added prescaler for 16 bit pwm in LPC1347 target

Fork of mbed-dev by mbed official

Revision:
144:ef7eb2e8f9f7
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/targets/hal/TARGET_Freescale/TARGET_KSDK2_MCUS/TARGET_K66F/drivers/fsl_ftm.c	Fri Sep 02 15:07:44 2016 +0100
@@ -0,0 +1,896 @@
+/*
+ * Copyright (c) 2015, Freescale Semiconductor, Inc.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without modification,
+ * are permitted provided that the following conditions are met:
+ *
+ * o Redistributions of source code must retain the above copyright notice, this list
+ *   of conditions and the following disclaimer.
+ *
+ * o Redistributions in binary form must reproduce the above copyright notice, this
+ *   list of conditions and the following disclaimer in the documentation and/or
+ *   other materials provided with the distribution.
+ *
+ * o Neither the name of Freescale Semiconductor, Inc. nor the names of its
+ *   contributors may be used to endorse or promote products derived from this
+ *   software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+ * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
+ * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
+ * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include "fsl_ftm.h"
+
+/*******************************************************************************
+ * Prototypes
+ ******************************************************************************/
+/*!
+ * @brief Gets the instance from the base address
+ *
+ * @param base FTM peripheral base address
+ *
+ * @return The FTM instance
+ */
+static uint32_t FTM_GetInstance(FTM_Type *base);
+
+/*!
+ * @brief Sets the FTM register PWM synchronization method
+ *
+ * This function will set the necessary bits for the PWM synchronization mode that
+ * user wishes to use.
+ *
+ * @param base       FTM peripheral base address
+ * @param syncMethod Syncronization methods to use to update buffered registers. This is a logical
+ *                   OR of members of the enumeration ::ftm_pwm_sync_method_t
+ */
+static void FTM_SetPwmSync(FTM_Type *base, uint32_t syncMethod);
+
+/*!
+ * @brief Sets the reload points used as loading points for register update
+ *
+ * This function will set the necessary bits based on what the user wishes to use as loading
+ * points for FTM register update. When using this it is not required to use PWM synchnronization.
+ *
+ * @param base         FTM peripheral base address
+ * @param reloadPoints FTM reload points. This is a logical OR of members of the
+ *                     enumeration ::ftm_reload_point_t
+ */
+static void FTM_SetReloadPoints(FTM_Type *base, uint32_t reloadPoints);
+
+/*******************************************************************************
+ * Variables
+ ******************************************************************************/
+/*! @brief Pointers to FTM bases for each instance. */
+static FTM_Type *const s_ftmBases[] = FTM_BASE_PTRS;
+
+/*! @brief Pointers to FTM clocks for each instance. */
+static const clock_ip_name_t s_ftmClocks[] = FTM_CLOCKS;
+
+/*******************************************************************************
+ * Code
+ ******************************************************************************/
+static uint32_t FTM_GetInstance(FTM_Type *base)
+{
+    uint32_t instance;
+    uint32_t ftmArrayCount = (sizeof(s_ftmBases) / sizeof(s_ftmBases[0]));
+
+    /* Find the instance index from base address mappings. */
+    for (instance = 0; instance < ftmArrayCount; instance++)
+    {
+        if (s_ftmBases[instance] == base)
+        {
+            break;
+        }
+    }
+
+    assert(instance < ftmArrayCount);
+
+    return instance;
+}
+
+static void FTM_SetPwmSync(FTM_Type *base, uint32_t syncMethod)
+{
+    uint8_t chnlNumber = 0;
+    uint32_t reg = 0, syncReg = 0;
+
+    syncReg = base->SYNC;
+    /* Enable PWM synchronization of output mask register */
