added prescaler for 16 bit pwm in LPC1347 target

Fork of mbed-dev by mbed official

Committer:
<>
Date:
Fri Sep 02 15:07:44 2016 +0100
Revision:
144:ef7eb2e8f9f7
Parent:
83:a036322b8637
This updates the lib to the mbed lib v125

Who changed what in which revision?

UserRevisionLine numberNew contents of line
<> 144:ef7eb2e8f9f7 1 /**
<> 144:ef7eb2e8f9f7 2 ******************************************************************************
<> 144:ef7eb2e8f9f7 3 * @file stm32f7xx_hal_rcc.c
<> 144:ef7eb2e8f9f7 4 * @author MCD Application Team
<> 144:ef7eb2e8f9f7 5 * @version V1.1.0
<> 144:ef7eb2e8f9f7 6 * @date 22-April-2016
<> 144:ef7eb2e8f9f7 7 * @brief RCC HAL module driver.
<> 144:ef7eb2e8f9f7 8 * This file provides firmware functions to manage the following
<> 144:ef7eb2e8f9f7 9 * functionalities of the Reset and Clock Control (RCC) peripheral:
<> 144:ef7eb2e8f9f7 10 * + Initialization and de-initialization functions
<> 144:ef7eb2e8f9f7 11 * + Peripheral Control functions
<> 144:ef7eb2e8f9f7 12 *
<> 144:ef7eb2e8f9f7 13 @verbatim
<> 144:ef7eb2e8f9f7 14 ==============================================================================
<> 144:ef7eb2e8f9f7 15 ##### RCC specific features #####
<> 144:ef7eb2e8f9f7 16 ==============================================================================
<> 144:ef7eb2e8f9f7 17 [..]
<> 144:ef7eb2e8f9f7 18 After reset the device is running from Internal High Speed oscillator
<> 144:ef7eb2e8f9f7 19 (HSI 16MHz) with Flash 0 wait state, Flash prefetch buffer, D-Cache
<> 144:ef7eb2e8f9f7 20 and I-Cache are disabled, and all peripherals are off except internal
<> 144:ef7eb2e8f9f7 21 SRAM, Flash and JTAG.
<> 144:ef7eb2e8f9f7 22 (+) There is no prescaler on High speed (AHB) and Low speed (APB) busses;
<> 144:ef7eb2e8f9f7 23 all peripherals mapped on these busses are running at HSI speed.
<> 144:ef7eb2e8f9f7 24 (+) The clock for all peripherals is switched off, except the SRAM and FLASH.
<> 144:ef7eb2e8f9f7 25 (+) All GPIOs are in input floating state, except the JTAG pins which
<> 144:ef7eb2e8f9f7 26 are assigned to be used for debug purpose.
<> 144:ef7eb2e8f9f7 27
<> 144:ef7eb2e8f9f7 28 [..]
<> 144:ef7eb2e8f9f7 29 Once the device started from reset, the user application has to:
<> 144:ef7eb2e8f9f7 30 (+) Configure the clock source to be used to drive the System clock
<> 144:ef7eb2e8f9f7 31 (if the application needs higher frequency/performance)
<> 144:ef7eb2e8f9f7 32 (+) Configure the System clock frequency and Flash settings
<> 144:ef7eb2e8f9f7 33 (+) Configure the AHB and APB busses prescalers
<> 144:ef7eb2e8f9f7 34 (+) Enable the clock for the peripheral(s) to be used
<> 144:ef7eb2e8f9f7 35 (+) Configure the clock source(s) for peripherals which clocks are not
<> 144:ef7eb2e8f9f7 36 derived from the System clock (I2S, RTC, ADC, USB OTG FS/SDIO/RNG)
<> 144:ef7eb2e8f9f7 37
<> 144:ef7eb2e8f9f7 38 ##### RCC Limitations #####
<> 144:ef7eb2e8f9f7 39 ==============================================================================
<> 144:ef7eb2e8f9f7 40 [..]
<> 144:ef7eb2e8f9f7 41 A delay between an RCC peripheral clock enable and the effective peripheral
<> 144:ef7eb2e8f9f7 42 enabling should be taken into account in order to manage the peripheral read/write
<> 144:ef7eb2e8f9f7 43 from/to registers.
<> 144:ef7eb2e8f9f7 44 (+) This delay depends on the peripheral mapping.
<> 144:ef7eb2e8f9f7 45 (+) If peripheral is mapped on AHB: the delay is 2 AHB clock cycle
<> 144:ef7eb2e8f9f7 46 after the clock enable bit is set on the hardware register
<> 144:ef7eb2e8f9f7 47 (+) If peripheral is mapped on APB: the delay is 2 APB clock cycle
<> 144:ef7eb2e8f9f7 48 after the clock enable bit is set on the hardware register
<> 144:ef7eb2e8f9f7 49
<> 144:ef7eb2e8f9f7 50 [..]
<> 144:ef7eb2e8f9f7 51 Implemented Workaround:
<> 144:ef7eb2e8f9f7 52 (+) For AHB & APB peripherals, a dummy read to the peripheral register has been
<> 144:ef7eb2e8f9f7 53 inserted in each __HAL_RCC_PPP_CLK_ENABLE() macro.
<> 144:ef7eb2e8f9f7 54
<> 144:ef7eb2e8f9f7 55 @endverbatim
<> 144:ef7eb2e8f9f7 56 ******************************************************************************
<> 144:ef7eb2e8f9f7 57 * @attention
<> 144:ef7eb2e8f9f7 58 *
<> 144:ef7eb2e8f9f7 59 * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
<> 144:ef7eb2e8f9f7 60 *
<> 144:ef7eb2e8f9f7 61 * Redistribution and use in source and binary forms, with or without modification,
<> 144:ef7eb2e8f9f7 62 * are permitted provided that the following conditions are met:
<> 144:ef7eb2e8f9f7 63 * 1. Redistributions of source code must retain the above copyright notice,
<> 144:ef7eb2e8f9f7 64 * this list of conditions and the following disclaimer.
<> 144:ef7eb2e8f9f7 65 * 2. Redistributions in binary form must reproduce the above copyright notice,
<> 144:ef7eb2e8f9f7 66 * this list of conditions and the following disclaimer in the documentation
<> 144:ef7eb2e8f9f7 67 * and/or other materials provided with the distribution.
<> 144:ef7eb2e8f9f7 68 * 3. Neither the name of STMicroelectronics nor the names of its contributors
<> 144:ef7eb2e8f9f7 69 * may be used to endorse or promote products derived from this software
<> 144:ef7eb2e8f9f7 70 * without specific prior written permission.
