added prescaler for 16 bit pwm in LPC1347 target

Fork of mbed-dev by mbed official

Revision:
144:ef7eb2e8f9f7
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/targets/hal/TARGET_Freescale/TARGET_KSDK2_MCUS/TARGET_K66F/drivers/fsl_dspi.c	Fri Sep 02 15:07:44 2016 +0100
@@ -0,0 +1,1659 @@
+/*
+* Copyright (c) 2015, Freescale Semiconductor, Inc.
+* All rights reserved.
+*
+* Redistribution and use in source and binary forms, with or without modification,
+* are permitted provided that the following conditions are met:
+*
+* o Redistributions of source code must retain the above copyright notice, this list
+*   of conditions and the following disclaimer.
+*
+* o Redistributions in binary form must reproduce the above copyright notice, this
+*   list of conditions and the following disclaimer in the documentation and/or
+*   other materials provided with the distribution.
+*
+* o Neither the name of Freescale Semiconductor, Inc. nor the names of its
+*   contributors may be used to endorse or promote products derived from this
+*   software without specific prior written permission.
+*
+* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
+* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
+* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#include "fsl_dspi.h"
+
+/*******************************************************************************
+ * Definitions
+ ******************************************************************************/
+/*! @brief Typedef for master interrupt handler. */
+typedef void (*dspi_master_isr_t)(SPI_Type *base, dspi_master_handle_t *handle);
+
+/*! @brief Typedef for slave interrupt handler. */
+typedef void (*dspi_slave_isr_t)(SPI_Type *base, dspi_slave_handle_t *handle);
+
+/*******************************************************************************
+ * Prototypes
+ ******************************************************************************/
+/*!
+ * @brief Get instance number for DSPI module.
+ *
+ * @param base DSPI peripheral base address.
+ */
+uint32_t DSPI_GetInstance(SPI_Type *base);
+
+/*!
+ * @brief Configures the DSPI peripheral chip select polarity.
+ *
+ * This function  takes in the desired peripheral chip select (Pcs) and it's corresponding desired polarity and
+ * configures the Pcs signal to operate with the desired characteristic.
+ *
+ * @param base DSPI peripheral address.
+ * @param pcs The particular peripheral chip select (parameter value is of type dspi_which_pcs_t) for which we wish to
+ *            apply the active high or active low characteristic.
+ * @param activeLowOrHigh The setting for either "active high, inactive low (0)"  or "active low, inactive high(1)" of
+ *                        type dspi_pcs_polarity_config_t.
+ */
+static void DSPI_SetOnePcsPolarity(SPI_Type *base, dspi_which_pcs_t pcs, dspi_pcs_polarity_config_t activeLowOrHigh);
+
+/*!
+ * @brief Master fill up the TX FIFO with data.
+ * This is not a public API as it is called from other driver functions.
+ */
+static void DSPI_MasterTransferFillUpTxFifo(SPI_Type *base, dspi_master_handle_t *handle);
+
+/*!
+ * @brief Master finish up a transfer.
+ * It would call back if there is callback function and set the state to idle.
+ * This is not a public API as it is called from other driver functions.
+ */
+static void DSPI_MasterTransferComplete(SPI_Type *base, dspi_master_handle_t *handle);
+
+/*!
+ * @brief Slave fill up the TX FIFO with data.
+ * This is not a public API as it is called from other driver functions.
+ */
+static void DSPI_SlaveTransferFillUpTxFifo(SPI_Type *base, dspi_slave_handle_t *handle);
+
+/*!
+ * @brief Slave finish up a transfer.
+ * It would call back if there is callback function and set the state to idle.
+ * This is not a public API as it is called from other driver functions.
+ */
+static void DSPI_SlaveTransferComplete(SPI_Type *base, dspi_slave_handle_t *handle);
+
+/*!
+ * @brief DSPI common interrupt handler.
+ *
+ * @param base DSPI peripheral address.
+ * @param handle pointer to g_dspiHandle which stores the transfer state.
+ */
+static void DSPI_CommonIRQHandler(SPI_Type *base, void *param);
+
+/*!
+ * @brief Master prepare the transfer.
+ * Basically it set up dspi_master_handle .
+ * This is not a public API as it is called from other driver functions. fsl_dspi_edma.c also call this function.
+ */
+static void DSPI_MasterTransferPrepare(SPI_Type *base, dspi_master_handle_t *handle, dspi_transfer_t *transfer);
+
+/*******************************************************************************
+ * Variables
+ ******************************************************************************/
+
+/* Defines constant value arrays for the baud rate pre-scalar and scalar divider values.*/
+static const uint32_t s_baudratePrescaler[] = {2, 3, 5, 7};
+static const uint32_t s_baudrateScaler[] = {2,   4,   6,    8,    16,   32,   64,    128,
+                                            256, 512, 1024, 2048, 4096, 8192, 16384, 32768};
+
+static const uint32_t s_delayPrescaler[] = {1, 3, 5, 7};
+static const uint32_t s_delayScaler[] = {2,   4,    8,    16,   32,   64,    128,   256,
+                                         512, 1024, 2048, 4096, 8192, 16384, 32768, 65536};
+
+/*! @brief Pointers to dspi bases for each instance. */
+static SPI_Type *const s_dspiBases[] = SPI_BASE_PTRS;
+
+/*! @brief Pointers to dspi IRQ number for each instance. */
+static IRQn_Type const s_dspiIRQ[] = SPI_IRQS;
+
+/*! @brief Pointers to dspi clocks for each instance. */
+static clock_ip_name_t const s_dspiClock[] = DSPI_CLOCKS;
+
+/*! @brief Pointers to dspi handles for each instance. */
+static void *g_dspiHandle[FSL_FEATURE_SOC_DSPI_COUNT];
+
+/*! @brief Pointer to master IRQ handler for each instance. */
+static dspi_master_isr_t s_dspiMasterIsr;
+
+/*! @brief Pointer to slave IRQ handler for each instance. */
+static dspi_slave_isr_t s_dspiSlaveIsr;
+
+/**********************************************************************************************************************
+* Code
+*********************************************************************************************************************/
+uint32_t DSPI_GetInstance(SPI_Type *base)
+{
+    uint32_t instance;
+
+    /* Find the instance index from base address mappings. */
+    for (instance = 0; instance < FSL_FEATURE_SOC_DSPI_COUNT; instance++)
+    {
+        if (s_dspiBases[instance] == base)
+        {
+            break;
+        }
+    }
+
+    assert(instance < FSL_FEATURE_SOC_DSPI_COUNT);
+
+    return instance;
+}
+
+void DSPI_MasterInit(SPI_Type *base, const dspi_master_config_t *masterConfig, uint32_t srcClock_Hz)
+{
+    uint32_t temp;
+    /* enable DSPI clock */
+    CLOCK_EnableClock(s_dspiClock[DSPI_GetInstance(base)]);
