C version by John Burkardt
-
- Reference:
-
- Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
- LINPACK User's Guide,
- SIAM, 1979.
-
- Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
- Basic Linear Algebra Subprograms for Fortran Usage,
- Algorithm 539,
- ACM Transactions on Mathematical Software,
- Volume 5, Number 3, September 1979, pages 308-323.
-
- Parameters:
-
- Input, int N, the number of entries in the vector.
-
- Input, double SA, the multiplier.
-
- Input/output, double X[*], the vector to be scaled.
-
- Input, int INCX, the increment between successive entries of X.
- */
-
- int i;
- int ix;
- int m;
-
- if ( n <= 0 ) {
- } else if ( incx == 1 ) {
- m = n % 5;
-
- for ( i = 0; i < m; i++ ) {
- x[i] = sa * x[i];
- }
-
- for ( i = m; i < n; i = i + 5 ) {
- x[i] = sa * x[i];
- x[i+1] = sa * x[i+1];
- x[i+2] = sa * x[i+2];
- x[i+3] = sa * x[i+3];
- x[i+4] = sa * x[i+4];
- }
- } else {
- if ( 0 <= incx ) {
- ix = 0;
- } else {
- ix = ( - n + 1 ) * incx;
- }
-
- for ( i = 0; i < n; i++ ) {
- x[ix] = sa * x[ix];
- ix = ix + incx;
- }
- }
- return;
-}
-/******************************************************************************/
-
-int idamax ( int n, double dx[], int incx )
-{
-
- /******************************************************************************/
- /*
- Purpose:
-
- IDAMAX finds the index of the vector element of maximum absolute value.
-
- Discussion:
-
- WARNING: This index is a 1-based index, not a 0-based index!
-
- Modified:
-
- 30 March 2007
-
- Author:
-
- FORTRAN77 original by Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart.
- C version by John Burkardt
-
- Reference:
-
- Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
- LINPACK User's Guide,
- SIAM, 1979.
-
- Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
- Basic Linear Algebra Subprograms for Fortran Usage,
- Algorithm 539,
- ACM Transactions on Mathematical Software,
- Volume 5, Number 3, September 1979, pages 308-323.
-
- Parameters:
-
- Input, int N, the number of entries in the vector.
-
- Input, double X[*], the vector to be examined.
-
- Input, int INCX, the increment between successive entries of SX.
-
- Output, int IDAMAX, the index of the element of maximum
- absolute value.
- */
-
- double dmax;
- int i;
- int ix;
- int value;
-
- value = 0;
-
- if ( n < 1 || incx <= 0 ) {
- return value;
- }
-
- value = 1;
-
- if ( n == 1 ) {
- return value;
- }
-
- if ( incx == 1 ) {
- dmax = r8_abs ( dx[0] );
-
- for ( i = 1; i < n; i++ ) {
- if ( dmax < r8_abs ( dx[i] ) ) {
- value = i + 1;
- dmax = r8_abs ( dx[i] );
- }
- }
- } else {
- ix = 0;
- dmax = r8_abs ( dx[0] );
- ix = ix + incx;
-
- for ( i = 1; i < n; i++ ) {
- if ( dmax < r8_abs ( dx[ix] ) ) {
- value = i + 1;
- dmax = r8_abs ( dx[ix] );
- }
- ix = ix + incx;
- }
- }
-
- return value;
-}
-/******************************************************************************/
-
-double r8_abs ( double x )
-{
-
- /******************************************************************************/
- /*
- Purpose:
-
- R8_ABS returns the absolute value of a R8.
-
- Modified:
-
- 02 April 2005
-
- Author:
-
- John Burkardt
-
- Parameters:
-
- Input, double X, the quantity whose absolute value is desired.
-
- Output, double R8_ABS, the absolute value of X.
- */
-
- double value;
-
- if ( 0.0 <= x ) {
- value = x;
- } else {
- value = -x;
- }
- return value;
-}
-/******************************************************************************/
-
-double r8_epsilon ( void )
-{
-
- /******************************************************************************/
- /*
- Purpose:
-
- R8_EPSILON returns the R8 round off unit.
-
- Discussion:
-
- R8_EPSILON is a number R which is a power of 2 with the property that,
- to the precision of the computer's arithmetic,
- 1 < 1 + R
- but
- 1 = ( 1 + R / 2 )
-
- Licensing:
-
- This code is distributed under the GNU LGPL license.
