Benchmark of DP, SP and Int. Arithmetic operations for ARM Cortex M7 MCU, Nucleo-144 Stm32F746 and Stm32F767 (modified from ddown post at "Arduino for STM32") by Jovan Ivković (JovanEps)

Dependencies:   mbed

Revision:
0:43b96e9650ef
Child:
1:be78b18b8347
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/main.cpp	Sun Jan 01 21:50:13 2017 +0000
@@ -0,0 +1,399 @@
+//********************************************************
+//**  Nucleo-144 Stm32F746 and Stm32F767 benchmark ******
+//**  Jovan Ivkovic - 2016                          ******
+//********************************************************
+#include "mbed.h"
+DigitalOut myled(LED1);
+Serial pc(USBTX, USBRX);
+Timer timer;
+
+#include <stdlib.h>
+#include <stdio.h>
+#include <string.h>
+#include <math.h>
+/* the following is optional depending on the timing function used */
+#include <time.h>
+
+/* map the FORTRAN math functions, etc. to the C versions */
+#define DSIN    sin
+#define DCOS    cos
+#define DATAN   atan
+#define DLOG    log
+#define DEXP    exp
+#define DSQRT   sqrt
+#define IF      if
+
+/* function prototypes */
+void POUT(long N, long J, long K, double X1, double X2, double X3, double X4);
+void PA(double E[]);
+void P0(void);
+void P3(double X, double Y, double *Z);
+#define USAGE   "usage: whetdc [-c] [loops]\n"
+
+/*
+    COMMON T,T1,T2,E1(4),J,K,L
+*/
+double T,T1,T2,E1[5];
+int J,K,L;
+
+int argc=0;//Mod for nucleo. Change in code below if you want non-default loop count
+
+int whetstone()
+{
+    pc.baud(115200);
+    pc.printf("Beginning Whetstone benchmark at ");
+    
+    pc.printf("default 216 MHz ...\n");
+    /* used in the FORTRAN version */
+    long I;
+    long N1, N2, N3, N4, N6, N7, N8, N9, N10, N11;
+    double X1,X2,X3,X4,X,Y,Z;
+    long LOOP;
+    int II, JJ;
+
+    /* added for this version */
+    long loopstart;
+    long startsec, finisec;
+    double KIPS;
+    int continuous;
+
+    loopstart = 3000;       /* 1000 see the note about LOOP below */
+    continuous = 0;
+
+    II = 1;     /* start at the first arg (temp use of II here) */
+ 
+LCONT:
+/*
+********************************************
+*   Start benchmark timing at this point.
+********************************************
+*/
+    timer.start();
+    //startsec = time(0);
+    startsec = timer.read_ms();
+
+/*
+********************************************
+*   The actual benchmark starts here.
+********************************************
+*/
+    T  = .499975;
+    T1 = 0.50025;
+    T2 = 2.0;
+/*
+********************************************
+*   With loopcount LOOP=10, one million Whetstone instructions
+*   will be executed in EACH MAJOR LOOP..A MAJOR LOOP IS EXECUTED
+*   'II' TIMES TO INCREASE WALL-CLOCK TIMING ACCURACY.