+
+    DSPI_Enable(base, true);
+    DSPI_StopTransfer(base);
+
+    DSPI_SetMasterSlaveMode(base, kDSPI_Master);
+
+    temp = base->MCR & (~(SPI_MCR_CONT_SCKE_MASK | SPI_MCR_MTFE_MASK | SPI_MCR_ROOE_MASK | SPI_MCR_SMPL_PT_MASK |
+                          SPI_MCR_DIS_TXF_MASK | SPI_MCR_DIS_RXF_MASK));
+
+    base->MCR = temp | SPI_MCR_CONT_SCKE(masterConfig->enableContinuousSCK) |
+                SPI_MCR_MTFE(masterConfig->enableModifiedTimingFormat) |
+                SPI_MCR_ROOE(masterConfig->enableRxFifoOverWrite) | SPI_MCR_SMPL_PT(masterConfig->samplePoint) |
+                SPI_MCR_DIS_TXF(false) | SPI_MCR_DIS_RXF(false);
+
+    DSPI_SetOnePcsPolarity(base, masterConfig->whichPcs, masterConfig->pcsActiveHighOrLow);
+
+    if (0 == DSPI_MasterSetBaudRate(base, masterConfig->whichCtar, masterConfig->ctarConfig.baudRate, srcClock_Hz))
+    {
+        assert(false);
+    }
+
+    temp = base->CTAR[masterConfig->whichCtar] &
+           ~(SPI_CTAR_FMSZ_MASK | SPI_CTAR_CPOL_MASK | SPI_CTAR_CPHA_MASK | SPI_CTAR_LSBFE_MASK);
+
+    base->CTAR[masterConfig->whichCtar] =
+        temp | SPI_CTAR_FMSZ(masterConfig->ctarConfig.bitsPerFrame - 1) | SPI_CTAR_CPOL(masterConfig->ctarConfig.cpol) |
+        SPI_CTAR_CPHA(masterConfig->ctarConfig.cpha) | SPI_CTAR_LSBFE(masterConfig->ctarConfig.direction);
+
+    DSPI_MasterSetDelayTimes(base, masterConfig->whichCtar, kDSPI_PcsToSck, srcClock_Hz,
+                             masterConfig->ctarConfig.pcsToSckDelayInNanoSec);
+    DSPI_MasterSetDelayTimes(base, masterConfig->whichCtar, kDSPI_LastSckToPcs, srcClock_Hz,
+                             masterConfig->ctarConfig.lastSckToPcsDelayInNanoSec);
+    DSPI_MasterSetDelayTimes(base, masterConfig->whichCtar, kDSPI_BetweenTransfer, srcClock_Hz,
+                             masterConfig->ctarConfig.betweenTransferDelayInNanoSec);
+
+    DSPI_StartTransfer(base);
+}
+
+void DSPI_MasterGetDefaultConfig(dspi_master_config_t *masterConfig)
+{
+    masterConfig->whichCtar = kDSPI_Ctar0;
+    masterConfig->ctarConfig.baudRate = 500000;
+    masterConfig->ctarConfig.bitsPerFrame = 8;
+    masterConfig->ctarConfig.cpol = kDSPI_ClockPolarityActiveHigh;
+    masterConfig->ctarConfig.cpha = kDSPI_ClockPhaseFirstEdge;
+    masterConfig->ctarConfig.direction = kDSPI_MsbFirst;
+
+    masterConfig->ctarConfig.pcsToSckDelayInNanoSec = 1000;
+    masterConfig->ctarConfig.lastSckToPcsDelayInNanoSec = 1000;
+    masterConfig->ctarConfig.betweenTransferDelayInNanoSec = 1000;
+
+    masterConfig->whichPcs = kDSPI_Pcs0;
+    masterConfig->pcsActiveHighOrLow = kDSPI_PcsActiveLow;
+
+    masterConfig->enableContinuousSCK = false;
+    masterConfig->enableRxFifoOverWrite = false;
+    masterConfig->enableModifiedTimingFormat = false;
+    masterConfig->samplePoint = kDSPI_SckToSin0Clock;
+}
+
+void DSPI_SlaveInit(SPI_Type *base, const dspi_slave_config_t *slaveConfig)
+{
+    uint32_t temp = 0;
+
+    /* enable DSPI clock */
+    CLOCK_EnableClock(s_dspiClock[DSPI_GetInstance(base)]);
+
+    DSPI_Enable(base, true);
+    DSPI_StopTransfer(base);
+
+    DSPI_SetMasterSlaveMode(base, kDSPI_Slave);
+
+    temp = base->MCR & (~(SPI_MCR_CONT_SCKE_MASK | SPI_MCR_MTFE_MASK | SPI_MCR_ROOE_MASK | SPI_MCR_SMPL_PT_MASK |
+                          SPI_MCR_DIS_TXF_MASK | SPI_MCR_DIS_RXF_MASK));
+
+    base->MCR = temp | SPI_MCR_CONT_SCKE(slaveConfig->enableContinuousSCK) |
+                SPI_MCR_MTFE(slaveConfig->enableModifiedTimingFormat) |
+                SPI_MCR_ROOE(slaveConfig->enableRxFifoOverWrite) | SPI_MCR_SMPL_PT(slaveConfig->samplePoint) |
+                SPI_MCR_DIS_TXF(false) | SPI_MCR_DIS_RXF(false);
+
+    DSPI_SetOnePcsPolarity(base, kDSPI_Pcs0, kDSPI_PcsActiveLow);
+
+    temp = base->CTAR[slaveConfig->whichCtar] &
+           ~(SPI_CTAR_FMSZ_MASK | SPI_CTAR_CPOL_MASK | SPI_CTAR_CPHA_MASK | SPI_CTAR_LSBFE_MASK);
+
+    base->CTAR[slaveConfig->whichCtar] = temp | SPI_CTAR_SLAVE_FMSZ(slaveConfig->ctarConfig.bitsPerFrame - 1) |
+                                         SPI_CTAR_SLAVE_CPOL(slaveConfig->ctarConfig.cpol) |
+                                         SPI_CTAR_SLAVE_CPHA(slaveConfig->ctarConfig.cpha);
+
+    DSPI_StartTransfer(base);
+}
+
+void DSPI_SlaveGetDefaultConfig(dspi_slave_config_t *slaveConfig)
+{
+    slaveConfig->whichCtar = kDSPI_Ctar0;
+    slaveConfig->ctarConfig.bitsPerFrame = 8;
+    slaveConfig->ctarConfig.cpol = kDSPI_ClockPolarityActiveHigh;
+    slaveConfig->ctarConfig.cpha = kDSPI_ClockPhaseFirstEdge;
+
+    slaveConfig->enableContinuousSCK = false;
+    slaveConfig->enableRxFifoOverWrite = false;
+    slaveConfig->enableModifiedTimingFormat = false;
+    slaveConfig->samplePoint = kDSPI_SckToSin0Clock;
+}
+
+void DSPI_Deinit(SPI_Type *base)
+{
+    DSPI_StopTransfer(base);
+    DSPI_Enable(base, false);
+
+    /* disable DSPI clock */
+    CLOCK_DisableClock(s_dspiClock[DSPI_GetInstance(base)]);
+}
+
+static void DSPI_SetOnePcsPolarity(SPI_Type *base, dspi_which_pcs_t pcs, dspi_pcs_polarity_config_t activeLowOrHigh)
+{
+    uint32_t temp;
+
+    temp = base->MCR;
+
+    if (activeLowOrHigh == kDSPI_PcsActiveLow)
+    {
+        temp |= SPI_MCR_PCSIS(pcs);
+    }
+    else
+    {
+        temp &= ~SPI_MCR_PCSIS(pcs);
+    }
+
+    base->MCR = temp;
+}
+
+uint32_t DSPI_MasterSetBaudRate(SPI_Type *base,
+                                dspi_ctar_selection_t whichCtar,
+                                uint32_t baudRate_Bps,
+                                uint32_t srcClock_Hz)
+{
+    /* for master mode configuration, if slave mode detected, return 0*/
+    if (!DSPI_IsMaster(base))
+    {
+        return 0;
+    }
+    uint32_t temp;
+    uint32_t prescaler, bestPrescaler;
+    uint32_t scaler, bestScaler;
+    uint32_t dbr, bestDbr;
+    uint32_t realBaudrate, bestBaudrate;
+    uint32_t diff, min_diff;
+    uint32_t baudrate = baudRate_Bps;
+
+    /* find combination of prescaler and scaler resulting in baudrate closest to the requested value */
+    min_diff = 0xFFFFFFFFU;
+    bestPrescaler = 0;
+    bestScaler = 0;
+    bestDbr = 1;
+    bestBaudrate = 0; /* required to avoid compilation warning */
+
+    /* In all for loops, if min_diff = 0, the exit for loop*/
+    for (prescaler = 0; (prescaler < 4) && min_diff; prescaler++)
+    {
+        for (scaler = 0; (scaler < 16) && min_diff; scaler++)
+        {
+            for (dbr = 1; (dbr < 3) && min_diff; dbr++)
+            {
+                realBaudrate = ((srcClock_Hz * dbr) / (s_baudratePrescaler[prescaler] * (s_baudrateScaler[scaler])));
+
+                /* calculate the baud rate difference based on the conditional statement that states that the calculated
+                * baud rate must not exceed the desired baud rate.