<> 144:ef7eb2e8f9f7 71 *
<> 144:ef7eb2e8f9f7 72 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
<> 144:ef7eb2e8f9f7 73 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
<> 144:ef7eb2e8f9f7 74 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
<> 144:ef7eb2e8f9f7 75 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
<> 144:ef7eb2e8f9f7 76 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
<> 144:ef7eb2e8f9f7 77 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
<> 144:ef7eb2e8f9f7 78 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
<> 144:ef7eb2e8f9f7 79 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
<> 144:ef7eb2e8f9f7 80 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
<> 144:ef7eb2e8f9f7 81 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
<> 144:ef7eb2e8f9f7 82 *
<> 144:ef7eb2e8f9f7 83 ******************************************************************************
<> 144:ef7eb2e8f9f7 84 */
<> 144:ef7eb2e8f9f7 85
<> 144:ef7eb2e8f9f7 86 /* Includes ------------------------------------------------------------------*/
<> 144:ef7eb2e8f9f7 87 #include "stm32f7xx_hal.h"
<> 144:ef7eb2e8f9f7 88
<> 144:ef7eb2e8f9f7 89 /** @addtogroup STM32F7xx_HAL_Driver
<> 144:ef7eb2e8f9f7 90 * @{
<> 144:ef7eb2e8f9f7 91 */
<> 144:ef7eb2e8f9f7 92
<> 144:ef7eb2e8f9f7 93 /** @defgroup RCC RCC
<> 144:ef7eb2e8f9f7 94 * @brief RCC HAL module driver
<> 144:ef7eb2e8f9f7 95 * @{
<> 144:ef7eb2e8f9f7 96 */
<> 144:ef7eb2e8f9f7 97
<> 144:ef7eb2e8f9f7 98 #ifdef HAL_RCC_MODULE_ENABLED
<> 144:ef7eb2e8f9f7 99
<> 144:ef7eb2e8f9f7 100 /* Private typedef -----------------------------------------------------------*/
<> 144:ef7eb2e8f9f7 101 /* Private define ------------------------------------------------------------*/
<> 144:ef7eb2e8f9f7 102 /* Private macro -------------------------------------------------------------*/
<> 144:ef7eb2e8f9f7 103 /** @defgroup RCC_Private_Macros RCC Private Macros
<> 144:ef7eb2e8f9f7 104 * @{
<> 144:ef7eb2e8f9f7 105 */
<> 144:ef7eb2e8f9f7 106
<> 144:ef7eb2e8f9f7 107 #define MCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE()
<> 144:ef7eb2e8f9f7 108 #define MCO1_GPIO_PORT GPIOA
<> 144:ef7eb2e8f9f7 109 #define MCO1_PIN GPIO_PIN_8
<> 144:ef7eb2e8f9f7 110
<> 144:ef7eb2e8f9f7 111 #define MCO2_CLK_ENABLE() __HAL_RCC_GPIOC_CLK_ENABLE()
<> 144:ef7eb2e8f9f7 112 #define MCO2_GPIO_PORT GPIOC
<> 144:ef7eb2e8f9f7 113 #define MCO2_PIN GPIO_PIN_9
<> 144:ef7eb2e8f9f7 114
<> 144:ef7eb2e8f9f7 115 /**
<> 144:ef7eb2e8f9f7 116 * @}
<> 144:ef7eb2e8f9f7 117 */
<> 144:ef7eb2e8f9f7 118 /* Private variables ---------------------------------------------------------*/
<> 144:ef7eb2e8f9f7 119 /** @defgroup RCC_Private_Variables RCC Private Variables
<> 144:ef7eb2e8f9f7 120 * @{
<> 144:ef7eb2e8f9f7 121 */
<> 144:ef7eb2e8f9f7 122
<> 144:ef7eb2e8f9f7 123 /**
<> 144:ef7eb2e8f9f7 124 * @}
<> 144:ef7eb2e8f9f7 125 */
<> 144:ef7eb2e8f9f7 126
<> 144:ef7eb2e8f9f7 127 /* Private function prototypes -----------------------------------------------*/
<> 144:ef7eb2e8f9f7 128 /* Exported functions ---------------------------------------------------------*/
<> 144:ef7eb2e8f9f7 129
<> 144:ef7eb2e8f9f7 130 /** @defgroup RCC_Exported_Functions RCC Exported Functions
<> 144:ef7eb2e8f9f7 131 * @{
<> 144:ef7eb2e8f9f7 132 */
<> 144:ef7eb2e8f9f7 133
<> 144:ef7eb2e8f9f7 134 /** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions
<> 144:ef7eb2e8f9f7 135 * @brief Initialization and Configuration functions
<> 144:ef7eb2e8f9f7 136 *
<> 144:ef7eb2e8f9f7 137 @verbatim
<> 144:ef7eb2e8f9f7 138 ===============================================================================
<> 144:ef7eb2e8f9f7 139 ##### Initialization and de-initialization functions #####
<> 144:ef7eb2e8f9f7 140 ===============================================================================
<> 144:ef7eb2e8f9f7 141 [..]
<> 144:ef7eb2e8f9f7 142 This section provides functions allowing to configure the internal/external oscillators
<> 144:ef7eb2e8f9f7 143 (HSE, HSI, LSE, LSI, PLL, CSS and MCO) and the System buses clocks (SYSCLK, AHB, APB1
<> 144:ef7eb2e8f9f7 144 and APB2).
<> 144:ef7eb2e8f9f7 145
<> 144:ef7eb2e8f9f7 146 [..] Internal/external clock and PLL configuration
<> 144:ef7eb2e8f9f7 147 (#) HSI (high-speed internal), 16 MHz factory-trimmed RC used directly or through
<> 144:ef7eb2e8f9f7 148 the PLL as System clock source.
<> 144:ef7eb2e8f9f7 149
<> 144:ef7eb2e8f9f7 150 (#) LSI (low-speed internal), 32 KHz low consumption RC used as IWDG and/or RTC
<> 144:ef7eb2e8f9f7 151 clock source.
<> 144:ef7eb2e8f9f7 152
<> 144:ef7eb2e8f9f7 153 (#) HSE (high-speed external), 4 to 26 MHz crystal oscillator used directly or
<> 144:ef7eb2e8f9f7 154 through the PLL as System clock source. Can be used also as RTC clock source.
<> 144:ef7eb2e8f9f7 155
<> 144:ef7eb2e8f9f7 156 (#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source.
<> 144:ef7eb2e8f9f7 157
<> 144:ef7eb2e8f9f7 158 (#) PLL (clocked by HSI or HSE), featuring two different output clocks:
<> 144:ef7eb2e8f9f7 159 (++) The first output is used to generate the high speed system clock (up to 216 MHz)
<> 144:ef7eb2e8f9f7 160 (++) The second output is used to generate the clock for the USB OTG FS (48 MHz),
<> 144:ef7eb2e8f9f7 161 the random analog generator (<=48 MHz) and the SDIO (<= 48 MHz).
<> 144:ef7eb2e8f9f7 162
<> 144:ef7eb2e8f9f7 163 (#) CSS (Clock security system), once enable using the function HAL_RCC_EnableCSS()
<> 144:ef7eb2e8f9f7 164 and if a HSE clock failure occurs(HSE used directly or through PLL as System
<> 144:ef7eb2e8f9f7 165 clock source), the System clock is automatically switched to HSI and an interrupt
<> 144:ef7eb2e8f9f7 166 is generated if enabled. The interrupt is linked to the Cortex-M7 NMI
<> 144:ef7eb2e8f9f7 167 (Non-Maskable Interrupt) exception vector.
<> 144:ef7eb2e8f9f7 168
<> 144:ef7eb2e8f9f7 169 (#) MCO1 (microcontroller clock output), used to output HSI, LSE, HSE or PLL
<> 144:ef7eb2e8f9f7 170 clock (through a configurable prescaler) on PA8 pin.
<> 144:ef7eb2e8f9f7 171
<> 144:ef7eb2e8f9f7 172 (#) MCO2 (microcontroller clock output), used to output HSE, PLL, SYSCLK or PLLI2S
<> 144:ef7eb2e8f9f7 173 clock (through a configurable prescaler) on PC9 pin.
<> 144:ef7eb2e8f9f7 174
<> 144:ef7eb2e8f9f7 175 [..] System, AHB and APB busses clocks configuration
<> 144:ef7eb2e8f9f7 176 (#) Several clock sources can be used to drive the System clock (SYSCLK): HSI,
<> 144:ef7eb2e8f9f7 177 HSE and PLL.
<> 144:ef7eb2e8f9f7 178 The AHB clock (HCLK) is derived from System clock through configurable
<> 144:ef7eb2e8f9f7 179 prescaler and used to clock the CPU, memory and peripherals mapped
<> 144:ef7eb2e8f9f7 180 on AHB bus (DMA, GPIO...). APB1 (PCLK1) and APB2 (PCLK2) clocks are derived
<> 144:ef7eb2e8f9f7 181 from AHB clock through configurable prescalers and used to clock
<> 144:ef7eb2e8f9f7 182 the peripherals mapped on these busses. You can use
<> 144:ef7eb2e8f9f7 183 "HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks.
<> 144:ef7eb2e8f9f7 184
<> 144:ef7eb2e8f9f7 185 -@- All the peripheral clocks are derived from the System clock (SYSCLK) except:
<> 144:ef7eb2e8f9f7 186 (+@) I2S: the I2S clock can be derived either from a specific PLL (PLLI2S) or
<> 144:ef7eb2e8f9f7 187 from an external clock mapped on the I2S_CKIN pin.
<> 144:ef7eb2e8f9f7 188 You have to use __HAL_RCC_PLLI2S_CONFIG() macro to configure this clock.
<> 144:ef7eb2e8f9f7 189 (+@) SAI: the SAI clock can be derived either from a specific PLL (PLLI2S) or (PLLSAI) or
<> 144:ef7eb2e8f9f7 190 from an external clock mapped on the I2S_CKIN pin.
<> 144:ef7eb2e8f9f7 191 You have to use __HAL_RCC_PLLI2S_CONFIG() macro to configure this clock.
<> 144:ef7eb2e8f9f7 192 (+@) RTC: the RTC clock can be derived either from the LSI, LSE or HSE clock
<> 144:ef7eb2e8f9f7 193 divided by 2 to 31. You have to use __HAL_RCC_RTC_CONFIG() and __HAL_RCC_RTC_ENABLE()
<> 144:ef7eb2e8f9f7 194 macros to configure this clock.
<> 144:ef7eb2e8f9f7 195 (+@) USB OTG FS, SDIO and RTC: USB OTG FS require a frequency equal to 48 MHz
<> 144:ef7eb2e8f9f7 196 to work correctly, while the SDIO require a frequency equal or lower than
<> 144:ef7eb2e8f9f7 197 to 48. This clock is derived of the main PLL through PLLQ divider.
<> 144:ef7eb2e8f9f7 198 (+@) IWDG clock which is always the LSI clock.
<> 144:ef7eb2e8f9f7 199 @endverbatim
<> 144:ef7eb2e8f9f7 200 * @{
<> 144:ef7eb2e8f9f7 201 */
<> 144:ef7eb2e8f9f7 202
<> 144:ef7eb2e8f9f7 203 /**
<> 144:ef7eb2e8f9f7 204 * @brief Resets the RCC clock configuration to the default reset state.
