Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: HIDScope MODSERIAL QEI biquadFilter mbed
Fork of Project_script_union_final by
main.cpp
- Committer:
- MarijkeZondag
- Date:
- 2018-10-22
- Revision:
- 18:898f54c6aa3d
- Parent:
- 17:741798018c0d
- Child:
- 19:466ada92bf65
File content as of revision 18:898f54c6aa3d:
#include "mbed.h"
#include "MODSERIAL.h"
#include "BiQuad.h"
#include "HIDScope.h"
#include <math.h>
AnalogIn emg0_in (A0);
AnalogIn emg1_in (A1);
AnalogIn emg2_in (A2);
InterruptIn button1 (D10); //Let op, is deze niet bezet? En 11? Even checken, als er een error komt, kan het hier zitten.
InterruptIn button2 (D11);
InterruptIn encoderA (D9);
InterruptIn encoderB (D8);
DigitalOut directionpin1 (D4);
DigitalOut directionpin2 (D7);
DigitalOut ledr (LED_RED);
DigitalOut ledb (LED_BLUE);
DigitalOut ledg (LED_GREEN);
PwmOut pwmpin1 (D5);
PwmOut pwmpin2 (D6);
MODSERIAL pc(USBTX, USBRX);
//Global variables
int encoder = 0; //Starting point encoder
const float T = 0.001f; //Ticker period
//EMG filter
double emgfilter0, emgfilter1, emgfilter2; //Filtered EMG data 0, 1 and 2
const int windowsize = 150; //Size of the array over which the moving average (MovAg) is calculated
double sum, sum1, sum2, sum3; //variables used to sum elements in array
double StoreArray0[windowsize], StoreArray1[windowsize], StoreArray2[windowsize]; //Empty arrays to calculate MoveAg
double movAg0,movAg1,movAg2; //outcome of MovAg
//calibration
static int x = -1;
int emg_cal = 0;
const int sizeCal = 2000;
double StoreCal0[sizeCal], StoreCal1[sizeCal], StoreCal2[sizeCal];
double Mean0,Mean1,Mean2;
double Threshold0 = 1, Threshold1 = 1, Threshold2 = 1;
//Biquad
BiQuadChain emg0band;
BiQuad emg0band1( 7.29441e-01, -1.89276e-08, -7.29450e-01, -1.64507e-01, -7.26543e-01 );
BiQuad emg0band2( 1.00000e+00, 1.99999e+00, 9.99994e-01, 1.72349e+00, 7.79616e-01 );
BiQuad emg0band3( 1.00000e+00, -1.99999e+00, 9.99994e-01, -1.93552e+00, 9.39358e-01 );
BiQuadChain emg1band;
BiQuad emg1band1( 7.29441e-01, -1.89276e-08, -7.29450e-01, -1.64507e-01, -7.26543e-01 );
BiQuad emg1band2( 1.00000e+00, 1.99999e+00, 9.99994e-01, 1.72349e+00, 7.79616e-01 );
BiQuad emg1band3( 1.00000e+00, -1.99999e+00, 9.99994e-01, -1.93552e+00, 9.39358e-01 );
BiQuadChain emg2band;
BiQuad emg2band1( 7.29441e-01, -1.89276e-08, -7.29450e-01, -1.64507e-01, -7.26543e-01 );
BiQuad emg2band2( 1.00000e+00, 1.99999e+00, 9.99994e-01, 1.72349e+00, 7.79616e-01 );
BiQuad emg2band3( 1.00000e+00, -1.99999e+00, 9.99994e-01, -1.93552e+00, 9.39358e-01 );
BiQuad notch1( 9.91104e-01, -1.60364e+00, 9.91104e-01, -1.60364e+00, 9.82207e-01 ); //Notch filter
BiQuad notch2( 9.91104e-01, -1.60364e+00, 9.91104e-01, -1.60364e+00, 9.82207e-01 ); //Notch filter
BiQuad notch3( 9.91104e-01, -1.60364e+00, 9.91104e-01, -1.60364e+00, 9.82207e-01 ); //Notch filter
//Tickers
Ticker filter_tick;
Ticker MovAg_tick;
//Functions
void EMGFilter0()
{
double emg0 = emg0_in.read();
double bandpass0 = emg0band.step(emg0);
double absolute0 = fabs(bandpass0);
double notch0 = notch1.step(absolute0);
}
void EMGFilter1()
{
double emg1 = emg1_in.read();
double bandpass1 = emg1band.step(emg1);
double absolute1 = fabs(bandpass1);
double notch1 = notch2.step(absolute1);
}
void EMGFilter2()
{
double emg2 = emg2_in.read();
double bandpass2 = emg2band.step(emg2);
double absolute2 = fabs(bandpass2);
double notch2 = notch3.step(absolute2);
}
void MovAg() //Calculate moving average (MovAg)
{
for (int i = windowsize-1; i>=0; i--) //Make array of the last datapoints of the filtered signal
{
StoreArray0[i] = StoreArray0[i-1];
StoreArray1[i] = StoreArray1[i-1];