+                */
+                if (baudrate >= realBaudrate)
+                {
+                    diff = baudrate - realBaudrate;
+                    if (min_diff > diff)
+                    {
+                        /* a better match found */
+                        min_diff = diff;
+                        bestPrescaler = prescaler;
+                        bestScaler = scaler;
+                        bestBaudrate = realBaudrate;
+                        bestDbr = dbr;
+                    }
+                }
+            }
+        }
+    }
+
+    /* write the best dbr, prescalar, and baud rate scalar to the CTAR */
+    temp = base->CTAR[whichCtar] & ~(SPI_CTAR_DBR_MASK | SPI_CTAR_PBR_MASK | SPI_CTAR_BR_MASK);
+
+    base->CTAR[whichCtar] = temp | ((bestDbr - 1) << SPI_CTAR_DBR_SHIFT) | (bestPrescaler << SPI_CTAR_PBR_SHIFT) |
+                            (bestScaler << SPI_CTAR_BR_SHIFT);
+
+    /* return the actual calculated baud rate */
+    return bestBaudrate;
+}
+
+void DSPI_MasterSetDelayScaler(
+    SPI_Type *base, dspi_ctar_selection_t whichCtar, uint32_t prescaler, uint32_t scaler, dspi_delay_type_t whichDelay)
+{
+    /* these settings are only relevant in master mode */
+    if (DSPI_IsMaster(base))
+    {
+        switch (whichDelay)
+        {
+            case kDSPI_PcsToSck:
+                base->CTAR[whichCtar] = (base->CTAR[whichCtar] & (~SPI_CTAR_PCSSCK_MASK) & (~SPI_CTAR_CSSCK_MASK)) |
+                                        SPI_CTAR_PCSSCK(prescaler) | SPI_CTAR_CSSCK(scaler);
+                break;
+            case kDSPI_LastSckToPcs:
+                base->CTAR[whichCtar] = (base->CTAR[whichCtar] & (~SPI_CTAR_PASC_MASK) & (~SPI_CTAR_ASC_MASK)) |
+                                        SPI_CTAR_PASC(prescaler) | SPI_CTAR_ASC(scaler);
+                break;
+            case kDSPI_BetweenTransfer:
+                base->CTAR[whichCtar] = (base->CTAR[whichCtar] & (~SPI_CTAR_PDT_MASK) & (~SPI_CTAR_DT_MASK)) |
+                                        SPI_CTAR_PDT(prescaler) | SPI_CTAR_DT(scaler);
+                break;
+            default:
+                break;
+        }
+    }
+}
+
+uint32_t DSPI_MasterSetDelayTimes(SPI_Type *base,
+                                  dspi_ctar_selection_t whichCtar,
+                                  dspi_delay_type_t whichDelay,
+                                  uint32_t srcClock_Hz,
+                                  uint32_t delayTimeInNanoSec)
+{
+    /* for master mode configuration, if slave mode detected, return 0 */
+    if (!DSPI_IsMaster(base))
+    {
+        return 0;
+    }
+
+    uint32_t prescaler, bestPrescaler;
+    uint32_t scaler, bestScaler;
+    uint32_t realDelay, bestDelay;
+    uint32_t diff, min_diff;
+    uint32_t initialDelayNanoSec;
+
+    /* find combination of prescaler and scaler resulting in the delay closest to the
+    * requested value
+    */
+    min_diff = 0xFFFFFFFFU;
+    /* Initialize prescaler and scaler to their max values to generate the max delay */
+    bestPrescaler = 0x3;
+    bestScaler = 0xF;
+    bestDelay = (((1000000000U * 4) / srcClock_Hz) * s_delayPrescaler[bestPrescaler] * s_delayScaler[bestScaler]) / 4;
+
+    /* First calculate the initial, default delay */
+    initialDelayNanoSec = 1000000000U / srcClock_Hz * 2;
+
+    /* If the initial, default delay is already greater than the desired delay, then
+    * set the delays to their initial value (0) and return the delay. In other words,
+    * there is no way to decrease the delay value further.
+    */
+    if (initialDelayNanoSec >= delayTimeInNanoSec)
+    {
+        DSPI_MasterSetDelayScaler(base, whichCtar, 0, 0, whichDelay);
+        return initialDelayNanoSec;
+    }
+
+    /* In all for loops, if min_diff = 0, the exit for loop */
+    for (prescaler = 0; (prescaler < 4) && min_diff; prescaler++)
+    {
+        for (scaler = 0; (scaler < 16) && min_diff; scaler++)
+        {
+            realDelay = ((4000000000U / srcClock_Hz) * s_delayPrescaler[prescaler] * s_delayScaler[scaler]) / 4;
+
+            /* calculate the delay difference based on the conditional statement
+            * that states that the calculated delay must not be less then the desired delay
+            */
+            if (realDelay >= delayTimeInNanoSec)
+            {
+                diff = realDelay - delayTimeInNanoSec;
+                if (min_diff > diff)
+                {
+                    /* a better match found */
+                    min_diff = diff;
+                    bestPrescaler = prescaler;
+                    bestScaler = scaler;
+                    bestDelay = realDelay;
+                }
+            }
+        }
+    }
+
+    /* write the best dbr, prescalar, and baud rate scalar to the CTAR */
+    DSPI_MasterSetDelayScaler(base, whichCtar, bestPrescaler, bestScaler, whichDelay);
+
+    /* return the actual calculated baud rate */
+    return bestDelay;
+}
+
+void DSPI_GetDefaultDataCommandConfig(dspi_command_data_config_t *command)
+{
+    command->isPcsContinuous = false;
+    command->whichCtar = kDSPI_Ctar0;
+    command->whichPcs = kDSPI_Pcs0;
+    command->isEndOfQueue = false;
+    command->clearTransferCount = false;
+}
+
+void DSPI_MasterWriteDataBlocking(SPI_Type *base, dspi_command_data_config_t *command, uint16_t data)
+{
+    /* First, clear Transmit Complete Flag (TCF) */
+    DSPI_ClearStatusFlags(base, kDSPI_TxCompleteFlag);
+
+    while (!(DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag))
+    {
+        DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+    }
+
+    base->PUSHR = SPI_PUSHR_CONT(command->isPcsContinuous) | SPI_PUSHR_CTAS(command->whichCtar) |
+                  SPI_PUSHR_PCS(command->whichPcs) | SPI_PUSHR_EOQ(command->isEndOfQueue) |
+                  SPI_PUSHR_CTCNT(command->clearTransferCount) | SPI_PUSHR_TXDATA(data);
+    DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+
+    /* Wait till TCF sets */
+    while (!(DSPI_GetStatusFlags(base) & kDSPI_TxCompleteFlag))
+    {
+    }
+}
+
+void DSPI_MasterWriteCommandDataBlocking(SPI_Type *base, uint32_t data)
+{
+    /* First, clear Transmit Complete Flag (TCF) */
+    DSPI_ClearStatusFlags(base, kDSPI_TxCompleteFlag);
+
+    while (!(DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag))
+    {
+        DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+    }
+
+    base->PUSHR = data;
+
+    DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+
+    /* Wait till TCF sets */
+    while (!(DSPI_GetStatusFlags(base) & kDSPI_TxCompleteFlag))
+    {
+    }
+}
+
+void DSPI_SlaveWriteDataBlocking(SPI_Type *base, uint32_t data)
+{
+    /* First, clear Transmit Complete Flag (TCF) */
+    DSPI_ClearStatusFlags(base, kDSPI_TxCompleteFlag);
+
+    while (!(DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag))
+    {
+        DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+    }
+
+    base->PUSHR_SLAVE = data;
+
+    DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+
+    /* Wait till TCF sets */
+    while (!(DSPI_GetStatusFlags(base) & kDSPI_TxCompleteFlag))
+    {
+    }
+}
+
+void DSPI_EnableInterrupts(SPI_Type *base, uint32_t mask)
+{
+    if (mask & SPI_RSER_TFFF_RE_MASK)
+    {
+        base->RSER &= ~SPI_RSER_TFFF_DIRS_MASK;
+    }
+    if (mask & SPI_RSER_RFDF_RE_MASK)
+    {
+        base->RSER &= ~SPI_RSER_RFDF_DIRS_MASK;
+    }
+    base->RSER |= mask;
+}
+
+/*Transactional APIs -- Master*/
+