+    syncReg |= FTM_SYNC_SYNCHOM_MASK;
+
+    reg = base->COMBINE;
+    for (chnlNumber = 0; chnlNumber < (FSL_FEATURE_FTM_CHANNEL_COUNTn(base) / 2); chnlNumber++)
+    {
+        /* Enable PWM synchronization of registers C(n)V and C(n+1)V */
+        reg |= (1U << (FTM_COMBINE_SYNCEN0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * chnlNumber)));
+    }
+    base->COMBINE = reg;
+
+    reg = base->SYNCONF;
+
+    /* Use enhanced PWM synchronization method. Use PWM sync to update register values */
+    reg |= (FTM_SYNCONF_SYNCMODE_MASK | FTM_SYNCONF_CNTINC_MASK | FTM_SYNCONF_INVC_MASK | FTM_SYNCONF_SWOC_MASK);
+
+    if (syncMethod & FTM_SYNC_SWSYNC_MASK)
+    {
+        /* Enable needed bits for software trigger to update registers with its buffer value */
+        reg |= (FTM_SYNCONF_SWRSTCNT_MASK | FTM_SYNCONF_SWWRBUF_MASK | FTM_SYNCONF_SWINVC_MASK |
+                FTM_SYNCONF_SWSOC_MASK | FTM_SYNCONF_SWOM_MASK);
+    }
+
+    if (syncMethod & (FTM_SYNC_TRIG0_MASK | FTM_SYNC_TRIG1_MASK | FTM_SYNC_TRIG2_MASK))
+    {
+        /* Enable needed bits for hardware trigger to update registers with its buffer value */
+        reg |= (FTM_SYNCONF_HWRSTCNT_MASK | FTM_SYNCONF_HWWRBUF_MASK | FTM_SYNCONF_HWINVC_MASK |
+                FTM_SYNCONF_HWSOC_MASK | FTM_SYNCONF_HWOM_MASK);
+
+        /* Enable the appropriate hardware trigger that is used for PWM sync */
+        if (syncMethod & FTM_SYNC_TRIG0_MASK)
+        {
+            syncReg |= FTM_SYNC_TRIG0_MASK;
+        }
+        if (syncMethod & FTM_SYNC_TRIG1_MASK)
+        {
+            syncReg |= FTM_SYNC_TRIG1_MASK;
+        }
+        if (syncMethod & FTM_SYNC_TRIG2_MASK)
+        {
+            syncReg |= FTM_SYNC_TRIG2_MASK;
+        }
+    }
+
+    /* Write back values to the SYNC register */
+    base->SYNC = syncReg;
+
+    /* Write the PWM synch values to the SYNCONF register */
+    base->SYNCONF = reg;
+}
+
+static void FTM_SetReloadPoints(FTM_Type *base, uint32_t reloadPoints)
+{
+    uint32_t chnlNumber = 0;
+    uint32_t reg = 0;
+
+    /* Need CNTINC bit to be 1 for CNTIN register to update with its buffer value on reload  */
+    base->SYNCONF |= FTM_SYNCONF_CNTINC_MASK;
+
+    reg = base->COMBINE;
+    for (chnlNumber = 0; chnlNumber < (FSL_FEATURE_FTM_CHANNEL_COUNTn(base) / 2); chnlNumber++)
+    {
+        /* Need SYNCEN bit to be 1 for CnV reg to update with its buffer value on reload  */
+        reg |= (1U << (FTM_COMBINE_SYNCEN0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * chnlNumber)));
+    }
+    base->COMBINE = reg;
+
+    /* Set the reload points */
+    reg = base->PWMLOAD;
+
+    /* Enable the selected channel match reload points */
+    reg &= ~((1U << FSL_FEATURE_FTM_CHANNEL_COUNTn(base)) - 1);
+    reg |= (reloadPoints & ((1U << FSL_FEATURE_FTM_CHANNEL_COUNTn(base)) - 1));
+
+#if defined(FSL_FEATURE_FTM_HAS_HALFCYCLE_RELOAD) && (FSL_FEATURE_FTM_HAS_HALFCYCLE_RELOAD)
+    /* Enable half cycle match as a reload point */
+    if (reloadPoints & kFTM_HalfCycMatch)
+    {
+        reg |= FTM_PWMLOAD_HCSEL_MASK;
+    }
+    else
+    {
+        reg &= ~FTM_PWMLOAD_HCSEL_MASK;
+    }
+#endif /* FSL_FEATURE_FTM_HAS_HALFCYCLE_RELOAD */
+
+    base->PWMLOAD = reg;
+
+    /* These reload points are used when counter is in up-down counting mode */
+    reg = base->SYNC;
+    if (reloadPoints & kFTM_CntMax)
+    {
+        /* Reload when counter turns from up to down */
+        reg |= FTM_SYNC_CNTMAX_MASK;
+    }
+    else
+    {
+        reg &= ~FTM_SYNC_CNTMAX_MASK;
+    }
+
+    if (reloadPoints & kFTM_CntMin)
+    {
+        /* Reload when counter turns from down to up */
+        reg |= FTM_SYNC_CNTMIN_MASK;
+    }
+    else
+    {
+        reg &= ~FTM_SYNC_CNTMIN_MASK;
+    }
+    base->SYNC = reg;
+}
+
+status_t FTM_Init(FTM_Type *base, const ftm_config_t *config)
+{
+    assert(config);
+
+    uint32_t reg;
+
+    if (!(config->pwmSyncMode &