+*
+*   LOOP = 1000;
+*/
+    LOOP = loopstart;
+    II   = 1;
+    JJ = 1;
+
+IILOOP:
+    N1  = 0;
+    N2  = 12 * LOOP;
+    N3  = 14 * LOOP;
+    N4  = 345 * LOOP;
+    N6  = 210 * LOOP;
+    N7  = 32 * LOOP;
+    N8  = 899 * LOOP;
+    N9  = 616 * LOOP;
+    N10 = 0;
+    N11 = 93 * LOOP;
+/*
+********************************************
+*   Module 1: Simple identifiers
+********************************************
+*/
+    X1  =  1.0;
+    X2  = -1.0;
+    X3  = -1.0;
+    X4  = -1.0;
+
+    for (I = 1; I <= N1; I++) {
+        X1 = (X1 + X2 + X3 - X4) * T;
+        X2 = (X1 + X2 - X3 + X4) * T;
+        X3 = (X1 - X2 + X3 + X4) * T;
+        X4 = (-X1+ X2 + X3 + X4) * T;
+    }
+#ifdef PRINTOUT
+    IF (JJ==II)POUT(N1,N1,N1,X1,X2,X3,X4);
+#endif
+
+/*
+********************************************
+*   Module 2: Array elements
+********************************************
+*/
+    E1[1] =  1.0;
+    E1[2] = -1.0;
+    E1[3] = -1.0;
+    E1[4] = -1.0;
+
+    for (I = 1; I <= N2; I++) {
+        E1[1] = ( E1[1] + E1[2] + E1[3] - E1[4]) * T;
+        E1[2] = ( E1[1] + E1[2] - E1[3] + E1[4]) * T;
+        E1[3] = ( E1[1] - E1[2] + E1[3] + E1[4]) * T;
+        E1[4] = (-E1[1] + E1[2] + E1[3] + E1[4]) * T;
+    }
+
+#ifdef PRINTOUT
+    IF (JJ==II)POUT(N2,N3,N2,E1[1],E1[2],E1[3],E1[4]);
+#endif
+
+/*
+********************************************
+*  Module 3: Array as parameter
+********************************************
+*/
+    for (I = 1; I <= N3; I++)
+        PA(E1);
+
+#ifdef PRINTOUT
+    IF (JJ==II)POUT(N3,N2,N2,E1[1],E1[2],E1[3],E1[4]);
+#endif
+
+/*
+********************************************
+*   Module 4: Conditional jumps
+********************************************
+*/
+    J = 1;
+    for (I = 1; I <= N4; I++) {
+        if (J == 1)
+            J = 2;
+        else
+            J = 3;
+
+        if (J > 2)
+            J = 0;
+        else
+            J = 1;
+
+        if (J < 1)
+            J = 1;
+        else
+            J = 0;
+    }
+
+#ifdef PRINTOUT
+    IF (JJ==II)POUT(N4,J,J,X1,X2,X3,X4);
+#endif
+
+/*
+********************************************
+*   Module 5: Omitted
+*   Module 6: Integer arithmetic
+********************************************
+*/
+
+    J = 1;
+    K = 2;
+    L = 3;
+
+    for (I = 1; I <= N6; I++) {
+        J = J * (K-J) * (L-K);
+        K = L * K - (L-J) * K;
+        L = (L-K) * (K+J);
+        E1[L-1] = J + K + L;
+        E1[K-1] = J * K * L;
+    }
+
+#ifdef PRINTOUT
+    IF (JJ==II)POUT(N6,J,K,E1[1],E1[2],E1[3],E1[4]);
+#endif
+
+/*
+********************************************
+*   Module 7: Trigonometric functions
+********************************************
+*/
+    X = 0.5;
+    Y = 0.5;
+
+    for (I = 1; I <= N7; I++) {
+        X = T * DATAN(T2*DSIN(X)*DCOS(X)/(DCOS(X+Y)+DCOS(X-Y)-1.0));
+        Y = T * DATAN(T2*DSIN(Y)*DCOS(Y)/(DCOS(X+Y)+DCOS(X-Y)-1.0));
+    }
+
+#ifdef PRINTOUT
+    IF (JJ==II)POUT(N7,J,K,X,X,Y,Y);
+#endif
+
+/*
+********************************************
+*   Module 8: Procedure calls
+********************************************
+*/
+    X = 1.0;
+    Y = 1.0;
+    Z = 1.0;
+
+    for (I = 1; I <= N8; I++)
+        P3(X,Y,&Z);
+
+#ifdef PRINTOUT
+    IF (JJ==II)POUT(N8,J,K,X,Y,Z,Z);
+#endif
+
+/*
+********************************************
+*   Module 9: Array references
+********************************************
+*/
+    J = 1;
+    K = 2;
+    L = 3;
+    E1[1] = 1.0;
+    E1[2] = 2.0;
+    E1[3] = 3.0;
+
+    for (I = 1; I <= N9; I++)
+        P0();
+
+#ifdef PRINTOUT
+    IF (JJ==II)POUT(N9,J,K,E1[1],E1[2],E1[3],E1[4]);
+#endif
+
+/*
+********************************************
+*   Module 10: Integer arithmetic
+********************************************
+*/
+    J = 2;
+    K = 3;
+
+    for (I = 1; I <= N10; I++) {
+        J = J + K;
+        K = J + K;
+        J = K - J;
+        K = K - J - J;
+    }
+
+#ifdef PRINTOUT
+    IF (JJ==II)POUT(N10,J,K,X1,X2,X3,X4);
+#endif
+
+/*
+********************************************
+*   Module 11: Standard functions
+********************************************
+*/
+    X = 0.75;
+
+    for (I = 1; I <= N11; I++)
+        X = DSQRT(DEXP(DLOG(X)/T1));
+
+#ifdef PRINTOUT
+    IF (JJ==II)POUT(N11,J,K,X,X,X,X);
+#endif
+
+/*
+********************************************
+*      THIS IS THE END OF THE MAJOR LOOP.