+void DSPI_MasterTransferCreateHandle(SPI_Type *base,
+                                     dspi_master_handle_t *handle,
+                                     dspi_master_transfer_callback_t callback,
+                                     void *userData)
+{
+    assert(handle);
+
+    /* Zero the handle. */
+    memset(handle, 0, sizeof(*handle));
+
+    g_dspiHandle[DSPI_GetInstance(base)] = handle;
+
+    handle->callback = callback;
+    handle->userData = userData;
+}
+
+status_t DSPI_MasterTransferBlocking(SPI_Type *base, dspi_transfer_t *transfer)
+{
+    assert(transfer);
+
+    uint16_t wordToSend = 0;
+    uint16_t wordReceived = 0;
+    uint8_t dummyData = DSPI_MASTER_DUMMY_DATA;
+    uint8_t bitsPerFrame;
+
+    uint32_t command;
+    uint32_t lastCommand;
+
+    uint8_t *txData;
+    uint8_t *rxData;
+    uint32_t remainingSendByteCount;
+    uint32_t remainingReceiveByteCount;
+
+    uint32_t fifoSize;
+    dspi_command_data_config_t commandStruct;
+
+    /* If the transfer count is zero, then return immediately.*/
+    if (transfer->dataSize == 0)
+    {
+        return kStatus_InvalidArgument;
+    }
+
+    DSPI_StopTransfer(base);
+    DSPI_DisableInterrupts(base, kDSPI_AllInterruptEnable);
+    DSPI_FlushFifo(base, true, true);
+    DSPI_ClearStatusFlags(base, kDSPI_AllStatusFlag);
+
+    /*Calculate the command and lastCommand*/
+    commandStruct.whichPcs =
+        (dspi_which_pcs_t)(1U << ((transfer->configFlags & DSPI_MASTER_PCS_MASK) >> DSPI_MASTER_PCS_SHIFT));
+    commandStruct.isEndOfQueue = false;
+    commandStruct.clearTransferCount = false;
+    commandStruct.whichCtar =
+        (dspi_ctar_selection_t)((transfer->configFlags & DSPI_MASTER_CTAR_MASK) >> DSPI_MASTER_CTAR_SHIFT);
+    commandStruct.isPcsContinuous = (bool)(transfer->configFlags & kDSPI_MasterPcsContinuous);
+
+    command = DSPI_MasterGetFormattedCommand(&(commandStruct));
+
+    commandStruct.isPcsContinuous = (bool)(transfer->configFlags & kDSPI_MasterActiveAfterTransfer);
+    lastCommand = DSPI_MasterGetFormattedCommand(&(commandStruct));
+
+    /*Calculate the bitsPerFrame*/
+    bitsPerFrame = ((base->CTAR[commandStruct.whichCtar] & SPI_CTAR_FMSZ_MASK) >> SPI_CTAR_FMSZ_SHIFT) + 1;
+
+    txData = transfer->txData;
+    rxData = transfer->rxData;
+    remainingSendByteCount = transfer->dataSize;
+    remainingReceiveByteCount = transfer->dataSize;
+
+    if ((base->MCR & SPI_MCR_DIS_RXF_MASK) || (base->MCR & SPI_MCR_DIS_TXF_MASK))
+    {
+        fifoSize = 1;
+    }
+    else
+    {
+        fifoSize = FSL_FEATURE_DSPI_FIFO_SIZEn(base);
+    }
+
+    DSPI_StartTransfer(base);
+
+    if (bitsPerFrame <= 8)
+    {
+        while (remainingSendByteCount > 0)
+        {
+            if (remainingSendByteCount == 1)
+            {
+                while ((remainingReceiveByteCount - remainingSendByteCount) >= fifoSize)
+                {
+                    if (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag)
+                    {
+                        if (rxData != NULL)
+                        {
+                            *(rxData) = DSPI_ReadData(base);
+                            rxData++;
+                        }
+                        else
+                        {
+                            DSPI_ReadData(base);
+                        }
+                        remainingReceiveByteCount--;
+
+                        DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag);
+                    }
+                }
+
+                while (!(DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag))
+                {
+                    DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+                }
+
+                if (txData != NULL)
+                {
+                    base->PUSHR = (*txData) | (lastCommand);
+                    txData++;
+                }
+                else
+                {
+                    base->PUSHR = (lastCommand) | (dummyData);
+                }
+                DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+                remainingSendByteCount--;
+
+                while (remainingReceiveByteCount > 0)
+                {
+                    if (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag)
+                    {
+                        if (rxData != NULL)
+                        {
+                            /* Read data from POPR*/
+                            *(rxData) = DSPI_ReadData(base);
+                            rxData++;
+                        }
+                        else
+                        {
+                            DSPI_ReadData(base);
+                        }
+                        remainingReceiveByteCount--;
+
+                        DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag);
+                    }
+                }
+            }
+            else
+            {
+                /*Wait until Tx Fifo is not full*/
+                while (!(DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag))
+                {
+                    DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+                }
+                if (txData != NULL)
+                {
+                    base->PUSHR = command | (uint16_t)(*txData);
+                    txData++;
+                }
+                else
+                {
+                    base->PUSHR = command | dummyData;
+                }
+                remainingSendByteCount--;
+
+                DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+
+                if (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag)
+                {
+                    if (rxData != NULL)
+                    {
+                        *(rxData) = DSPI_ReadData(base);
+                        rxData++;
+                    }
+                    else
+                    {
+                        DSPI_ReadData(base);
+                    }
+                    remainingReceiveByteCount--;
+
+                    DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag);
+                }
+            }
+        }
+    }
+    else
+    {
+        while (remainingSendByteCount > 0)
+        {
+            if (remainingSendByteCount <= 2)
+            {
+                while (((remainingReceiveByteCount - remainingSendByteCount) / 2) >= fifoSize)
+                {
+                    if (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag)
+                    {
+                        wordReceived = DSPI_ReadData(base);
+
+                        if (rxData != NULL)
+                        {
+                            *rxData = wordReceived;
+                            ++rxData;
+                            *rxData = wordReceived >> 8;
+                            ++rxData;
+                        }
+                        remainingReceiveByteCount -= 2;
+
+                        DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag);
+                    }
+                }
+
+                while (!(DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag))
+                {
+                    DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+                }
+
+                if (txData != NULL)
+                {
+                    wordToSend = *(txData);
+                    ++txData;
+
+                    if (remainingSendByteCount > 1)
+                    {