<> 144:ef7eb2e8f9f7 205 * @note The default reset state of the clock configuration is given below:
<> 144:ef7eb2e8f9f7 206 * - HSI ON and used as system clock source
<> 144:ef7eb2e8f9f7 207 * - HSE, PLL and PLLI2S OFF
<> 144:ef7eb2e8f9f7 208 * - AHB, APB1 and APB2 prescaler set to 1.
<> 144:ef7eb2e8f9f7 209 * - CSS, MCO1 and MCO2 OFF
<> 144:ef7eb2e8f9f7 210 * - All interrupts disabled
<> 144:ef7eb2e8f9f7 211 * @note This function doesn't modify the configuration of the
<> 144:ef7eb2e8f9f7 212 * - Peripheral clocks
<> 144:ef7eb2e8f9f7 213 * - LSI, LSE and RTC clocks
<> 144:ef7eb2e8f9f7 214 * @retval None
<> 144:ef7eb2e8f9f7 215 */
<> 144:ef7eb2e8f9f7 216 void HAL_RCC_DeInit(void)
<> 144:ef7eb2e8f9f7 217 {
<> 144:ef7eb2e8f9f7 218 /* Set HSION bit */
<> 144:ef7eb2e8f9f7 219 SET_BIT(RCC->CR, RCC_CR_HSION | RCC_CR_HSITRIM_4);
<> 144:ef7eb2e8f9f7 220
<> 144:ef7eb2e8f9f7 221 /* Reset CFGR register */
<> 144:ef7eb2e8f9f7 222 CLEAR_REG(RCC->CFGR);
<> 144:ef7eb2e8f9f7 223
<> 144:ef7eb2e8f9f7 224 /* Reset HSEON, CSSON, PLLON, PLLI2S */
<> 144:ef7eb2e8f9f7 225 CLEAR_BIT(RCC->CR, RCC_CR_HSEON | RCC_CR_CSSON | RCC_CR_PLLON| RCC_CR_PLLI2SON);
<> 144:ef7eb2e8f9f7 226
<> 144:ef7eb2e8f9f7 227 /* Reset PLLCFGR register */
<> 144:ef7eb2e8f9f7 228 CLEAR_REG(RCC->PLLCFGR);
<> 144:ef7eb2e8f9f7 229 SET_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM_4 | RCC_PLLCFGR_PLLN_6 | RCC_PLLCFGR_PLLN_7 | RCC_PLLCFGR_PLLQ_2 | ((uint32_t)0x20000000U));
<> 144:ef7eb2e8f9f7 230
<> 144:ef7eb2e8f9f7 231 /* Reset PLLI2SCFGR register */
<> 144:ef7eb2e8f9f7 232 CLEAR_REG(RCC->PLLI2SCFGR);
<> 144:ef7eb2e8f9f7 233 SET_BIT(RCC->PLLI2SCFGR, RCC_PLLI2SCFGR_PLLI2SN_6 | RCC_PLLI2SCFGR_PLLI2SN_7 | RCC_PLLI2SCFGR_PLLI2SR_1);
<> 144:ef7eb2e8f9f7 234
<> 144:ef7eb2e8f9f7 235 /* Reset HSEBYP bit */
<> 144:ef7eb2e8f9f7 236 CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP);
<> 144:ef7eb2e8f9f7 237
<> 144:ef7eb2e8f9f7 238 /* Disable all interrupts */
<> 144:ef7eb2e8f9f7 239 CLEAR_REG(RCC->CIR);
<> 144:ef7eb2e8f9f7 240
<> 144:ef7eb2e8f9f7 241 /* Update the SystemCoreClock global variable */
<> 144:ef7eb2e8f9f7 242 SystemCoreClock = HSI_VALUE;
<> 144:ef7eb2e8f9f7 243 }
<> 144:ef7eb2e8f9f7 244
<> 144:ef7eb2e8f9f7 245 /**
<> 144:ef7eb2e8f9f7 246 * @brief Initializes the RCC Oscillators according to the specified parameters in the
<> 144:ef7eb2e8f9f7 247 * RCC_OscInitTypeDef.
<> 144:ef7eb2e8f9f7 248 * @param RCC_OscInitStruct: pointer to an RCC_OscInitTypeDef structure that
<> 144:ef7eb2e8f9f7 249 * contains the configuration information for the RCC Oscillators.
<> 144:ef7eb2e8f9f7 250 * @note The PLL is not disabled when used as system clock.
<> 144:ef7eb2e8f9f7 251 * @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not
<> 144:ef7eb2e8f9f7 252 * supported by this function. User should request a transition to LSE Off
<> 144:ef7eb2e8f9f7 253 * first and then LSE On or LSE Bypass.
<> 144:ef7eb2e8f9f7 254 * @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not
<> 144:ef7eb2e8f9f7 255 * supported by this function. User should request a transition to HSE Off
<> 144:ef7eb2e8f9f7 256 * first and then HSE On or HSE Bypass.
<> 144:ef7eb2e8f9f7 257 * @retval HAL status
<> 144:ef7eb2e8f9f7 258 */
<> 144:ef7eb2e8f9f7 259 __weak HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
<> 144:ef7eb2e8f9f7 260 {
<> 144:ef7eb2e8f9f7 261 uint32_t tickstart = 0;
<> 144:ef7eb2e8f9f7 262
<> 144:ef7eb2e8f9f7 263 /* Check the parameters */
<> 144:ef7eb2e8f9f7 264 assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType));
<> 144:ef7eb2e8f9f7 265
<> 144:ef7eb2e8f9f7 266 /*------------------------------- HSE Configuration ------------------------*/
<> 144:ef7eb2e8f9f7 267 if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE)
<> 144:ef7eb2e8f9f7 268 {
<> 144:ef7eb2e8f9f7 269 /* Check the parameters */
<> 144:ef7eb2e8f9f7 270 assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState));
<> 144:ef7eb2e8f9f7 271 /* When the HSE is used as system clock or clock source for PLL, It can not be disabled */
<> 144:ef7eb2e8f9f7 272 if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSE)
<> 144:ef7eb2e8f9f7 273 || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && ((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLCFGR_PLLSRC_HSE)))
<> 144:ef7eb2e8f9f7 274 {
<> 144:ef7eb2e8f9f7 275 if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF))
<> 144:ef7eb2e8f9f7 276 {
<> 144:ef7eb2e8f9f7 277 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 278 }
<> 144:ef7eb2e8f9f7 279 }
<> 144:ef7eb2e8f9f7 280 else
<> 144:ef7eb2e8f9f7 281 {
<> 144:ef7eb2e8f9f7 282 /* Set the new HSE configuration ---------------------------------------*/
<> 144:ef7eb2e8f9f7 283 __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState);
<> 144:ef7eb2e8f9f7 284
<> 144:ef7eb2e8f9f7 285 /* Check the HSE State */
<> 144:ef7eb2e8f9f7 286 if(RCC_OscInitStruct->HSEState != RCC_HSE_OFF)
<> 144:ef7eb2e8f9f7 287 {
<> 144:ef7eb2e8f9f7 288 /* Get Start Tick*/
<> 144:ef7eb2e8f9f7 289 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 290
<> 144:ef7eb2e8f9f7 291 /* Wait till HSE is ready */
<> 144:ef7eb2e8f9f7 292 while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
<> 144:ef7eb2e8f9f7 293 {
<> 144:ef7eb2e8f9f7 294 if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 295 {
<> 144:ef7eb2e8f9f7 296 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 297 }
<> 144:ef7eb2e8f9f7 298 }
<> 144:ef7eb2e8f9f7 299 }
<> 144:ef7eb2e8f9f7 300 else
<> 144:ef7eb2e8f9f7 301 {
<> 144:ef7eb2e8f9f7 302 /* Get Start Tick*/
<> 144:ef7eb2e8f9f7 303 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 304
<> 144:ef7eb2e8f9f7 305 /* Wait till HSE is bypassed or disabled */
<> 144:ef7eb2e8f9f7 306 while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET)
<> 144:ef7eb2e8f9f7 307 {
<> 144:ef7eb2e8f9f7 308 if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 309 {
<> 144:ef7eb2e8f9f7 310 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 311 }
<> 144:ef7eb2e8f9f7 312 }
<> 144:ef7eb2e8f9f7 313 }
<> 144:ef7eb2e8f9f7 314 }
<> 144:ef7eb2e8f9f7 315 }
<> 144:ef7eb2e8f9f7 316 /*----------------------------- HSI Configuration --------------------------*/
<> 144:ef7eb2e8f9f7 317 if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI)
<> 144:ef7eb2e8f9f7 318 {
<> 144:ef7eb2e8f9f7 319 /* Check the parameters */
<> 144:ef7eb2e8f9f7 320 assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState));
<> 144:ef7eb2e8f9f7 321 assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue));