-
- Modified:
-
- 08 May 2006
-
- Author:
-
- John Burkardt
-
- Parameters:
-
- Output, double R8_EPSILON, the double precision round-off unit.
- */
-
- double r;
-
- r = 1.0;
-
- while ( 1.0 < ( double ) ( 1.0 + r ) ) {
- r = r / 2.0;
- }
- r = 2.0 * r;
-
- return r;
-}
-/******************************************************************************/
-
-double r8_max ( double x, double y )
-{
-
- /******************************************************************************/
- /*
- Purpose:
-
- R8_MAX returns the maximum of two R8's.
-
- Modified:
-
- 18 August 2004
-
- Author:
-
- John Burkardt
-
- Parameters:
-
- Input, double X, Y, the quantities to compare.
-
- Output, double R8_MAX, the maximum of X and Y.
- */
-
- double value;
-
- if ( y < x ) {
- value = x;
- } else {
- value = y;
- }
- return value;
-}
-/******************************************************************************/
-
-double r8_random ( int iseed[4] )
-{
-
- /******************************************************************************/
- /*
- Purpose:
-
- R8_RANDOM returns a uniformly distributed random number between 0 and 1.
-
- Discussion:
-
- This routine uses a multiplicative congruential method with modulus
- 2**48 and multiplier 33952834046453 (see G.S.Fishman,
- 'Multiplicative congruential random number generators with modulus
- 2**b: an exhaustive analysis for b = 32 and a partial analysis for
- b = 48', Math. Comp. 189, pp 331-344, 1990).
-
- 48-bit integers are stored in 4 integer array elements with 12 bits
- per element. Hence the routine is portable across machines with
- integers of 32 bits or more.
-
- Parameters:
-
- Input/output, integer ISEED(4).
- On entry, the seed of the random number generator; the array
- elements must be between 0 and 4095, and ISEED(4) must be odd.
- On exit, the seed is updated.
-
- Output, double R8_RANDOM, the next pseudorandom number.
- */
-
- int ipw2 = 4096;
- int it1;
- int it2;
- int it3;
- int it4;
- int m1 = 494;
- int m2 = 322;
- int m3 = 2508;
- int m4 = 2549;
- double r = 1.0 / 4096.0;
- double value;
- /*
- Multiply the seed by the multiplier modulo 2**48.
- */
- it4 = iseed[3] * m4;
- it3 = it4 / ipw2;
- it4 = it4 - ipw2 * it3;
- it3 = it3 + iseed[2] * m4 + iseed[3] * m3;
- it2 = it3 / ipw2;
- it3 = it3 - ipw2 * it2;
- it2 = it2 + iseed[1] * m4 + iseed[2] * m3 + iseed[3] * m2;
- it1 = it2 / ipw2;
- it2 = it2 - ipw2 * it1;
- it1 = it1 + iseed[0] * m4 + iseed[1] * m3 + iseed[2] * m2 + iseed[3] * m1;
- it1 = ( it1 % ipw2 );
- /*
- Return updated seed
- */
- iseed[0] = it1;
- iseed[1] = it2;
- iseed[2] = it3;
- iseed[3] = it4;
- /*
- Convert 48-bit integer to a real number in the interval (0,1)
- */
- value =
- r * ( ( double ) ( it1 )
- + r * ( ( double ) ( it2 )
- + r * ( ( double ) ( it3 )
- + r * ( ( double ) ( it4 ) ) ) ) );
-
- return value;
-}
-/******************************************************************************/
-
-double *r8mat_gen ( int lda, int n )
-{
-
- /******************************************************************************/
- /*
- Purpose:
-
- R8MAT_GEN generates a random R8MAT.
-
- Modified:
-
- 06 June 2005
-
- Parameters:
-
- Input, integer LDA, the leading dimension of the matrix.
-
- Input, integer N, the order of the matrix.
-
- Output, double R8MAT_GEN[LDA*N], the N by N matrix.
- */
-
- double *ba;
- int i;
- int init[4] = { 1, 2, 3, 1325 };
- int j;
-
- ba = ( double * ) malloc ( lda * n * sizeof ( double ) );
-
- for ( j = 1; j <= n; j++ ) {
- for ( i = 1; i <= n; i++ ) {
- ba[i-1+(j-1)*lda] = r8_random ( init ) - 0.5;
- }
- }
-
- return ba;
-}
\ No newline at end of file