+                        wordToSend |= (unsigned)(*(txData)) << 8U;
+                        ++txData;
+                    }
+                }
+                else
+                {
+                    wordToSend = dummyData;
+                }
+
+                base->PUSHR = lastCommand | wordToSend;
+
+                DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+                remainingSendByteCount = 0;
+
+                while (remainingReceiveByteCount > 0)
+                {
+                    if (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag)
+                    {
+                        wordReceived = DSPI_ReadData(base);
+
+                        if (remainingReceiveByteCount != 1)
+                        {
+                            if (rxData != NULL)
+                            {
+                                *(rxData) = wordReceived;
+                                ++rxData;
+                                *(rxData) = wordReceived >> 8;
+                                ++rxData;
+                            }
+                            remainingReceiveByteCount -= 2;
+                        }
+                        else
+                        {
+                            if (rxData != NULL)
+                            {
+                                *(rxData) = wordReceived;
+                                ++rxData;
+                            }
+                            remainingReceiveByteCount--;
+                        }
+                        DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag);
+                    }
+                }
+            }
+            else
+            {
+                /*Wait until Tx Fifo is not full*/
+                while (!(DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag))
+                {
+                    DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+                }
+
+                if (txData != NULL)
+                {
+                    wordToSend = *(txData);
+                    ++txData;
+                    wordToSend |= (unsigned)(*(txData)) << 8U;
+                    ++txData;
+                }
+                else
+                {
+                    wordToSend = dummyData;
+                }
+                base->PUSHR = command | wordToSend;
+                remainingSendByteCount -= 2;
+
+                DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+
+                if (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag)
+                {
+                    wordReceived = DSPI_ReadData(base);
+
+                    if (rxData != NULL)
+                    {
+                        *rxData = wordReceived;
+                        ++rxData;
+                        *rxData = wordReceived >> 8;
+                        ++rxData;
+                    }
+                    remainingReceiveByteCount -= 2;
+
+                    DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag);
+                }
+            }
+        }
+    }
+
+    return kStatus_Success;
+}
+
+static void DSPI_MasterTransferPrepare(SPI_Type *base, dspi_master_handle_t *handle, dspi_transfer_t *transfer)
+{
+    dspi_command_data_config_t commandStruct;
+
+    DSPI_StopTransfer(base);
+    DSPI_FlushFifo(base, true, true);
+    DSPI_ClearStatusFlags(base, kDSPI_AllStatusFlag);
+
+    commandStruct.whichPcs =
+        (dspi_which_pcs_t)(1U << ((transfer->configFlags & DSPI_MASTER_PCS_MASK) >> DSPI_MASTER_PCS_SHIFT));
+    commandStruct.isEndOfQueue = false;
+    commandStruct.clearTransferCount = false;
+    commandStruct.whichCtar =
+        (dspi_ctar_selection_t)((transfer->configFlags & DSPI_MASTER_CTAR_MASK) >> DSPI_MASTER_CTAR_SHIFT);
+    commandStruct.isPcsContinuous = (bool)(transfer->configFlags & kDSPI_MasterPcsContinuous);
+    handle->command = DSPI_MasterGetFormattedCommand(&(commandStruct));
+
+    commandStruct.isPcsContinuous = (bool)(transfer->configFlags & kDSPI_MasterActiveAfterTransfer);
+    handle->lastCommand = DSPI_MasterGetFormattedCommand(&(commandStruct));
+
+    handle->bitsPerFrame = ((base->CTAR[commandStruct.whichCtar] & SPI_CTAR_FMSZ_MASK) >> SPI_CTAR_FMSZ_SHIFT) + 1;
+
+    if ((base->MCR & SPI_MCR_DIS_RXF_MASK) || (base->MCR & SPI_MCR_DIS_TXF_MASK))
+    {
+        handle->fifoSize = 1;
+    }
+    else
+    {
+        handle->fifoSize = FSL_FEATURE_DSPI_FIFO_SIZEn(base);
+    }
+    handle->txData = transfer->txData;
+    handle->rxData = transfer->rxData;
+    handle->remainingSendByteCount = transfer->dataSize;
+    handle->remainingReceiveByteCount = transfer->dataSize;
+    handle->totalByteCount = transfer->dataSize;
+}
+
+status_t DSPI_MasterTransferNonBlocking(SPI_Type *base, dspi_master_handle_t *handle, dspi_transfer_t *transfer)
+{
+    assert(handle && transfer);
+
+    /* If the transfer count is zero, then return immediately.*/
+    if (transfer->dataSize == 0)
+    {
+        return kStatus_InvalidArgument;
+    }
+
+    /* Check that we're not busy.*/
+    if (handle->state == kDSPI_Busy)
+    {
+        return kStatus_DSPI_Busy;
+    }
+
+    handle->state = kDSPI_Busy;
+
+    DSPI_MasterTransferPrepare(base, handle, transfer);
+    DSPI_StartTransfer(base);
+
+    /* Enable the NVIC for DSPI peripheral. */
+    EnableIRQ(s_dspiIRQ[DSPI_GetInstance(base)]);
+
+    DSPI_MasterTransferFillUpTxFifo(base, handle);
+
+    /* RX FIFO Drain request: RFDF_RE to enable RFDF interrupt
+    * Since SPI is a synchronous interface, we only need to enable the RX interrupt.
+    * The IRQ handler will get the status of RX and TX interrupt flags.
+    */
+    s_dspiMasterIsr = DSPI_MasterTransferHandleIRQ;
+
+    DSPI_EnableInterrupts(base, kDSPI_RxFifoDrainRequestInterruptEnable);
+
+    return kStatus_Success;
+}
+
+status_t DSPI_MasterTransferGetCount(SPI_Type *base, dspi_master_handle_t *handle, size_t *count)
+{
+    assert(handle);
+
+    if (!count)
+    {
+        return kStatus_InvalidArgument;
+    }
+
+    /* Catch when there is not an active transfer. */
+    if (handle->state != kDSPI_Busy)
+    {
+        *count = 0;
+        return kStatus_NoTransferInProgress;
+    }
+
+    *count = handle->totalByteCount - handle->remainingReceiveByteCount;
+    return kStatus_Success;
+}
+
+static void DSPI_MasterTransferComplete(SPI_Type *base, dspi_master_handle_t *handle)
+{
+    /* Disable interrupt requests*/
+    DSPI_DisableInterrupts(base, kDSPI_RxFifoDrainRequestInterruptEnable | kDSPI_TxFifoFillRequestInterruptEnable);
+
+    status_t status = 0;
+    if (handle->state == kDSPI_Error)
+    {
+        status = kStatus_DSPI_Error;
+    }
+    else
+    {
+        status = kStatus_Success;
+    }
+
+    if (handle->callback)
+    {
+        handle->callback(base, handle, status, handle->userData);
+    }
+
+    /* The transfer is complete.*/
+    handle->state = kDSPI_Idle;
+}
+
+static void DSPI_MasterTransferFillUpTxFifo(SPI_Type *base, dspi_master_handle_t *handle)
+{
+    uint16_t wordToSend = 0;
+    uint8_t dummyData = DSPI_MASTER_DUMMY_DATA;
+
+    /* If bits/frame is greater than one byte */
+    if (handle->bitsPerFrame > 8)
+    {
+        /* Fill the fifo until it is full or until the send word count is 0 or until the difference
+        * between the remainingReceiveByteCount and remainingSendByteCount equals the FIFO depth.
+        * The reason for checking the difference is to ensure we only send as much as the
+        * RX FIFO can receive.