<> 144:ef7eb2e8f9f7 322
<> 144:ef7eb2e8f9f7 323 /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */
<> 144:ef7eb2e8f9f7 324 if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI)
<> 144:ef7eb2e8f9f7 325 || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && ((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLCFGR_PLLSRC_HSI)))
<> 144:ef7eb2e8f9f7 326 {
<> 144:ef7eb2e8f9f7 327 /* When HSI is used as system clock it will not disabled */
<> 144:ef7eb2e8f9f7 328 if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON))
<> 144:ef7eb2e8f9f7 329 {
<> 144:ef7eb2e8f9f7 330 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 331 }
<> 144:ef7eb2e8f9f7 332 /* Otherwise, just the calibration is allowed */
<> 144:ef7eb2e8f9f7 333 else
<> 144:ef7eb2e8f9f7 334 {
<> 144:ef7eb2e8f9f7 335 /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
<> 144:ef7eb2e8f9f7 336 __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
<> 144:ef7eb2e8f9f7 337 }
<> 144:ef7eb2e8f9f7 338 }
<> 144:ef7eb2e8f9f7 339 else
<> 144:ef7eb2e8f9f7 340 {
<> 144:ef7eb2e8f9f7 341 /* Check the HSI State */
<> 144:ef7eb2e8f9f7 342 if((RCC_OscInitStruct->HSIState)!= RCC_HSI_OFF)
<> 144:ef7eb2e8f9f7 343 {
<> 144:ef7eb2e8f9f7 344 /* Enable the Internal High Speed oscillator (HSI). */
<> 144:ef7eb2e8f9f7 345 __HAL_RCC_HSI_ENABLE();
<> 144:ef7eb2e8f9f7 346
<> 144:ef7eb2e8f9f7 347 /* Get Start Tick*/
<> 144:ef7eb2e8f9f7 348 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 349
<> 144:ef7eb2e8f9f7 350 /* Wait till HSI is ready */
<> 144:ef7eb2e8f9f7 351 while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
<> 144:ef7eb2e8f9f7 352 {
<> 144:ef7eb2e8f9f7 353 if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 354 {
<> 144:ef7eb2e8f9f7 355 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 356 }
<> 144:ef7eb2e8f9f7 357 }
<> 144:ef7eb2e8f9f7 358
<> 144:ef7eb2e8f9f7 359 /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
<> 144:ef7eb2e8f9f7 360 __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
<> 144:ef7eb2e8f9f7 361 }
<> 144:ef7eb2e8f9f7 362 else
<> 144:ef7eb2e8f9f7 363 {
<> 144:ef7eb2e8f9f7 364 /* Disable the Internal High Speed oscillator (HSI). */
<> 144:ef7eb2e8f9f7 365 __HAL_RCC_HSI_DISABLE();
<> 144:ef7eb2e8f9f7 366
<> 144:ef7eb2e8f9f7 367 /* Get Start Tick*/
<> 144:ef7eb2e8f9f7 368 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 369
<> 144:ef7eb2e8f9f7 370 /* Wait till HSI is ready */
<> 144:ef7eb2e8f9f7 371 while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET)
<> 144:ef7eb2e8f9f7 372 {
<> 144:ef7eb2e8f9f7 373 if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 374 {
<> 144:ef7eb2e8f9f7 375 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 376 }
<> 144:ef7eb2e8f9f7 377 }
<> 144:ef7eb2e8f9f7 378 }
<> 144:ef7eb2e8f9f7 379 }
<> 144:ef7eb2e8f9f7 380 }
<> 144:ef7eb2e8f9f7 381 /*------------------------------ LSI Configuration -------------------------*/
<> 144:ef7eb2e8f9f7 382 if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI)
<> 144:ef7eb2e8f9f7 383 {
<> 144:ef7eb2e8f9f7 384 /* Check the parameters */
<> 144:ef7eb2e8f9f7 385 assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState));
<> 144:ef7eb2e8f9f7 386
<> 144:ef7eb2e8f9f7 387 /* Check the LSI State */
<> 144:ef7eb2e8f9f7 388 if((RCC_OscInitStruct->LSIState)!= RCC_LSI_OFF)
<> 144:ef7eb2e8f9f7 389 {
<> 144:ef7eb2e8f9f7 390 /* Enable the Internal Low Speed oscillator (LSI). */
<> 144:ef7eb2e8f9f7 391 __HAL_RCC_LSI_ENABLE();
<> 144:ef7eb2e8f9f7 392
<> 144:ef7eb2e8f9f7 393 /* Get Start Tick*/
<> 144:ef7eb2e8f9f7 394 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 395
<> 144:ef7eb2e8f9f7 396 /* Wait till LSI is ready */
<> 144:ef7eb2e8f9f7 397 while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET)
<> 144:ef7eb2e8f9f7 398 {
<> 144:ef7eb2e8f9f7 399 if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 400 {
<> 144:ef7eb2e8f9f7 401 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 402 }
<> 144:ef7eb2e8f9f7 403 }
<> 144:ef7eb2e8f9f7 404 }
<> 144:ef7eb2e8f9f7 405 else
<> 144:ef7eb2e8f9f7 406 {
<> 144:ef7eb2e8f9f7 407 /* Disable the Internal Low Speed oscillator (LSI). */
<> 144:ef7eb2e8f9f7 408 __HAL_RCC_LSI_DISABLE();
<> 144:ef7eb2e8f9f7 409
<> 144:ef7eb2e8f9f7 410 /* Get Start Tick*/
<> 144:ef7eb2e8f9f7 411 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 412
<> 144:ef7eb2e8f9f7 413 /* Wait till LSI is ready */
<> 144:ef7eb2e8f9f7 414 while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET)
<> 144:ef7eb2e8f9f7 415 {
<> 144:ef7eb2e8f9f7 416 if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 417 {
<> 144:ef7eb2e8f9f7 418 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 419 }
<> 144:ef7eb2e8f9f7 420 }
<> 144:ef7eb2e8f9f7 421 }
<> 144:ef7eb2e8f9f7 422 }
<> 144:ef7eb2e8f9f7 423 /*------------------------------ LSE Configuration -------------------------*/
<> 144:ef7eb2e8f9f7 424 if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)
<> 144:ef7eb2e8f9f7 425 {
<> 144:ef7eb2e8f9f7 426 /* Check the parameters */
<> 144:ef7eb2e8f9f7 427 assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState));
<> 144:ef7eb2e8f9f7 428
<> 144:ef7eb2e8f9f7 429 /* Enable Power Clock*/
<> 144:ef7eb2e8f9f7 430 __HAL_RCC_PWR_CLK_ENABLE();
<> 144:ef7eb2e8f9f7 431
<> 144:ef7eb2e8f9f7 432 /* Enable write access to Backup domain */
<> 144:ef7eb2e8f9f7 433 PWR->CR1 |= PWR_CR1_DBP;
<> 144:ef7eb2e8f9f7 434
<> 144:ef7eb2e8f9f7 435 /* Wait for Backup domain Write protection disable */
<> 144:ef7eb2e8f9f7 436 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 437
<> 144:ef7eb2e8f9f7 438 while((PWR->CR1 & PWR_CR1_DBP) == RESET)
<> 144:ef7eb2e8f9f7 439 {
<> 144:ef7eb2e8f9f7 440 if((HAL_GetTick() - tickstart ) > RCC_DBP_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 441 {
<> 144:ef7eb2e8f9f7 442 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 443 }
<> 144:ef7eb2e8f9f7 444 }
<> 144:ef7eb2e8f9f7 445
<> 144:ef7eb2e8f9f7 446 /* Set the new LSE configuration -----------------------------------------*/
<> 144:ef7eb2e8f9f7 447 __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
<> 144:ef7eb2e8f9f7 448 /* Check the LSE State */
<> 144:ef7eb2e8f9f7 449 if((RCC_OscInitStruct->LSEState) != RCC_LSE_OFF)
<> 144:ef7eb2e8f9f7 450 {
<> 144:ef7eb2e8f9f7 451 /* Get Start Tick*/
<> 144:ef7eb2e8f9f7 452 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 453
<> 144:ef7eb2e8f9f7 454 /* Wait till LSE is ready */