+********************************************
+*/
+    if (++JJ <= II)
+        goto IILOOP;
+
+/*
+********************************************
+*      Stop benchmark timing at this point.
+********************************************
+*/
+   // finisec = time(0);
+    finisec = timer.read_ms();
+    timer.reset();
+
+/*
+*--------------------------------------------------------------------
+*      Performance in Whetstone KIP's per second is given by
+*
+*   (100*LOOP*II)/TIME
+*
+*      where TIME is in seconds.
+*--------------------------------------------------------------------
+*/
+    pc.printf(" kraj \n");
+    double vreme;
+    vreme = (finisec - startsec) / 1000;
+    
+    if (vreme <= 0)
+     {
+        pc.printf("Insufficient duration- Increase the LOOP count \n");
+        return 1;
+     }
+
+    pc.printf("Loops: %ld, Iterations: %d, Duration: %ld sec. \n",
+            LOOP, II, vreme);
+
+    KIPS = (100.0 * LOOP * II) / vreme ;
+   
+  //  if (KIPS >= 1000.0)
+  //      pc.printf("C Converted Double Precision Whetstones: %.1f MIPS \n\n", KIPS / 1000);
+  //  else
+  //      pc.printf("C Converted Double Precision Whetstones: %.1f KIPS \n\n", KIPS);
+        
+        pc.printf("C Converted Double Precision Whetstones: %.1f KIPS \n\n", KIPS);
+
+    if (continuous)
+        goto LCONT;
+
+    return 1;
+}
+
+void PA(double E[])
+{
+    J = 0;
+
+L10:
+    E[1] = ( E[1] + E[2] + E[3] - E[4]) * T;
+    E[2] = ( E[1] + E[2] - E[3] + E[4]) * T;
+    E[3] = ( E[1] - E[2] + E[3] + E[4]) * T;
+    E[4] = (-E[1] + E[2] + E[3] + E[4]) / T2;
+    J += 1;
+
+    if (J < 6)
+        goto L10;
+}
+
+void P0(void)
+{
+    E1[J] = E1[K];
+    E1[K] = E1[L];
+    E1[L] = E1[J];
+}
+
+void P3(double X, double Y, double *Z)
+{
+    double X1, Y1;
+
+    X1 = X;
+    Y1 = Y;
+    X1 = T * (X1 + Y1);
+    Y1 = T * (X1 + Y1);
+    *Z  = (X1 + Y1) / T2;
+}
+
+#ifdef PRINTOUT
+void POUT(long N, long J, long K, double X1, double X2, double X3, double X4)
+{
+    pc.printf("%7ld %7ld %7ld %12.4e %12.4e %12.4e %12.4e\n",
+                        N, J, K, X1, X2, X3, X4);
+}
+#endif   
+
+
+int main() {
+    int rez;  
+    printf("\n My Benchamrk example for Whetstones \n");
+    
+    while(1) {
+        myled=1;
+        rez = whetstone();
+        myled=0;
+     }
+}
\ No newline at end of file