+        * For this case where bitsPerFrame > 8, each entry in the FIFO contains 2 bytes of the
+        * send data, hence the difference between the remainingReceiveByteCount and
+        * remainingSendByteCount must be divided by 2 to convert this difference into a
+        * 16-bit (2 byte) value.
+        */
+        while ((DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag) &&
+               ((handle->remainingReceiveByteCount - handle->remainingSendByteCount) / 2 < handle->fifoSize))
+        {
+            if (handle->remainingSendByteCount <= 2)
+            {
+                if (handle->txData)
+                {
+                    if (handle->remainingSendByteCount == 1)
+                    {
+                        wordToSend = *(handle->txData);
+                    }
+                    else
+                    {
+                        wordToSend = *(handle->txData);
+                        ++handle->txData; /* increment to next data byte */
+                        wordToSend |= (unsigned)(*(handle->txData)) << 8U;
+                    }
+                }
+                else
+                {
+                    wordToSend = dummyData;
+                }
+                handle->remainingSendByteCount = 0;
+                base->PUSHR = handle->lastCommand | wordToSend;
+            }
+            /* For all words except the last word */
+            else
+            {
+                if (handle->txData)
+                {
+                    wordToSend = *(handle->txData);
+                    ++handle->txData; /* increment to next data byte */
+                    wordToSend |= (unsigned)(*(handle->txData)) << 8U;
+                    ++handle->txData; /* increment to next data byte */
+                }
+                else
+                {
+                    wordToSend = dummyData;
+                }
+                handle->remainingSendByteCount -= 2; /* decrement remainingSendByteCount by 2 */
+                base->PUSHR = handle->command | wordToSend;
+            }
+
+            /* Try to clear the TFFF; if the TX FIFO is full this will clear */
+            DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+
+            /* exit loop if send count is zero, else update local variables for next loop */
+            if (handle->remainingSendByteCount == 0)
+            {
+                break;
+            }
+        } /* End of TX FIFO fill while loop */
+    }
+    /* Optimized for bits/frame less than or equal to one byte. */
+    else
+    {
+        /* Fill the fifo until it is full or until the send word count is 0 or until the difference
+        * between the remainingReceiveByteCount and remainingSendByteCount equals the FIFO depth.
+        * The reason for checking the difference is to ensure we only send as much as the
+        * RX FIFO can receive.
+        */
+        while ((DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag) &&
+               ((handle->remainingReceiveByteCount - handle->remainingSendByteCount) < handle->fifoSize))
+        {
+            if (handle->txData)
+            {
+                wordToSend = *(handle->txData);
+                ++handle->txData;
+            }
+            else
+            {
+                wordToSend = dummyData;
+            }
+
+            if (handle->remainingSendByteCount == 1)
+            {
+                base->PUSHR = handle->lastCommand | wordToSend;
+            }
+            else
+            {
+                base->PUSHR = handle->command | wordToSend;
+            }
+
+            /* Try to clear the TFFF; if the TX FIFO is full this will clear */
+            DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+
+            --handle->remainingSendByteCount;
+
+            /* exit loop if send count is zero, else update local variables for next loop */
+            if (handle->remainingSendByteCount == 0)
+            {
+                break;
+            }
+        }
+    }
+}
+
+void DSPI_MasterTransferAbort(SPI_Type *base, dspi_master_handle_t *handle)
+{
+    DSPI_StopTransfer(base);
+
+    /* Disable interrupt requests*/
+    DSPI_DisableInterrupts(base, kDSPI_RxFifoDrainRequestInterruptEnable | kDSPI_TxFifoFillRequestInterruptEnable);
+
+    handle->state = kDSPI_Idle;
+}
+
+void DSPI_MasterTransferHandleIRQ(SPI_Type *base, dspi_master_handle_t *handle)
+{
+    /* RECEIVE IRQ handler: Check read buffer only if there are remaining bytes to read. */
+    if (handle->remainingReceiveByteCount)
+    {
+        /* Check read buffer.*/
+        uint16_t wordReceived; /* Maximum supported data bit length in master mode is 16-bits */
+
+        /* If bits/frame is greater than one byte */
+        if (handle->bitsPerFrame > 8)
+        {
+            while (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag)
+            {
+                wordReceived = DSPI_ReadData(base);
+                /* clear the rx fifo drain request, needed for non-DMA applications as this flag
+                * will remain set even if the rx fifo is empty. By manually clearing this flag, it
+                * either remain clear if no more data is in the fifo, or it will set if there is
+                * more data in the fifo.
+                */
+                DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag);
+
+                /* Store read bytes into rx buffer only if a buffer pointer was provided */
+                if (handle->rxData)
+                {
+                    /* For the last word received, if there is an extra byte due to the odd transfer
+                    * byte count, only save the the last byte and discard the upper byte
+                    */
+                    if (handle->remainingReceiveByteCount == 1)
+                    {
+                        *handle->rxData = wordReceived; /* Write first data byte */
+                        --handle->remainingReceiveByteCount;
+                    }
+                    else
+                    {
+                        *handle->rxData = wordReceived;      /* Write first data byte */
+                        ++handle->rxData;                    /* increment to next data byte */
+                        *handle->rxData = wordReceived >> 8; /* Write second data byte */
+                        ++handle->rxData;                    /* increment to next data byte */
+                        handle->remainingReceiveByteCount -= 2;
+                    }
+                }
+                else
+                {
+                    if (handle->remainingReceiveByteCount == 1)
+                    {
+                        --handle->remainingReceiveByteCount;
+                    }
+                    else
+                    {
+                        handle->remainingReceiveByteCount -= 2;
+                    }
+                }
+                if (handle->remainingReceiveByteCount == 0)
+                {
+                    break;
+                }
+            } /* End of RX FIFO drain while loop */
+        }
+        /* Optimized for bits/frame less than or equal to one byte. */
+        else
+        {
+            while (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag)
+            {
+                wordReceived = DSPI_ReadData(base);
+                /* clear the rx fifo drain request, needed for non-DMA applications as this flag
+                * will remain set even if the rx fifo is empty. By manually clearing this flag, it
+                * either remain clear if no more data is in the fifo, or it will set if there is
+                * more data in the fifo.
+                */
+                DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag);
+
+                /* Store read bytes into rx buffer only if a buffer pointer was provided */
+                if (handle->rxData)
+                {
+                    *handle->rxData = wordReceived;
+                    ++handle->rxData;
+                }
+
+                --handle->remainingReceiveByteCount;
+
+                if (handle->remainingReceiveByteCount == 0)
+                {
+                    break;
+                }
+            } /* End of RX FIFO drain while loop */
+        }
+    }
+
+    /* Check write buffer. We always have to send a word in order to keep the transfer
+    * moving. So if the caller didn't provide a send buffer, we just send a zero.