<> 144:ef7eb2e8f9f7 455 while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
<> 144:ef7eb2e8f9f7 456 {
<> 144:ef7eb2e8f9f7 457 if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 458 {
<> 144:ef7eb2e8f9f7 459 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 460 }
<> 144:ef7eb2e8f9f7 461 }
<> 144:ef7eb2e8f9f7 462 }
<> 144:ef7eb2e8f9f7 463 else
<> 144:ef7eb2e8f9f7 464 {
<> 144:ef7eb2e8f9f7 465 /* Get Start Tick*/
<> 144:ef7eb2e8f9f7 466 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 467
<> 144:ef7eb2e8f9f7 468 /* Wait till LSE is ready */
<> 144:ef7eb2e8f9f7 469 while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET)
<> 144:ef7eb2e8f9f7 470 {
<> 144:ef7eb2e8f9f7 471 if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 472 {
<> 144:ef7eb2e8f9f7 473 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 474 }
<> 144:ef7eb2e8f9f7 475 }
<> 144:ef7eb2e8f9f7 476 }
<> 144:ef7eb2e8f9f7 477 }
<> 144:ef7eb2e8f9f7 478 /*-------------------------------- PLL Configuration -----------------------*/
<> 144:ef7eb2e8f9f7 479 /* Check the parameters */
<> 144:ef7eb2e8f9f7 480 assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState));
<> 144:ef7eb2e8f9f7 481 if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE)
<> 144:ef7eb2e8f9f7 482 {
<> 144:ef7eb2e8f9f7 483 /* Check if the PLL is used as system clock or not */
<> 144:ef7eb2e8f9f7 484 if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
<> 144:ef7eb2e8f9f7 485 {
<> 144:ef7eb2e8f9f7 486 if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON)
<> 144:ef7eb2e8f9f7 487 {
<> 144:ef7eb2e8f9f7 488 /* Check the parameters */
<> 144:ef7eb2e8f9f7 489 assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource));
<> 144:ef7eb2e8f9f7 490 assert_param(IS_RCC_PLLM_VALUE(RCC_OscInitStruct->PLL.PLLM));
<> 144:ef7eb2e8f9f7 491 assert_param(IS_RCC_PLLN_VALUE(RCC_OscInitStruct->PLL.PLLN));
<> 144:ef7eb2e8f9f7 492 assert_param(IS_RCC_PLLP_VALUE(RCC_OscInitStruct->PLL.PLLP));
<> 144:ef7eb2e8f9f7 493 assert_param(IS_RCC_PLLQ_VALUE(RCC_OscInitStruct->PLL.PLLQ));
<> 144:ef7eb2e8f9f7 494
<> 144:ef7eb2e8f9f7 495 /* Disable the main PLL. */
<> 144:ef7eb2e8f9f7 496 __HAL_RCC_PLL_DISABLE();
<> 144:ef7eb2e8f9f7 497
<> 144:ef7eb2e8f9f7 498 /* Get Start Tick*/
<> 144:ef7eb2e8f9f7 499 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 500
<> 144:ef7eb2e8f9f7 501 /* Wait till PLL is ready */
<> 144:ef7eb2e8f9f7 502 while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)
<> 144:ef7eb2e8f9f7 503 {
<> 144:ef7eb2e8f9f7 504 if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 505 {
<> 144:ef7eb2e8f9f7 506 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 507 }
<> 144:ef7eb2e8f9f7 508 }
<> 144:ef7eb2e8f9f7 509
<> 144:ef7eb2e8f9f7 510 /* Configure the main PLL clock source, multiplication and division factors. */
<> 144:ef7eb2e8f9f7 511 WRITE_REG(RCC->PLLCFGR, (RCC_OscInitStruct->PLL.PLLSource | \
<> 144:ef7eb2e8f9f7 512 RCC_OscInitStruct->PLL.PLLM | \
<> 144:ef7eb2e8f9f7 513 (RCC_OscInitStruct->PLL.PLLN << POSITION_VAL(RCC_PLLCFGR_PLLN)) | \
<> 144:ef7eb2e8f9f7 514 (((RCC_OscInitStruct->PLL.PLLP >> 1) -1) << POSITION_VAL(RCC_PLLCFGR_PLLP)) | \
<> 144:ef7eb2e8f9f7 515 (RCC_OscInitStruct->PLL.PLLQ << POSITION_VAL(RCC_PLLCFGR_PLLQ))));
<> 144:ef7eb2e8f9f7 516 /* Enable the main PLL. */
<> 144:ef7eb2e8f9f7 517 __HAL_RCC_PLL_ENABLE();
<> 144:ef7eb2e8f9f7 518
<> 144:ef7eb2e8f9f7 519 /* Get Start Tick*/
<> 144:ef7eb2e8f9f7 520 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 521
<> 144:ef7eb2e8f9f7 522 /* Wait till PLL is ready */
<> 144:ef7eb2e8f9f7 523 while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
<> 144:ef7eb2e8f9f7 524 {
<> 144:ef7eb2e8f9f7 525 if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 526 {
<> 144:ef7eb2e8f9f7 527 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 528 }
<> 144:ef7eb2e8f9f7 529 }
<> 144:ef7eb2e8f9f7 530 }
<> 144:ef7eb2e8f9f7 531 else
<> 144:ef7eb2e8f9f7 532 {
<> 144:ef7eb2e8f9f7 533 /* Disable the main PLL. */
<> 144:ef7eb2e8f9f7 534 __HAL_RCC_PLL_DISABLE();
<> 144:ef7eb2e8f9f7 535
<> 144:ef7eb2e8f9f7 536 /* Get Start Tick*/
<> 144:ef7eb2e8f9f7 537 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 538
<> 144:ef7eb2e8f9f7 539 /* Wait till PLL is ready */
<> 144:ef7eb2e8f9f7 540 while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)
<> 144:ef7eb2e8f9f7 541 {
<> 144:ef7eb2e8f9f7 542 if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 543 {
<> 144:ef7eb2e8f9f7 544 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 545 }
<> 144:ef7eb2e8f9f7 546 }
<> 144:ef7eb2e8f9f7 547 }
<> 144:ef7eb2e8f9f7 548 }
<> 144:ef7eb2e8f9f7 549 else
<> 144:ef7eb2e8f9f7 550 {
<> 144:ef7eb2e8f9f7 551 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 552 }
<> 144:ef7eb2e8f9f7 553 }
<> 144:ef7eb2e8f9f7 554 return HAL_OK;
<> 144:ef7eb2e8f9f7 555 }
<> 144:ef7eb2e8f9f7 556
<> 144:ef7eb2e8f9f7 557 /**
<> 144:ef7eb2e8f9f7 558 * @brief Initializes the CPU, AHB and APB busses clocks according to the specified
<> 144:ef7eb2e8f9f7 559 * parameters in the RCC_ClkInitStruct.
<> 144:ef7eb2e8f9f7 560 * @param RCC_ClkInitStruct: pointer to an RCC_OscInitTypeDef structure that
<> 144:ef7eb2e8f9f7 561 * contains the configuration information for the RCC peripheral.
<> 144:ef7eb2e8f9f7 562 * @param FLatency: FLASH Latency, this parameter depend on device selected
<> 144:ef7eb2e8f9f7 563 *
<> 144:ef7eb2e8f9f7 564 * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency
<> 144:ef7eb2e8f9f7 565 * and updated by HAL_RCC_GetHCLKFreq() function called within this function
<> 144:ef7eb2e8f9f7 566 *
<> 144:ef7eb2e8f9f7 567 * @note The HSI is used (enabled by hardware) as system clock source after
<> 144:ef7eb2e8f9f7 568 * startup from Reset, wake-up from STOP and STANDBY mode, or in case
<> 144:ef7eb2e8f9f7 569 * of failure of the HSE used directly or indirectly as system clock
<> 144:ef7eb2e8f9f7 570 * (if the Clock Security System CSS is enabled).
<> 144:ef7eb2e8f9f7 571 *
<> 144:ef7eb2e8f9f7 572 * @note A switch from one clock source to another occurs only if the target
<> 144:ef7eb2e8f9f7 573 * clock source is ready (clock stable after startup delay or PLL locked).
<> 144:ef7eb2e8f9f7 574 * If a clock source which is not yet ready is selected, the switch will
<> 144:ef7eb2e8f9f7 575 * occur when the clock source will be ready.
<> 144:ef7eb2e8f9f7 576 * You can use HAL_RCC_GetClockConfig() function to know which clock is
<> 144:ef7eb2e8f9f7 577 * currently used as system clock source.