+          (FTM_SYNC_TRIG0_MASK | FTM_SYNC_TRIG1_MASK | FTM_SYNC_TRIG2_MASK | FTM_SYNC_SWSYNC_MASK)))
+    {
+        /* Invalid PWM sync mode */
+        return kStatus_Fail;
+    }
+
+    /* Ungate the FTM clock*/
+    CLOCK_EnableClock(s_ftmClocks[FTM_GetInstance(base)]);
+
+    /* Configure the fault mode, enable FTM mode and disable write protection */
+    base->MODE = FTM_MODE_FAULTM(config->faultMode) | FTM_MODE_FTMEN_MASK | FTM_MODE_WPDIS_MASK;
+
+    /* Configure the update mechanism for buffered registers */
+    FTM_SetPwmSync(base, config->pwmSyncMode);
+
+    /* Setup intermediate register reload points */
+    FTM_SetReloadPoints(base, config->reloadPoints);
+
+    /* Set the clock prescale factor */
+    base->SC = FTM_SC_PS(config->prescale);
+
+    /* Setup the counter operation */
+    base->CONF = (FTM_CONF_BDMMODE(config->bdmMode) | FTM_CONF_GTBEEN(config->useGlobalTimeBase));
+
+    /* Initial state of channel output */
+    base->OUTINIT = config->chnlInitState;
+
+    /* Channel polarity */
+    base->POL = config->chnlPolarity;
+
+    /* Set the external trigger sources */
+    base->EXTTRIG = config->extTriggers;
+#if defined(FSL_FEATURE_FTM_HAS_RELOAD_INITIALIZATION_TRIGGER) && (FSL_FEATURE_FTM_HAS_RELOAD_INITIALIZATION_TRIGGER)
+    if (config->extTriggers & kFTM_ReloadInitTrigger)
+    {
+        base->CONF |= FTM_CONF_ITRIGR_MASK;
+    }
+    else
+    {
+        base->CONF &= ~FTM_CONF_ITRIGR_MASK;
+    }
+#endif /* FSL_FEATURE_FTM_HAS_RELOAD_INITIALIZATION_TRIGGER */
+
+    /* FTM deadtime insertion control */
+    base->DEADTIME = (FTM_DEADTIME_DTPS(config->deadTimePrescale) | FTM_DEADTIME_DTVAL(config->deadTimeValue));
+
+    /* FTM fault filter value */
+    reg = base->FLTCTRL;
+    reg &= ~FTM_FLTCTRL_FFVAL_MASK;
+    reg |= FTM_FLTCTRL_FFVAL(config->faultFilterValue);
+    base->FLTCTRL = reg;
+
+    return kStatus_Success;
+}
+
+void FTM_Deinit(FTM_Type *base)
+{
+    /* Set clock source to none to disable counter */
+    base->SC &= ~(FTM_SC_CLKS_MASK);
+
+    /* Gate the FTM clock */
+    CLOCK_DisableClock(s_ftmClocks[FTM_GetInstance(base)]);
+}
+
+void FTM_GetDefaultConfig(ftm_config_t *config)
+{
+    assert(config);
+
+    /* Divide FTM clock by 1 */
+    config->prescale = kFTM_Prescale_Divide_1;
+    /* FTM behavior in BDM mode */
+    config->bdmMode = kFTM_BdmMode_0;
+    /* Software trigger will be used to update registers */
+    config->pwmSyncMode = kFTM_SoftwareTrigger;
+    /* No intermediate register load */
+    config->reloadPoints = 0;
+    /* Fault control disabled for all channels */
+    config->faultMode = kFTM_Fault_Disable;
+    /* Disable the fault filter */
+    config->faultFilterValue = 0;
+    /* Divide the system clock by 1 */
+    config->deadTimePrescale = kFTM_Deadtime_Prescale_1;
+    /* No counts are inserted */
+    config->deadTimeValue = 0;
+    /* No external trigger */
+    config->extTriggers = 0;
+    /* Initialization value is 0 for all channels */
+    config->chnlInitState = 0;
+    /* Active high polarity for all channels */
+    config->chnlPolarity = 0;
+    /* Use internal FTM counter as timebase */
+    config->useGlobalTimeBase = false;
+}
+
+status_t FTM_SetupPwm(FTM_Type *base,
+                      const ftm_chnl_pwm_signal_param_t *chnlParams,
+                      uint8_t numOfChnls,
+                      ftm_pwm_mode_t mode,
+                      uint32_t pwmFreq_Hz,
+                      uint32_t srcClock_Hz)
+{
+    assert(chnlParams);
+    assert(srcClock_Hz);
+    assert(pwmFreq_Hz);
+    assert(numOfChnls);
+
+    uint32_t mod, reg;
+    uint32_t ftmClock = (srcClock_Hz / (1U << (base->SC & FTM_SC_PS_MASK)));
+    uint16_t cnv, cnvFirstEdge;
+    uint8_t i;
+
+    switch (mode)
+    {
+        case kFTM_EdgeAlignedPwm:
+        case kFTM_CombinedPwm:
+            base->SC &= ~FTM_SC_CPWMS_MASK;
+            mod = (ftmClock / pwmFreq_Hz) - 1;
+            break;
+        case kFTM_CenterAlignedPwm:
+            base->SC |= FTM_SC_CPWMS_MASK;
+            mod = ftmClock / (pwmFreq_Hz * 2);
+            break;
+        default:
+            return kStatus_Fail;
+    }
+
+    /* Return an error in case we overflow the registers, probably would require changing
+     * clock source to get the desired frequency */
+    if (mod > 65535U)
+    {
+        return kStatus_Fail;
+    }
+    /* Set the PWM period */
+    base->MOD = mod;
+
+    /* Setup each FTM channel */
+    for (i = 0; i < numOfChnls; i++)
+    {
+        /* Return error if requested dutycycle is greater than the max allowed */
+        if (chnlParams->dutyCyclePercent > 100)
+        {
+            return kStatus_Fail;
+        }
+
+        if ((mode == kFTM_EdgeAlignedPwm) || (mode == kFTM_CenterAlignedPwm))
+        {
+            /* Clear the current mode and edge level bits */
+            reg = base->CONTROLS[chnlParams->chnlNumber].CnSC;
+            reg &= ~(FTM_CnSC_MSA_MASK | FTM_CnSC_MSB_MASK | FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK);
+
+            /* Setup the active level */
+            reg |= (uint32_t)(chnlParams->level << FTM_CnSC_ELSA_SHIFT);
+
+            /* Edge-aligned mode needs MSB to be 1, don't care for Center-aligned mode */
+            reg |= FTM_CnSC_MSB(1U);
+
+            /* Update the mode and edge level */
+            base->CONTROLS[chnlParams->chnlNumber].CnSC = reg;
+
+            if (chnlParams->dutyCyclePercent == 0)
+            {
+                /* Signal stays low */
+                cnv = 0;
+            }
+            else
+            {
+                cnv = (mod * chnlParams->dutyCyclePercent) / 100;
+                /* For 100% duty cycle */
+                if (cnv >= mod)
+                {
+                    cnv = mod + 1;
+                }
+            }
+
+            base->CONTROLS[chnlParams->chnlNumber].CnV = cnv;
+#if defined(FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT) && (FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT)
+            /* Set to output mode */
+            FTM_SetPwmOutputEnable(base, chnlParams->chnlNumber, true);
+#endif
+        }
+        else
+        {
+            /* This check is added for combined mode as the channel number should be the pair number */
+            if (chnlParams->chnlNumber >= (FSL_FEATURE_FTM_CHANNEL_COUNTn(base) / 2))
+            {
+                return kStatus_Fail;
+            }
+
+            /* Return error if requested value is greater than the max allowed */
+            if (chnlParams->firstEdgeDelayPercent > 100)
+            {
+                return kStatus_Fail;
+            }
+
+            /* Configure delay of the first edge */
+            if (chnlParams->firstEdgeDelayPercent == 0)
+            {
+                /* No delay for the first edge */
+                cnvFirstEdge = 0;
+            }
+            else
+            {
+                cnvFirstEdge = (mod * chnlParams->firstEdgeDelayPercent) / 100;
+            }
+
+            /* Configure dutycycle */
+            if (chnlParams->dutyCyclePercent == 0)
+            {
+                /* Signal stays low */
+                cnv = 0;
+                cnvFirstEdge = 0;
+            }
+            else
+            {
+                cnv = (mod * chnlParams->dutyCyclePercent) / 100;
+                /* For 100% duty cycle */
+                if (cnv >= mod)
+                {
+                    cnv = mod + 1;
+                }
+            }
+
+            /* Clear the current mode and edge level bits for channel n */
+            reg = base->CONTROLS[chnlParams->chnlNumber * 2].CnSC;
+            reg &= ~(FTM_CnSC_MSA_MASK | FTM_CnSC_MSB_MASK | FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK);
+
+            /* Setup the active level for channel n */
+            reg |= (uint32_t)(chnlParams->level << FTM_CnSC_ELSA_SHIFT);
+
+            /* Update the mode and edge level for channel n */