+    */
+    if (handle->remainingSendByteCount)
+    {
+        DSPI_MasterTransferFillUpTxFifo(base, handle);
+    }
+
+    /* Check if we're done with this transfer.*/
+    if ((handle->remainingSendByteCount == 0) && (handle->remainingReceiveByteCount == 0))
+    {
+        /* Complete the transfer and disable the interrupts */
+        DSPI_MasterTransferComplete(base, handle);
+    }
+}
+
+/*Transactional APIs -- Slave*/
+void DSPI_SlaveTransferCreateHandle(SPI_Type *base,
+                                    dspi_slave_handle_t *handle,
+                                    dspi_slave_transfer_callback_t callback,
+                                    void *userData)
+{
+    assert(handle);
+
+    /* Zero the handle. */
+    memset(handle, 0, sizeof(*handle));
+
+    g_dspiHandle[DSPI_GetInstance(base)] = handle;
+
+    handle->callback = callback;
+    handle->userData = userData;
+}
+
+status_t DSPI_SlaveTransferNonBlocking(SPI_Type *base, dspi_slave_handle_t *handle, dspi_transfer_t *transfer)
+{
+    assert(handle && transfer);
+
+    /* If receive length is zero */
+    if (transfer->dataSize == 0)
+    {
+        return kStatus_InvalidArgument;
+    }
+
+    /* If both send buffer and receive buffer is null */
+    if ((!(transfer->txData)) && (!(transfer->rxData)))
+    {
+        return kStatus_InvalidArgument;
+    }
+
+    /* Check that we're not busy.*/
+    if (handle->state == kDSPI_Busy)
+    {
+        return kStatus_DSPI_Busy;
+    }
+    handle->state = kDSPI_Busy;
+
+    /* Enable the NVIC for DSPI peripheral. */
+    EnableIRQ(s_dspiIRQ[DSPI_GetInstance(base)]);
+
+    /* Store transfer information */
+    handle->txData = transfer->txData;
+    handle->rxData = transfer->rxData;
+    handle->remainingSendByteCount = transfer->dataSize;
+    handle->remainingReceiveByteCount = transfer->dataSize;
+    handle->totalByteCount = transfer->dataSize;
+
+    handle->errorCount = 0;
+
+    uint8_t whichCtar = (transfer->configFlags & DSPI_SLAVE_CTAR_MASK) >> DSPI_SLAVE_CTAR_SHIFT;
+    handle->bitsPerFrame =
+        (((base->CTAR_SLAVE[whichCtar]) & SPI_CTAR_SLAVE_FMSZ_MASK) >> SPI_CTAR_SLAVE_FMSZ_SHIFT) + 1;
+
+    DSPI_StopTransfer(base);
+
+    DSPI_FlushFifo(base, true, true);
+    DSPI_ClearStatusFlags(base, kDSPI_AllStatusFlag);
+
+    DSPI_StartTransfer(base);
+
+    /* Prepare data to transmit */
+    DSPI_SlaveTransferFillUpTxFifo(base, handle);
+
+    s_dspiSlaveIsr = DSPI_SlaveTransferHandleIRQ;
+
+    /* Enable RX FIFO drain request, the slave only use this interrupt */
+    DSPI_EnableInterrupts(base, kDSPI_RxFifoDrainRequestInterruptEnable);
+
+    if (handle->rxData)
+    {
+        /* RX FIFO overflow request enable */
+        DSPI_EnableInterrupts(base, kDSPI_RxFifoOverflowInterruptEnable);
+    }
+    if (handle->txData)
+    {
+        /* TX FIFO underflow request enable */
+        DSPI_EnableInterrupts(base, kDSPI_TxFifoUnderflowInterruptEnable);
+    }
+
+    return kStatus_Success;
+}
+
+status_t DSPI_SlaveTransferGetCount(SPI_Type *base, dspi_slave_handle_t *handle, size_t *count)
+{
+    assert(handle);
+
+    if (!count)
+    {
+        return kStatus_InvalidArgument;
+    }
+
+    /* Catch when there is not an active transfer. */
+    if (handle->state != kDSPI_Busy)
+    {
+        *count = 0;
+        return kStatus_NoTransferInProgress;
+    }
+
+    *count = handle->totalByteCount - handle->remainingReceiveByteCount;
+    return kStatus_Success;
+}
+
+static void DSPI_SlaveTransferFillUpTxFifo(SPI_Type *base, dspi_slave_handle_t *handle)
+{
+    uint16_t transmitData = 0;
+    uint8_t dummyPattern = DSPI_SLAVE_DUMMY_DATA;
+
+    /* Service the transmitter, if transmit buffer provided, transmit the data,
+    * else transmit dummy pattern
+    */
+    while (DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag)
+    {
+        /* Transmit data */
+        if (handle->remainingSendByteCount > 0)
+        {
+            /* Have data to transmit, update the transmit data and push to FIFO */
+            if (handle->bitsPerFrame <= 8)
+            {
+                /* bits/frame is 1 byte */
+                if (handle->txData)
+                {
+                    /* Update transmit data and transmit pointer */
+                    transmitData = *handle->txData;
+                    handle->txData++;
+                }
+                else
+                {
+                    transmitData = dummyPattern;
+                }
+
+                /* Decrease remaining dataSize */
+                --handle->remainingSendByteCount;
+            }
+            /* bits/frame is 2 bytes */
+            else
+            {
+                /* With multibytes per frame transmission, the transmit frame contains data from
+                * transmit buffer until sent dataSize matches user request. Other bytes will set to
+                * dummy pattern value.
+                */
+                if (handle->txData)
+                {
+                    /* Update first byte of transmit data and transmit pointer */
+                    transmitData = *handle->txData;
+                    handle->txData++;
+
+                    if (handle->remainingSendByteCount == 1)
+                    {
+                        /* Decrease remaining dataSize */
+                        --handle->remainingSendByteCount;
+                        /* Update second byte of transmit data to second byte of dummy pattern */
+                        transmitData = transmitData | (uint16_t)(((uint16_t)dummyPattern) << 8);
+                    }
+                    else
+                    {
+                        /* Update second byte of transmit data and transmit pointer */
+                        transmitData = transmitData | (uint16_t)((uint16_t)(*handle->txData) << 8);
+                        handle->txData++;
+                        handle->remainingSendByteCount -= 2;
+                    }
+                }
+                else
+                {
+                    if (handle->remainingSendByteCount == 1)
+                    {
+                        --handle->remainingSendByteCount;
+                    }
+                    else
+                    {
+                        handle->remainingSendByteCount -= 2;
+                    }
+                    transmitData = (uint16_t)((uint16_t)(dummyPattern) << 8) | dummyPattern;
+                }
+            }
+        }
+        else
+        {
+            break;
+        }
+
+        /* Write the data to the DSPI data register */
+        base->PUSHR_SLAVE = transmitData;
+
+        /* Try to clear TFFF by writing a one to it; it will not clear if TX FIFO not full */
+        DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+    }
+}
+
+static void DSPI_SlaveTransferComplete(SPI_Type *base, dspi_slave_handle_t *handle)
+{
+    /* Disable interrupt requests */
+    DSPI_DisableInterrupts(base, kDSPI_TxFifoUnderflowInterruptEnable | kDSPI_TxFifoFillRequestInterruptEnable |
+                                     kDSPI_RxFifoOverflowInterruptEnable | kDSPI_RxFifoDrainRequestInterruptEnable);
+
+    /* The transfer is complete. */
+    handle->txData = NULL;
+    handle->rxData = NULL;
+    handle->remainingReceiveByteCount = 0;
+    handle->remainingSendByteCount = 0;
+
+    status_t status = 0;
+    if (handle->state == kDSPI_Error)
+    {
+        status = kStatus_DSPI_Error;
+    }
+    else
+    {
+        status = kStatus_Success;
+    }
+
+    if (handle->callback)
+    {
+        handle->callback(base, handle, status, handle->userData);
+    }
+
+    handle->state = kDSPI_Idle;
+}
+
+void DSPI_SlaveTransferAbort(SPI_Type *base, dspi_slave_handle_t *handle)
+{
+    DSPI_StopTransfer(base);
+
+    /* Disable interrupt requests */
+    DSPI_DisableInterrupts(base, kDSPI_TxFifoUnderflowInterruptEnable | kDSPI_TxFifoFillRequestInterruptEnable |
+                                     kDSPI_RxFifoOverflowInterruptEnable | kDSPI_RxFifoDrainRequestInterruptEnable);
+
+    handle->state = kDSPI_Idle;
+    handle->remainingSendByteCount = 0;
+    handle->remainingReceiveByteCount = 0;
+}
+
+void DSPI_SlaveTransferHandleIRQ(SPI_Type *base, dspi_slave_handle_t *handle)
+{
+    uint8_t dummyPattern = DSPI_SLAVE_DUMMY_DATA;
+    uint32_t dataReceived;
+    uint32_t dataSend = 0;
+
+    /* Because SPI protocol is synchronous, the number of bytes that that slave received from the
+    * master is the actual number of bytes that the slave transmitted to the master. So we only
+    * monitor the received dataSize to know when the transfer is complete.