<> 144:ef7eb2e8f9f7 578 * @note Depending on the device voltage range, the software has to set correctly
<> 144:ef7eb2e8f9f7 579 * HPRE[3:0] bits to ensure that HCLK not exceed the maximum allowed frequency
<> 144:ef7eb2e8f9f7 580 * (for more details refer to section above "Initialization/de-initialization functions")
<> 144:ef7eb2e8f9f7 581 * @retval None
<> 144:ef7eb2e8f9f7 582 */
<> 144:ef7eb2e8f9f7 583 HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency)
<> 144:ef7eb2e8f9f7 584 {
<> 144:ef7eb2e8f9f7 585 uint32_t tickstart = 0;
<> 144:ef7eb2e8f9f7 586
<> 144:ef7eb2e8f9f7 587 /* Check the parameters */
<> 144:ef7eb2e8f9f7 588 assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType));
<> 144:ef7eb2e8f9f7 589 assert_param(IS_FLASH_LATENCY(FLatency));
<> 144:ef7eb2e8f9f7 590
<> 144:ef7eb2e8f9f7 591 /* To correctly read data from FLASH memory, the number of wait states (LATENCY)
<> 144:ef7eb2e8f9f7 592 must be correctly programmed according to the frequency of the CPU clock
<> 144:ef7eb2e8f9f7 593 (HCLK) and the supply voltage of the device. */
<> 144:ef7eb2e8f9f7 594
<> 144:ef7eb2e8f9f7 595 /* Increasing the CPU frequency */
<> 144:ef7eb2e8f9f7 596 if(FLatency > (FLASH->ACR & FLASH_ACR_LATENCY))
<> 144:ef7eb2e8f9f7 597 {
<> 144:ef7eb2e8f9f7 598 /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
<> 144:ef7eb2e8f9f7 599 __HAL_FLASH_SET_LATENCY(FLatency);
<> 144:ef7eb2e8f9f7 600
<> 144:ef7eb2e8f9f7 601 /* Check that the new number of wait states is taken into account to access the Flash
<> 144:ef7eb2e8f9f7 602 memory by reading the FLASH_ACR register */
<> 144:ef7eb2e8f9f7 603 if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
<> 144:ef7eb2e8f9f7 604 {
<> 144:ef7eb2e8f9f7 605 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 606 }
<> 144:ef7eb2e8f9f7 607 }
<> 144:ef7eb2e8f9f7 608
<> 144:ef7eb2e8f9f7 609 /*-------------------------- HCLK Configuration --------------------------*/
<> 144:ef7eb2e8f9f7 610 if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK)
<> 144:ef7eb2e8f9f7 611 {
<> 144:ef7eb2e8f9f7 612 assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider));
<> 144:ef7eb2e8f9f7 613 MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
<> 144:ef7eb2e8f9f7 614 }
<> 144:ef7eb2e8f9f7 615
<> 144:ef7eb2e8f9f7 616 /*------------------------- SYSCLK Configuration ---------------------------*/
<> 144:ef7eb2e8f9f7 617 if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK)
<> 144:ef7eb2e8f9f7 618 {
<> 144:ef7eb2e8f9f7 619 assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource));
<> 144:ef7eb2e8f9f7 620
<> 144:ef7eb2e8f9f7 621 /* HSE is selected as System Clock Source */
<> 144:ef7eb2e8f9f7 622 if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
<> 144:ef7eb2e8f9f7 623 {
<> 144:ef7eb2e8f9f7 624 /* Check the HSE ready flag */
<> 144:ef7eb2e8f9f7 625 if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
<> 144:ef7eb2e8f9f7 626 {
<> 144:ef7eb2e8f9f7 627 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 628 }
<> 144:ef7eb2e8f9f7 629 }
<> 144:ef7eb2e8f9f7 630 /* PLL is selected as System Clock Source */
<> 144:ef7eb2e8f9f7 631 else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
<> 144:ef7eb2e8f9f7 632 {
<> 144:ef7eb2e8f9f7 633 /* Check the PLL ready flag */
<> 144:ef7eb2e8f9f7 634 if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
<> 144:ef7eb2e8f9f7 635 {
<> 144:ef7eb2e8f9f7 636 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 637 }
<> 144:ef7eb2e8f9f7 638 }
<> 144:ef7eb2e8f9f7 639 /* HSI is selected as System Clock Source */
<> 144:ef7eb2e8f9f7 640 else
<> 144:ef7eb2e8f9f7 641 {
<> 144:ef7eb2e8f9f7 642 /* Check the HSI ready flag */
<> 144:ef7eb2e8f9f7 643 if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
<> 144:ef7eb2e8f9f7 644 {
<> 144:ef7eb2e8f9f7 645 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 646 }
<> 144:ef7eb2e8f9f7 647 }
<> 144:ef7eb2e8f9f7 648
<> 144:ef7eb2e8f9f7 649 __HAL_RCC_SYSCLK_CONFIG(RCC_ClkInitStruct->SYSCLKSource);
<> 144:ef7eb2e8f9f7 650 /* Get Start Tick*/
<> 144:ef7eb2e8f9f7 651 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 652
<> 144:ef7eb2e8f9f7 653 if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
<> 144:ef7eb2e8f9f7 654 {
<> 144:ef7eb2e8f9f7 655 while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSE)
<> 144:ef7eb2e8f9f7 656 {
<> 144:ef7eb2e8f9f7 657 if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 658 {
<> 144:ef7eb2e8f9f7 659 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 660 }
<> 144:ef7eb2e8f9f7 661 }
<> 144:ef7eb2e8f9f7 662 }
<> 144:ef7eb2e8f9f7 663 else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
<> 144:ef7eb2e8f9f7 664 {
<> 144:ef7eb2e8f9f7 665 while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
<> 144:ef7eb2e8f9f7 666 {
<> 144:ef7eb2e8f9f7 667 if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 668 {
<> 144:ef7eb2e8f9f7 669 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 670 }
<> 144:ef7eb2e8f9f7 671 }
<> 144:ef7eb2e8f9f7 672 }
<> 144:ef7eb2e8f9f7 673 else
<> 144:ef7eb2e8f9f7 674 {
<> 144:ef7eb2e8f9f7 675 while(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI)
<> 144:ef7eb2e8f9f7 676 {
<> 144:ef7eb2e8f9f7 677 if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 678 {
<> 144:ef7eb2e8f9f7 679 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 680 }
<> 144:ef7eb2e8f9f7 681 }
<> 144:ef7eb2e8f9f7 682 }
<> 144:ef7eb2e8f9f7 683 }
<> 144:ef7eb2e8f9f7 684
<> 144:ef7eb2e8f9f7 685 /* Decreasing the number of wait states because of lower CPU frequency */
<> 144:ef7eb2e8f9f7 686 if(FLatency < (FLASH->ACR & FLASH_ACR_LATENCY))
<> 144:ef7eb2e8f9f7 687 {
<> 144:ef7eb2e8f9f7 688 /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
<> 144:ef7eb2e8f9f7 689 __HAL_FLASH_SET_LATENCY(FLatency);
<> 144:ef7eb2e8f9f7 690
<> 144:ef7eb2e8f9f7 691 /* Check that the new number of wait states is taken into account to access the Flash
<> 144:ef7eb2e8f9f7 692 memory by reading the FLASH_ACR register */
<> 144:ef7eb2e8f9f7 693 if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
<> 144:ef7eb2e8f9f7 694 {
<> 144:ef7eb2e8f9f7 695 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 696 }
<> 144:ef7eb2e8f9f7 697 }
<> 144:ef7eb2e8f9f7 698
<> 144:ef7eb2e8f9f7 699 /*-------------------------- PCLK1 Configuration ---------------------------*/
<> 144:ef7eb2e8f9f7 700 if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)
<> 144:ef7eb2e8f9f7 701 {
<> 144:ef7eb2e8f9f7 702 assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider));
<> 144:ef7eb2e8f9f7 703 MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_ClkInitStruct->APB1CLKDivider);
<> 144:ef7eb2e8f9f7 704 }
<> 144:ef7eb2e8f9f7 705
<> 144:ef7eb2e8f9f7 706 /*-------------------------- PCLK2 Configuration ---------------------------*/
<> 144:ef7eb2e8f9f7 707 if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2)
<> 144:ef7eb2e8f9f7 708 {
<> 144:ef7eb2e8f9f7 709 assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB2CLKDivider));
<> 144:ef7eb2e8f9f7 710 MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, ((RCC_ClkInitStruct->APB2CLKDivider) << 3));
<> 144:ef7eb2e8f9f7 711 }
<> 144:ef7eb2e8f9f7 712
<> 144:ef7eb2e8f9f7 713 /* Update the SystemCoreClock global variable */
<> 144:ef7eb2e8f9f7 714 SystemCoreClock = HAL_RCC_GetSysClockFreq() >> AHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE)>> POSITION_VAL(RCC_CFGR_HPRE)];
<> 144:ef7eb2e8f9f7 715
<> 144:ef7eb2e8f9f7 716 /* Configure the source of time base considering new system clocks settings*/
<> 144:ef7eb2e8f9f7 717 HAL_InitTick (TICK_INT_PRIORITY);
<> 144:ef7eb2e8f9f7 718
<> 144:ef7eb2e8f9f7 719 return HAL_OK;
<> 144:ef7eb2e8f9f7 720 }
<> 144:ef7eb2e8f9f7 721
<> 144:ef7eb2e8f9f7 722 /**
<> 144:ef7eb2e8f9f7 723 * @}
<> 144:ef7eb2e8f9f7 724 */
<> 144:ef7eb2e8f9f7 725
<> 144:ef7eb2e8f9f7 726 /** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions
<> 144:ef7eb2e8f9f7 727 * @brief RCC clocks control functions
<> 144:ef7eb2e8f9f7 728 *
<> 144:ef7eb2e8f9f7 729 @verbatim
<> 144:ef7eb2e8f9f7 730 ===============================================================================
<> 144:ef7eb2e8f9f7 731 ##### Peripheral Control functions #####
<> 144:ef7eb2e8f9f7 732 ===============================================================================
<> 144:ef7eb2e8f9f7 733 [..]