StoreArray2[i] = StoreArray2[i-1];
}
StoreArray0[0] = emgfilter0; //Stores the latest datapoint in the first element of the array
StoreArray1[0] = emgfilter1;
StoreArray2[0] = emgfilter2;
sum1 = 0.0;
sum2 = 0.0;
sum3 = 0.0;
for(int a = 0; a<= windowsize-1; a++) //Sum the elements in the array
{
sum1 += StoreArray0[a];
sum2 += StoreArray1[a];
sum3 += StoreArray2[a];
}
movAg0 = sum1/windowsize; //calculates an average in the array
movAg1 = sum2/windowsize;
movAg2 = sum3/windowsize;
}
void emg_filtered() //Call all filter functions
{
EMGFilter0();
EMGFilter1();
EMGFilter2();
MovAg();
}
void switch_to_calibrate()
{
x++;
if(x==0) //If x = 0, led is red
{
ledr = 0;
ledb = 1;
ledg = 1;
}
else if (x==1) //If x = 1, led is blue
{
ledr = 1;
ledb = 0;
ledg = 1;
}
else if (x == 2) //If x = 2, led is green
{
ledr = 1;
ledb = 1;
ledg = 0;
}
else //If x = 3, led is white
{
ledr = 0;
ledb = 0;
ledg = 0;
}
if(x>=4) //Reset back to x = 0
{
x = -1;
}
}
void calibrate(void)
{
switch(x)
{
case 0:
{
sum = 0.0;
for(int j = 0; j<=sizeCal-1; j++)
{
StoreCal0[j] = emgfilter0;
sum+=StoreCal0[j];
//wait(0.001f);
}
Mean0 = sum/sizeCal;
Threshold0 = Mean0/2;
break;
}
case 1:
{
sum = 0.0;
for(int j = 0; j<=sizeCal-1; j++)
{
StoreCal1[j] = emgfilter1;
sum+=StoreCal1[j];
//wait(0.001f);
}
Mean1 = sum/sizeCal;
Threshold1 = Mean1/2;
break;
}
case 2:
{
sum = 0.0;
for(int j = 0; j<=sizeCal-1; j++)
{
StoreCal1[j] = emgfilter2;
sum+=StoreCal2[j];
//wait(0.001f);
}
Mean2 = sum/sizeCal;
Threshold2 = Mean2/2;
break;
}
case 3: //EMG is calibrated, robot can be set to Home position.
{
emg_cal = 1;
//wait(0.001f);
break;
}
default: //Ensures nothing happens if x is not 0,1 or 2.
{
break;
}
}
}
void encoderA_rise()
{
if(encoderB==false)
{
encoder++;
}
else
{
encoder--;
}
}
void encoderA_fall()
{
if(encoderB==true)
{
encoder++;
}
else
{
encoder--;
}
}
void encoderB_rise()
{
if(encoderA==true)
{
encoder++;
}
else
{
encoder--;
}
}
void encoderB_fall()
{
if(encoderA==false)
{
encoder++;
}
else
{
encoder--;
}
}
// Main function start.
int main()
{
//pc.baud(115200);
//pc.printf("hello\n\r");
ledr = 0; //Begin led = red, first state of calibration
ledb = 1;
ledg = 1;
filter_tick.attach(&emg_filtered,T); //EMG signals filtered + moving average every T sec.
button1.rise(switch_to_calibrate); //Switch state of calibration (which muscle)
wait(0.2f);
button2.rise(calibrate); //calibrate threshold for 3 muscles
wait(0.2f);
pwmpin1.period_us(60); //60 microseconds PWM period, 16.7 kHz
encoderA.rise(&encoderA_rise);
encoderA.fall(&encoderA_fall);
encoderB.rise(&encoderB_rise);
encoderB.fall(&encoderB_fall);
if(emg_cal==1)
{
while (true)
{
//Motor aansturen en encoder uitlezen
//float u1 = potmetervalue1;
//float u2 = potmetervalue2;
//float m1 = ((u1*2.0f)-1.0f);
//float m2 = ((u2*2.0f)-1.0f);
//pwmpin1 = fabs(m1*0.6f)+0.4f; //pwm duty cycle can only be positive, floating, 0.4f is "inefficiënt", dit tellen we erbij op, en keer 0.6 om te corrigeren voor de helling.
if(emgfilter0>Threshold0)
{
pwmpin1 = 1;
directionpin1.write(1);
}
else
{
pwmpin1 = 0;
}
if(emgfilter1>Threshold1)
{
pwmpin2 = 1;
directionpin2.write(1);
}
else
{
pwmpin2 = 0;
}
if(emgfilter2>Threshold2)
{
pwmpin1 = 1;
pwmpin2 = 2;
directionpin1.write(1);
directionpin2.write(1);
}
else
{
pwmpin1 = 0;
pwmpin2 = 0;
}
//Indien waar, motor draait rechtsom. Indien niet waar, motor draait linksom.
//wait(0.01f); //zodat de code niet oneindig doorgaat.
//pwmpin2 = fabs(m2*0.6f)+0.4f;
//directionpin2.write(m2>0);
//float encoderDegrees = float(encoder)*(360.0/8400.0);
//pc.printf("Encoder count: %f \n\r",encoderDegrees);
}
}
}