+    */
+    if (handle->remainingReceiveByteCount > 0)
+    {
+        while (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag)
+        {
+            /* Have received data in the buffer. */
+            dataReceived = base->POPR;
+            /*Clear the rx fifo drain request, needed for non-DMA applications as this flag
+            * will remain set even if the rx fifo is empty. By manually clearing this flag, it
+            * either remain clear if no more data is in the fifo, or it will set if there is
+            * more data in the fifo.
+            */
+            DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag);
+
+            /* If bits/frame is one byte */
+            if (handle->bitsPerFrame <= 8)
+            {
+                if (handle->rxData)
+                {
+                    /* Receive buffer is not null, store data into it */
+                    *handle->rxData = dataReceived;
+                    ++handle->rxData;
+                }
+                /* Descrease remaining receive byte count */
+                --handle->remainingReceiveByteCount;
+
+                if (handle->remainingSendByteCount > 0)
+                {
+                    if (handle->txData)
+                    {
+                        dataSend = *handle->txData;
+                        ++handle->txData;
+                    }
+                    else
+                    {
+                        dataSend = dummyPattern;
+                    }
+
+                    --handle->remainingSendByteCount;
+                    /* Write the data to the DSPI data register */
+                    base->PUSHR_SLAVE = dataSend;
+                }
+            }
+            else /* If bits/frame is 2 bytes */
+            {
+                /* With multibytes frame receiving, we only receive till the received dataSize
+                * matches user request. Other bytes will be ignored.
+                */
+                if (handle->rxData)
+                {
+                    /* Receive buffer is not null, store first byte into it */
+                    *handle->rxData = dataReceived;
+                    ++handle->rxData;
+
+                    if (handle->remainingReceiveByteCount == 1)
+                    {
+                        /* Decrease remaining receive byte count */
+                        --handle->remainingReceiveByteCount;
+                    }
+                    else
+                    {
+                        /* Receive buffer is not null, store second byte into it */
+                        *handle->rxData = dataReceived >> 8;
+                        ++handle->rxData;
+                        handle->remainingReceiveByteCount -= 2;
+                    }
+                }
+                /* If no handle->rxData*/
+                else
+                {
+                    if (handle->remainingReceiveByteCount == 1)
+                    {
+                        /* Decrease remaining receive byte count */
+                        --handle->remainingReceiveByteCount;
+                    }
+                    else
+                    {
+                        handle->remainingReceiveByteCount -= 2;
+                    }
+                }
+
+                if (handle->remainingSendByteCount > 0)
+                {
+                    if (handle->txData)
+                    {
+                        dataSend = *handle->txData;
+                        ++handle->txData;
+
+                        if (handle->remainingSendByteCount == 1)
+                        {
+                            --handle->remainingSendByteCount;
+                            dataSend |= (uint16_t)((uint16_t)(dummyPattern) << 8);
+                        }
+                        else
+                        {
+                            dataSend |= (uint32_t)(*handle->txData) << 8;
+                            ++handle->txData;
+                            handle->remainingSendByteCount -= 2;
+                        }
+                    }
+                    /* If no handle->txData*/
+                    else
+                    {
+                        if (handle->remainingSendByteCount == 1)
+                        {
+                            --handle->remainingSendByteCount;
+                        }
+                        else
+                        {
+                            handle->remainingSendByteCount -= 2;
+                        }
+                        dataSend = (uint16_t)((uint16_t)(dummyPattern) << 8) | dummyPattern;
+                    }
+                    /* Write the data to the DSPI data register */
+                    base->PUSHR_SLAVE = dataSend;
+                }
+            }
+            /* Try to clear TFFF by writing a one to it; it will not clear if TX FIFO not full */
+            DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+
+            if (handle->remainingReceiveByteCount == 0)
+            {
+                break;
+            }
+        }
+    }
+    /* Check if remaining receive byte count matches user request */
+    if ((handle->remainingReceiveByteCount == 0) || (handle->state == kDSPI_Error))
+    {
+        /* Other cases, stop the transfer. */
+        DSPI_SlaveTransferComplete(base, handle);
+        return;
+    }
+
+    /* Catch tx fifo underflow conditions, service only if tx under flow interrupt enabled */
+    if ((DSPI_GetStatusFlags(base) & kDSPI_TxFifoUnderflowFlag) && (base->RSER & SPI_RSER_TFUF_RE_MASK))
+    {
+        DSPI_ClearStatusFlags(base, kDSPI_TxFifoUnderflowFlag);
+        /* Change state to error and clear flag */
+        if (handle->txData)
+        {
+            handle->state = kDSPI_Error;
+        }
+        handle->errorCount++;
+    }
+    /* Catch rx fifo overflow conditions, service only if rx over flow interrupt enabled */
+    if ((DSPI_GetStatusFlags(base) & kDSPI_RxFifoOverflowFlag) && (base->RSER & SPI_RSER_RFOF_RE_MASK))
+    {
+        DSPI_ClearStatusFlags(base, kDSPI_RxFifoOverflowFlag);
+        /* Change state to error and clear flag */
+        if (handle->txData)
+        {
+            handle->state = kDSPI_Error;
+        }
+        handle->errorCount++;
+    }
+}
+
+static void DSPI_CommonIRQHandler(SPI_Type *base, void *param)
+{
+    if (DSPI_IsMaster(base))
+    {
+        s_dspiMasterIsr(base, (dspi_master_handle_t *)param);
+    }
+    else
+    {
+        s_dspiSlaveIsr(base, (dspi_slave_handle_t *)param);
+    }
+}
+
+#if defined(SPI0)
+void SPI0_DriverIRQHandler(void)
+{
+    assert(g_dspiHandle[0]);
+    DSPI_CommonIRQHandler(SPI0, g_dspiHandle[0]);
+}
+#endif
+
+#if defined(SPI1)
+void SPI1_DriverIRQHandler(void)
+{
+    assert(g_dspiHandle[1]);
+    DSPI_CommonIRQHandler(SPI1, g_dspiHandle[1]);
+}
+#endif
+
+#if defined(SPI2)
+void SPI2_DriverIRQHandler(void)
+{
+    assert(g_dspiHandle[2]);
+    DSPI_CommonIRQHandler(SPI2, g_dspiHandle[2]);
+}
+#endif
+
+#if defined(SPI3)
+void SPI3_DriverIRQHandler(void)
+{
+    assert(g_dspiHandle[3]);
+    DSPI_CommonIRQHandler(SPI3, g_dspiHandle[3]);
+}
+#endif
+
+#if defined(SPI4)
+void SPI4_DriverIRQHandler(void)
+{
+    assert(g_dspiHandle[4]);
+    DSPI_CommonIRQHandler(SPI4, g_dspiHandle[4]);
+}
+#endif
+
+#if defined(SPI5)
+void SPI5_DriverIRQHandler(void)
+{
+    assert(g_dspiHandle[5]);
+    DSPI_CommonIRQHandler(SPI5, g_dspiHandle[5]);
+}
+#endif
+
+#if (FSL_FEATURE_SOC_DSPI_COUNT > 6)
+#error "Should write the SPIx_DriverIRQHandler function that instance greater than 5 !"
+#endif