+            base->CONTROLS[chnlParams->chnlNumber * 2].CnSC = reg;
+
+            /* Clear the current mode and edge level bits for channel n + 1 */
+            reg = base->CONTROLS[(chnlParams->chnlNumber * 2) + 1].CnSC;
+            reg &= ~(FTM_CnSC_MSA_MASK | FTM_CnSC_MSB_MASK | FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK);
+
+            /* Setup the active level for channel n + 1 */
+            reg |= (uint32_t)(chnlParams->level << FTM_CnSC_ELSA_SHIFT);
+
+            /* Update the mode and edge level for channel n + 1*/
+            base->CONTROLS[(chnlParams->chnlNumber * 2) + 1].CnSC = reg;
+
+            /* Set the combine bit for the channel pair */
+            base->COMBINE |=
+                (1U << (FTM_COMBINE_COMBINE0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * chnlParams->chnlNumber)));
+
+            /* Set the channel pair values */
+            base->CONTROLS[chnlParams->chnlNumber * 2].CnV = cnvFirstEdge;
+            base->CONTROLS[(chnlParams->chnlNumber * 2) + 1].CnV = cnvFirstEdge + cnv;
+
+#if defined(FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT) && (FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT)
+            /* Set to output mode */
+            FTM_SetPwmOutputEnable(base, (ftm_chnl_t)((uint8_t)chnlParams->chnlNumber * 2), true);
+            FTM_SetPwmOutputEnable(base, (ftm_chnl_t)((uint8_t)chnlParams->chnlNumber * 2 + 1), true);
+#endif
+        }
+        chnlParams++;
+    }
+
+    return kStatus_Success;
+}
+
+void FTM_UpdatePwmDutycycle(FTM_Type *base,
+                            ftm_chnl_t chnlNumber,
+                            ftm_pwm_mode_t currentPwmMode,
+                            uint8_t dutyCyclePercent)
+{
+    uint16_t cnv, cnvFirstEdge = 0, mod;
+
+    mod = base->MOD;
+    if ((currentPwmMode == kFTM_EdgeAlignedPwm) || (currentPwmMode == kFTM_CenterAlignedPwm))
+    {
+        cnv = (mod * dutyCyclePercent) / 100;
+        /* For 100% duty cycle */
+        if (cnv >= mod)
+        {
+            cnv = mod + 1;
+        }
+        base->CONTROLS[chnlNumber].CnV = cnv;
+    }
+    else
+    {
+        /* This check is added for combined mode as the channel number should be the pair number */
+        if (chnlNumber >= (FSL_FEATURE_FTM_CHANNEL_COUNTn(base) / 2))
+        {
+            return;
+        }
+
+        cnv = (mod * dutyCyclePercent) / 100;
+        cnvFirstEdge = base->CONTROLS[chnlNumber * 2].CnV;
+        /* For 100% duty cycle */
+        if (cnv >= mod)
+        {
+            cnv = mod + 1;
+        }
+        base->CONTROLS[(chnlNumber * 2) + 1].CnV = cnvFirstEdge + cnv;
+    }
+}
+
+void FTM_UpdateChnlEdgeLevelSelect(FTM_Type *base, ftm_chnl_t chnlNumber, uint8_t level)
+{
+    uint32_t reg = base->CONTROLS[chnlNumber].CnSC;
+
+    /* Clear the field and write the new level value */
+    reg &= ~(FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK);
+    reg |= ((uint32_t)level << FTM_CnSC_ELSA_SHIFT) & (FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK);
+
+    base->CONTROLS[chnlNumber].CnSC = reg;
+}
+
+void FTM_SetupInputCapture(FTM_Type *base,
+                           ftm_chnl_t chnlNumber,
+                           ftm_input_capture_edge_t captureMode,
+                           uint32_t filterValue)
+{
+    uint32_t reg;
+
+    /* Clear the combine bit for the channel pair */
+    base->COMBINE &= ~(1U << (FTM_COMBINE_COMBINE0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * (chnlNumber >> 1))));
+    /* Clear the dual edge capture mode because it's it's higher priority */
+    base->COMBINE &= ~(1U << (FTM_COMBINE_DECAPEN0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * (chnlNumber >> 1))));
+    /* Clear the quadrature decoder mode beacause it's higher priority */
+    base->QDCTRL &= ~FTM_QDCTRL_QUADEN_MASK;
+
+    reg = base->CONTROLS[chnlNumber].CnSC;