<> 144:ef7eb2e8f9f7 734 This subsection provides a set of functions allowing to control the RCC Clocks
<> 144:ef7eb2e8f9f7 735 frequencies.
<> 144:ef7eb2e8f9f7 736
<> 144:ef7eb2e8f9f7 737 @endverbatim
<> 144:ef7eb2e8f9f7 738 * @{
<> 144:ef7eb2e8f9f7 739 */
<> 144:ef7eb2e8f9f7 740
<> 144:ef7eb2e8f9f7 741 /**
<> 144:ef7eb2e8f9f7 742 * @brief Selects the clock source to output on MCO1 pin(PA8) or on MCO2 pin(PC9).
<> 144:ef7eb2e8f9f7 743 * @note PA8/PC9 should be configured in alternate function mode.
<> 144:ef7eb2e8f9f7 744 * @param RCC_MCOx: specifies the output direction for the clock source.
<> 144:ef7eb2e8f9f7 745 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 746 * @arg RCC_MCO1: Clock source to output on MCO1 pin(PA8).
<> 144:ef7eb2e8f9f7 747 * @arg RCC_MCO2: Clock source to output on MCO2 pin(PC9).
<> 144:ef7eb2e8f9f7 748 * @param RCC_MCOSource: specifies the clock source to output.
<> 144:ef7eb2e8f9f7 749 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 750 * @arg RCC_MCO1SOURCE_HSI: HSI clock selected as MCO1 source
<> 144:ef7eb2e8f9f7 751 * @arg RCC_MCO1SOURCE_LSE: LSE clock selected as MCO1 source
<> 144:ef7eb2e8f9f7 752 * @arg RCC_MCO1SOURCE_HSE: HSE clock selected as MCO1 source
<> 144:ef7eb2e8f9f7 753 * @arg RCC_MCO1SOURCE_PLLCLK: main PLL clock selected as MCO1 source
<> 144:ef7eb2e8f9f7 754 * @arg RCC_MCO2SOURCE_SYSCLK: System clock (SYSCLK) selected as MCO2 source
<> 144:ef7eb2e8f9f7 755 * @arg RCC_MCO2SOURCE_PLLI2SCLK: PLLI2S clock selected as MCO2 source
<> 144:ef7eb2e8f9f7 756 * @arg RCC_MCO2SOURCE_HSE: HSE clock selected as MCO2 source
<> 144:ef7eb2e8f9f7 757 * @arg RCC_MCO2SOURCE_PLLCLK: main PLL clock selected as MCO2 source
<> 144:ef7eb2e8f9f7 758 * @param RCC_MCODiv: specifies the MCOx prescaler.
<> 144:ef7eb2e8f9f7 759 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 760 * @arg RCC_MCODIV_1: no division applied to MCOx clock
<> 144:ef7eb2e8f9f7 761 * @arg RCC_MCODIV_2: division by 2 applied to MCOx clock
<> 144:ef7eb2e8f9f7 762 * @arg RCC_MCODIV_3: division by 3 applied to MCOx clock
<> 144:ef7eb2e8f9f7 763 * @arg RCC_MCODIV_4: division by 4 applied to MCOx clock
<> 144:ef7eb2e8f9f7 764 * @arg RCC_MCODIV_5: division by 5 applied to MCOx clock
<> 144:ef7eb2e8f9f7 765 * @retval None
<> 144:ef7eb2e8f9f7 766 */
<> 144:ef7eb2e8f9f7 767 void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv)
<> 144:ef7eb2e8f9f7 768 {
<> 144:ef7eb2e8f9f7 769 GPIO_InitTypeDef GPIO_InitStruct;
<> 144:ef7eb2e8f9f7 770 /* Check the parameters */
<> 144:ef7eb2e8f9f7 771 assert_param(IS_RCC_MCO(RCC_MCOx));
<> 144:ef7eb2e8f9f7 772 assert_param(IS_RCC_MCODIV(RCC_MCODiv));
<> 144:ef7eb2e8f9f7 773 /* RCC_MCO1 */
<> 144:ef7eb2e8f9f7 774 if(RCC_MCOx == RCC_MCO1)
<> 144:ef7eb2e8f9f7 775 {
<> 144:ef7eb2e8f9f7 776 assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource));
<> 144:ef7eb2e8f9f7 777
<> 144:ef7eb2e8f9f7 778 /* MCO1 Clock Enable */
<> 144:ef7eb2e8f9f7 779 MCO1_CLK_ENABLE();
<> 144:ef7eb2e8f9f7 780
<> 144:ef7eb2e8f9f7 781 /* Configure the MCO1 pin in alternate function mode */
<> 144:ef7eb2e8f9f7 782 GPIO_InitStruct.Pin = MCO1_PIN;
<> 144:ef7eb2e8f9f7 783 GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
<> 144:ef7eb2e8f9f7 784 GPIO_InitStruct.Speed = GPIO_SPEED_HIGH;
<> 144:ef7eb2e8f9f7 785 GPIO_InitStruct.Pull = GPIO_NOPULL;
<> 144:ef7eb2e8f9f7 786 GPIO_InitStruct.Alternate = GPIO_AF0_MCO;
<> 144:ef7eb2e8f9f7 787 HAL_GPIO_Init(MCO1_GPIO_PORT, &GPIO_InitStruct);
<> 144:ef7eb2e8f9f7 788
<> 144:ef7eb2e8f9f7 789 /* Mask MCO1 and MCO1PRE[2:0] bits then Select MCO1 clock source and prescaler */
<> 144:ef7eb2e8f9f7 790 MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCO1 | RCC_CFGR_MCO1PRE), (RCC_MCOSource | RCC_MCODiv));
<> 144:ef7eb2e8f9f7 791 }
<> 144:ef7eb2e8f9f7 792 else
<> 144:ef7eb2e8f9f7 793 {
<> 144:ef7eb2e8f9f7 794 assert_param(IS_RCC_MCO2SOURCE(RCC_MCOSource));
<> 144:ef7eb2e8f9f7 795
<> 144:ef7eb2e8f9f7 796 /* MCO2 Clock Enable */
<> 144:ef7eb2e8f9f7 797 MCO2_CLK_ENABLE();
<> 144:ef7eb2e8f9f7 798
<> 144:ef7eb2e8f9f7 799 /* Configure the MCO2 pin in alternate function mode */
<> 144:ef7eb2e8f9f7 800 GPIO_InitStruct.Pin = MCO2_PIN;
<> 144:ef7eb2e8f9f7 801 GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
<> 144:ef7eb2e8f9f7 802 GPIO_InitStruct.Speed = GPIO_SPEED_HIGH;
<> 144:ef7eb2e8f9f7 803 GPIO_InitStruct.Pull = GPIO_NOPULL;
<> 144:ef7eb2e8f9f7 804 GPIO_InitStruct.Alternate = GPIO_AF0_MCO;
<> 144:ef7eb2e8f9f7 805 HAL_GPIO_Init(MCO2_GPIO_PORT, &GPIO_InitStruct);
<> 144:ef7eb2e8f9f7 806
<> 144:ef7eb2e8f9f7 807 /* Mask MCO2 and MCO2PRE[2:0] bits then Select MCO2 clock source and prescaler */
<> 144:ef7eb2e8f9f7 808 MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCO2 | RCC_CFGR_MCO2PRE), (RCC_MCOSource | (RCC_MCODiv << 3)));
<> 144:ef7eb2e8f9f7 809 }
<> 144:ef7eb2e8f9f7 810 }
<> 144:ef7eb2e8f9f7 811
<> 144:ef7eb2e8f9f7 812 /**
<> 144:ef7eb2e8f9f7 813 * @brief Enables the Clock Security System.
<> 144:ef7eb2e8f9f7 814 * @note If a failure is detected on the HSE oscillator clock, this oscillator
<> 144:ef7eb2e8f9f7 815 * is automatically disabled and an interrupt is generated to inform the
<> 144:ef7eb2e8f9f7 816 * software about the failure (Clock Security System Interrupt, CSSI),
<> 144:ef7eb2e8f9f7 817 * allowing the MCU to perform rescue operations. The CSSI is linked to
<> 144:ef7eb2e8f9f7 818 * the Cortex-M7 NMI (Non-Maskable Interrupt) exception vector.