+    reg &= ~(FTM_CnSC_MSA_MASK | FTM_CnSC_MSB_MASK | FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK);
+    reg |= captureMode;
+
+    /* Set the requested input capture mode */
+    base->CONTROLS[chnlNumber].CnSC = reg;
+    /* Input filter available only for channels 0, 1, 2, 3 */
+    if (chnlNumber < kFTM_Chnl_4)
+    {
+        reg = base->FILTER;
+        reg &= ~(FTM_FILTER_CH0FVAL_MASK << (FTM_FILTER_CH1FVAL_SHIFT * chnlNumber));
+        reg |= (filterValue << (FTM_FILTER_CH1FVAL_SHIFT * chnlNumber));
+        base->FILTER = reg;
+    }
+#if defined(FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT) && (FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT)
+    /* Set to input mode */
+    FTM_SetPwmOutputEnable(base, chnlNumber, false);
+#endif
+}
+
+void FTM_SetupOutputCompare(FTM_Type *base,
+                            ftm_chnl_t chnlNumber,
+                            ftm_output_compare_mode_t compareMode,
+                            uint32_t compareValue)
+{
+    uint32_t reg;
+
+    /* Clear the combine bit for the channel pair */
+    base->COMBINE &= ~(1U << (FTM_COMBINE_COMBINE0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * (chnlNumber >> 1))));
+    /* Clear the dual edge capture mode because it's it's higher priority */
+    base->COMBINE &= ~(1U << (FTM_COMBINE_DECAPEN0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * (chnlNumber >> 1))));
+    /* Clear the quadrature decoder mode beacause it's higher priority */
+    base->QDCTRL &= ~FTM_QDCTRL_QUADEN_MASK;
+
+    reg = base->CONTROLS[chnlNumber].CnSC;
+    reg &= ~(FTM_CnSC_MSA_MASK | FTM_CnSC_MSB_MASK | FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK);
+    reg |= compareMode;
+    /* Setup the channel output behaviour when a match occurs with the compare value */
+    base->CONTROLS[chnlNumber].CnSC = reg;
+
+    /* Set output on match to the requested level */
+    base->CONTROLS[chnlNumber].CnV = compareValue;
+
+#if defined(FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT) && (FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT)
+    /* Set to output mode */
+    FTM_SetPwmOutputEnable(base, chnlNumber, true);
+#endif
+}
+
+void FTM_SetupDualEdgeCapture(FTM_Type *base,
+                              ftm_chnl_t chnlPairNumber,
+                              const ftm_dual_edge_capture_param_t *edgeParam,
+                              uint32_t filterValue)
+{
+    assert(edgeParam);
+
+    uint32_t reg;
+
+    reg = base->COMBINE;
+    /* Clear the combine bit for the channel pair */
+    reg &= ~(1U << (FTM_COMBINE_COMBINE0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * chnlPairNumber)));
+    /* Enable the DECAPEN bit */
+    reg |= (1U << (FTM_COMBINE_DECAPEN0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * chnlPairNumber)));
+    reg |= (1U << (FTM_COMBINE_DECAP0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * chnlPairNumber)));
+    base->COMBINE = reg;
+
+    /* Setup the edge detection from channel n and n + 1 */
+    reg = base->CONTROLS[chnlPairNumber * 2].CnSC;
+    reg &= ~(FTM_CnSC_MSA_MASK | FTM_CnSC_MSB_MASK | FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK);
+    reg |= ((uint32_t)edgeParam->mode | (uint32_t)edgeParam->currChanEdgeMode);
+    base->CONTROLS[chnlPairNumber * 2].CnSC = reg;
+
+    reg = base->CONTROLS[(chnlPairNumber * 2) + 1].CnSC;
+    reg &= ~(FTM_CnSC_MSA_MASK | FTM_CnSC_MSB_MASK | FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK);
+    reg |= ((uint32_t)edgeParam->mode | (uint32_t)edgeParam->nextChanEdgeMode);
+    base->CONTROLS[(chnlPairNumber * 2) + 1].CnSC = reg;
+
+    /* Input filter available only for channels 0, 1, 2, 3 */
+    if (chnlPairNumber < kFTM_Chnl_4)
+    {
+        reg = base->FILTER;
+        reg &= ~(FTM_FILTER_CH0FVAL_MASK << (FTM_FILTER_CH1FVAL_SHIFT * chnlPairNumber));
+        reg |= (filterValue << (FTM_FILTER_CH1FVAL_SHIFT * chnlPairNumber));
+        base->FILTER = reg;
+    }
+
+#if defined(FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT) && (FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT)
+    /* Set to input mode */
+    FTM_SetPwmOutputEnable(base, chnlPairNumber, false);
+#endif
+}
+
+void FTM_SetupQuadDecode(FTM_Type *base,
+                         const ftm_phase_params_t *phaseAParams,
+                         const ftm_phase_params_t *phaseBParams,
+                         ftm_quad_decode_mode_t quadMode)
+{
+    assert(phaseAParams);
+    assert(phaseBParams);
+
+    uint32_t reg;
+
+    /* Set Phase A filter value if phase filter is enabled */
+    if (phaseAParams->enablePhaseFilter)
+    {
+        reg = base->FILTER;
+        reg &= ~(FTM_FILTER_CH0FVAL_MASK);
+        reg |= FTM_FILTER_CH0FVAL(phaseAParams->phaseFilterVal);
+        base->FILTER = reg;
+    }
+
+    /* Set Phase B filter value if phase filter is enabled */
+    if (phaseBParams->enablePhaseFilter)
+    {
+        reg = base->FILTER;
+        reg &= ~(FTM_FILTER_CH1FVAL_MASK);
+        reg |= FTM_FILTER_CH1FVAL(phaseBParams->phaseFilterVal);
+        base->FILTER = reg;
+    }
+
+    /* Set Quadrature decode properties */
+    reg = base->QDCTRL;
+    reg &= ~(FTM_QDCTRL_QUADMODE_MASK | FTM_QDCTRL_PHAFLTREN_MASK | FTM_QDCTRL_PHBFLTREN_MASK | FTM_QDCTRL_PHAPOL_MASK |
+             FTM_QDCTRL_PHBPOL_MASK);
+    reg |= (FTM_QDCTRL_QUADMODE(quadMode) | FTM_QDCTRL_PHAFLTREN(phaseAParams->enablePhaseFilter) |
+            FTM_QDCTRL_PHBFLTREN(phaseBParams->enablePhaseFilter) | FTM_QDCTRL_PHAPOL(phaseAParams->phasePolarity) |
+            FTM_QDCTRL_PHBPOL(phaseBParams->phasePolarity));
+    base->QDCTRL = reg;
+    /* Enable Quad decode */
+    base->QDCTRL |= FTM_QDCTRL_QUADEN_MASK;
+}
+
+void FTM_SetupFault(FTM_Type *base, ftm_fault_input_t faultNumber, const ftm_fault_param_t *faultParams)
+{
+    assert(faultParams);
+
+    uint32_t reg;
+
+    reg = base->FLTCTRL;
+    if (faultParams->enableFaultInput)
+    {
+        /* Enable the fault input */
+        reg |= (FTM_FLTCTRL_FAULT0EN_MASK << faultNumber);
+    }
+    else
+    {
+        /* Disable the fault input */
+        reg &= ~(FTM_FLTCTRL_FAULT0EN_MASK << faultNumber);
+    }
+
+    if (faultParams->useFaultFilter)
+    {
+        /* Enable the fault filter */
+        reg |= (FTM_FLTCTRL_FFLTR0EN_MASK << (FTM_FLTCTRL_FFLTR0EN_SHIFT + faultNumber));
+    }
+    else
+    {
+        /* Disable the fault filter */
+        reg &= ~(FTM_FLTCTRL_FFLTR0EN_MASK << (FTM_FLTCTRL_FFLTR0EN_SHIFT + faultNumber));
+    }
+    base->FLTCTRL = reg;
+
+    if (faultParams->faultLevel)
+    {
+        /* Active low polarity for the fault input pin */
+        base->FLTPOL |= (1U << faultNumber);
+    }
+    else
+    {
+        /* Active high polarity for the fault input pin */
+        base->FLTPOL &= ~(1U << faultNumber);
+    }
+}
+
+void FTM_EnableInterrupts(FTM_Type *base, uint32_t mask)
+{
+    uint32_t chnlInts = (mask & 0xFFU);
+    uint8_t chnlNumber = 0;
+
+    /* Enable the timer overflow interrupt */
+    if (mask & kFTM_TimeOverflowInterruptEnable)
+    {
+        base->SC |= FTM_SC_TOIE_MASK;
+    }
+
+    /* Enable the fault interrupt */
+    if (mask & kFTM_FaultInterruptEnable)
+    {
+        base->MODE |= FTM_MODE_FAULTIE_MASK;
+    }
+
+#if defined(FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT) && (FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT)
+    /* Enable the reload interrupt available only on certain SoC's */
+    if (mask & kFTM_ReloadInterruptEnable)
+    {
+        base->SC |= FTM_SC_RIE_MASK;
+    }
+#endif
+
+    /* Enable the channel interrupts */
+    while (chnlInts)
+    {
+        if (chnlInts & 0x1)
+        {
+            base->CONTROLS[chnlNumber].CnSC |= FTM_CnSC_CHIE_MASK;
+        }
+        chnlNumber++;
+        chnlInts = chnlInts >> 1U;
+    }
+}
+
+void FTM_DisableInterrupts(FTM_Type *base, uint32_t mask)
+{
+    uint32_t chnlInts = (mask & 0xFF);
+    uint8_t chnlNumber = 0;
+
+    /* Disable the timer overflow interrupt */
+    if (mask & kFTM_TimeOverflowInterruptEnable)
+    {
+        base->SC &= ~FTM_SC_TOIE_MASK;
+    }
+    /* Disable the fault interrupt */
+    if (mask & kFTM_FaultInterruptEnable)
+    {
+        base->MODE &= ~FTM_MODE_FAULTIE_MASK;
+    }
+
+#if defined(FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT) && (FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT)
+    /* Disable the reload interrupt available only on certain SoC's */
+    if (mask & kFTM_ReloadInterruptEnable)
+    {
+        base->SC &= ~FTM_SC_RIE_MASK;
+    }
+#endif
+
+    /* Disable the channel interrupts */
+    while (chnlInts)
+    {
+        if (chnlInts & 0x1)
+        {
+            base->CONTROLS[chnlNumber].CnSC &= ~FTM_CnSC_CHIE_MASK;
+        }
+        chnlNumber++;
+        chnlInts = chnlInts >> 1U;
+    }
+}
+
+uint32_t FTM_GetEnabledInterrupts(FTM_Type *base)
+{
+    uint32_t enabledInterrupts = 0;
+    int8_t chnlCount = FSL_FEATURE_FTM_CHANNEL_COUNTn(base);
+
+    /* The CHANNEL_COUNT macro returns -1 if it cannot match the FTM instance */
+    assert(chnlCount != -1);
+
+    /* Check if timer overflow interrupt is enabled */
+    if (base->SC & FTM_SC_TOIE_MASK)
+    {
+        enabledInterrupts |= kFTM_TimeOverflowInterruptEnable;
+    }
+    /* Check if fault interrupt is enabled */
+    if (base->MODE & FTM_MODE_FAULTIE_MASK)
+    {
+        enabledInterrupts |= kFTM_FaultInterruptEnable;
+    }
+
+#if defined(FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT) && (FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT)
+    /* Check if the reload interrupt is enabled */
+    if (base->SC & FTM_SC_RIE_MASK)
+    {
+        enabledInterrupts |= kFTM_ReloadInterruptEnable;
+    }
+#endif
+
+    /* Check if the channel interrupts are enabled */
+    while (chnlCount > 0)
+    {
+        chnlCount--;
+        if (base->CONTROLS[chnlCount].CnSC & FTM_CnSC_CHIE_MASK)
+        {
+            enabledInterrupts |= (1U << chnlCount);
+        }
+    }
+
+    return enabledInterrupts;
+}
+
+uint32_t FTM_GetStatusFlags(FTM_Type *base)
+{
+    uint32_t statusFlags = 0;
+
+    /* Check the timer flag */
+    if (base->SC & FTM_SC_TOF_MASK)
+    {
+        statusFlags |= kFTM_TimeOverflowFlag;
+    }
+    /* Check fault flag */
+    if (base->FMS & FTM_FMS_FAULTF_MASK)
+    {
+        statusFlags |= kFTM_FaultFlag;
+    }
+    /* Check channel trigger flag */
+    if (base->EXTTRIG & FTM_EXTTRIG_TRIGF_MASK)
+    {
+        statusFlags |= kFTM_ChnlTriggerFlag;
+    }
+#if defined(FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT) && (FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT)
+    /* Check reload flag */
+    if (base->SC & FTM_SC_RF_MASK)
+    {
+        statusFlags |= kFTM_ReloadFlag;
+    }
+#endif
+
+    /* Lower 8 bits contain the channel status flags */
+    statusFlags |= (base->STATUS & 0xFFU);
+
+    return statusFlags;
+}
+
+void FTM_ClearStatusFlags(FTM_Type *base, uint32_t mask)
+{
+    /* Clear the timer overflow flag by writing a 0 to the bit while it is set */
+    if (mask & kFTM_TimeOverflowFlag)
+    {
+        base->SC &= ~FTM_SC_TOF_MASK;
+    }
+    /* Clear fault flag by writing a 0 to the bit while it is set */
+    if (mask & kFTM_FaultFlag)
+    {
+        base->FMS &= ~FTM_FMS_FAULTF_MASK;
+    }
+    /* Clear channel trigger flag */
+    if (mask & kFTM_ChnlTriggerFlag)
+    {
+        base->EXTTRIG &= ~FTM_EXTTRIG_TRIGF_MASK;
+    }
+
+#if defined(FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT) && (FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT)
+    /* Check reload flag by writing a 0 to the bit while it is set */
+    if (mask & kFTM_ReloadFlag)
+    {
+        base->SC &= ~FTM_SC_RF_MASK;
+    }
+#endif
+    /* Clear the channel status flags by writing a 0 to the bit */
+    base->STATUS &= ~(mask & 0xFFU);
+}