<> 144:ef7eb2e8f9f7 819 * @retval None
<> 144:ef7eb2e8f9f7 820 */
<> 144:ef7eb2e8f9f7 821 void HAL_RCC_EnableCSS(void)
<> 144:ef7eb2e8f9f7 822 {
<> 144:ef7eb2e8f9f7 823 SET_BIT(RCC->CR, RCC_CR_CSSON);
<> 144:ef7eb2e8f9f7 824 }
<> 144:ef7eb2e8f9f7 825
<> 144:ef7eb2e8f9f7 826 /**
<> 144:ef7eb2e8f9f7 827 * @brief Disables the Clock Security System.
<> 144:ef7eb2e8f9f7 828 * @retval None
<> 144:ef7eb2e8f9f7 829 */
<> 144:ef7eb2e8f9f7 830 void HAL_RCC_DisableCSS(void)
<> 144:ef7eb2e8f9f7 831 {
<> 144:ef7eb2e8f9f7 832 CLEAR_BIT(RCC->CR, RCC_CR_CSSON);
<> 144:ef7eb2e8f9f7 833 }
<> 144:ef7eb2e8f9f7 834
<> 144:ef7eb2e8f9f7 835 /**
<> 144:ef7eb2e8f9f7 836 * @brief Returns the SYSCLK frequency
<> 144:ef7eb2e8f9f7 837 *
<> 144:ef7eb2e8f9f7 838 * @note The system frequency computed by this function is not the real
<> 144:ef7eb2e8f9f7 839 * frequency in the chip. It is calculated based on the predefined
<> 144:ef7eb2e8f9f7 840 * constant and the selected clock source:
<> 144:ef7eb2e8f9f7 841 * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*)
<> 144:ef7eb2e8f9f7 842 * @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(**)
<> 144:ef7eb2e8f9f7 843 * @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(**)
<> 144:ef7eb2e8f9f7 844 * or HSI_VALUE(*) multiplied/divided by the PLL factors.
<> 144:ef7eb2e8f9f7 845 * @note (*) HSI_VALUE is a constant defined in stm32f7xx_hal_conf.h file (default value
<> 144:ef7eb2e8f9f7 846 * 16 MHz) but the real value may vary depending on the variations
<> 144:ef7eb2e8f9f7 847 * in voltage and temperature.
<> 144:ef7eb2e8f9f7 848 * @note (**) HSE_VALUE is a constant defined in stm32f7xx_hal_conf.h file (default value
<> 144:ef7eb2e8f9f7 849 * 25 MHz), user has to ensure that HSE_VALUE is same as the real
<> 144:ef7eb2e8f9f7 850 * frequency of the crystal used. Otherwise, this function may
<> 144:ef7eb2e8f9f7 851 * have wrong result.
<> 144:ef7eb2e8f9f7 852 *
<> 144:ef7eb2e8f9f7 853 * @note The result of this function could be not correct when using fractional
<> 144:ef7eb2e8f9f7 854 * value for HSE crystal.
<> 144:ef7eb2e8f9f7 855 *
<> 144:ef7eb2e8f9f7 856 * @note This function can be used by the user application to compute the
<> 144:ef7eb2e8f9f7 857 * baudrate for the communication peripherals or configure other parameters.
<> 144:ef7eb2e8f9f7 858 *
<> 144:ef7eb2e8f9f7 859 * @note Each time SYSCLK changes, this function must be called to update the
<> 144:ef7eb2e8f9f7 860 * right SYSCLK value. Otherwise, any configuration based on this function will be incorrect.
<> 144:ef7eb2e8f9f7 861 *
<> 144:ef7eb2e8f9f7 862 *
<> 144:ef7eb2e8f9f7 863 * @retval SYSCLK frequency
<> 144:ef7eb2e8f9f7 864 */
<> 144:ef7eb2e8f9f7 865 uint32_t HAL_RCC_GetSysClockFreq(void)
<> 144:ef7eb2e8f9f7 866 {
<> 144:ef7eb2e8f9f7 867 uint32_t pllm = 0, pllvco = 0, pllp = 0;
<> 144:ef7eb2e8f9f7 868 uint32_t sysclockfreq = 0;
<> 144:ef7eb2e8f9f7 869
<> 144:ef7eb2e8f9f7 870 /* Get SYSCLK source -------------------------------------------------------*/
<> 144:ef7eb2e8f9f7 871 switch (RCC->CFGR & RCC_CFGR_SWS)
<> 144:ef7eb2e8f9f7 872 {
<> 144:ef7eb2e8f9f7 873 case RCC_SYSCLKSOURCE_STATUS_HSI: /* HSI used as system clock source */
<> 144:ef7eb2e8f9f7 874 {
<> 144:ef7eb2e8f9f7 875 sysclockfreq = HSI_VALUE;
<> 144:ef7eb2e8f9f7 876 break;
<> 144:ef7eb2e8f9f7 877 }
<> 144:ef7eb2e8f9f7 878 case RCC_SYSCLKSOURCE_STATUS_HSE: /* HSE used as system clock source */
<> 144:ef7eb2e8f9f7 879 {
<> 144:ef7eb2e8f9f7 880 sysclockfreq = HSE_VALUE;
<> 144:ef7eb2e8f9f7 881 break;
<> 144:ef7eb2e8f9f7 882 }
<> 144:ef7eb2e8f9f7 883 case RCC_SYSCLKSOURCE_STATUS_PLLCLK: /* PLL used as system clock source */
<> 144:ef7eb2e8f9f7 884 {
<> 144:ef7eb2e8f9f7 885 /* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM) * PLLN
<> 144:ef7eb2e8f9f7 886 SYSCLK = PLL_VCO / PLLP */
<> 144:ef7eb2e8f9f7 887 pllm = RCC->PLLCFGR & RCC_PLLCFGR_PLLM;
<> 144:ef7eb2e8f9f7 888 if (__HAL_RCC_GET_PLL_OSCSOURCE() != RCC_PLLCFGR_PLLSRC_HSI)
<> 144:ef7eb2e8f9f7 889 {
<> 144:ef7eb2e8f9f7 890 /* HSE used as PLL clock source */
<> 144:ef7eb2e8f9f7 891 pllvco = ((HSE_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN)));
<> 144:ef7eb2e8f9f7 892 }
<> 144:ef7eb2e8f9f7 893 else
<> 144:ef7eb2e8f9f7 894 {
<> 144:ef7eb2e8f9f7 895 /* HSI used as PLL clock source */
<> 144:ef7eb2e8f9f7 896 pllvco = ((HSI_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN)));
<> 144:ef7eb2e8f9f7 897 }
<> 144:ef7eb2e8f9f7 898 pllp = ((((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) >> POSITION_VAL(RCC_PLLCFGR_PLLP)) + 1 ) *2);
<> 144:ef7eb2e8f9f7 899
<> 144:ef7eb2e8f9f7 900 sysclockfreq = pllvco/pllp;
<> 144:ef7eb2e8f9f7 901 break;
<> 144:ef7eb2e8f9f7 902 }
<> 144:ef7eb2e8f9f7 903 default:
<> 144:ef7eb2e8f9f7 904 {
<> 144:ef7eb2e8f9f7 905 sysclockfreq = HSI_VALUE;
<> 144:ef7eb2e8f9f7 906 break;
<> 144:ef7eb2e8f9f7 907 }
<> 144:ef7eb2e8f9f7 908 }
<> 144:ef7eb2e8f9f7 909 return sysclockfreq;
<> 144:ef7eb2e8f9f7 910 }
<> 144:ef7eb2e8f9f7 911
<> 144:ef7eb2e8f9f7 912 /**
<> 144:ef7eb2e8f9f7 913 * @brief Returns the HCLK frequency
<> 144:ef7eb2e8f9f7 914 * @note Each time HCLK changes, this function must be called to update the
<> 144:ef7eb2e8f9f7 915 * right HCLK value. Otherwise, any configuration based on this function will be incorrect.
<> 144:ef7eb2e8f9f7 916 * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency.
<> 144:ef7eb2e8f9f7 917 * @retval HCLK frequency
<> 144:ef7eb2e8f9f7 918 */
<> 144:ef7eb2e8f9f7 919 uint32_t HAL_RCC_GetHCLKFreq(void)
<> 144:ef7eb2e8f9f7 920 {
<> 144:ef7eb2e8f9f7 921 return SystemCoreClock;
<> 144:ef7eb2e8f9f7 922 }
<> 144:ef7eb2e8f9f7 923
<> 144:ef7eb2e8f9f7 924 /**
<> 144:ef7eb2e8f9f7 925 * @brief Returns the PCLK1 frequency
<> 144:ef7eb2e8f9f7 926 * @note Each time PCLK1 changes, this function must be called to update the
<> 144:ef7eb2e8f9f7 927 * right PCLK1 value. Otherwise, any configuration based on this function will be incorrect.
<> 144:ef7eb2e8f9f7 928 * @retval PCLK1 frequency
<> 144:ef7eb2e8f9f7 929 */
<> 144:ef7eb2e8f9f7 930 uint32_t HAL_RCC_GetPCLK1Freq(void)
<> 144:ef7eb2e8f9f7 931 {
<> 144:ef7eb2e8f9f7 932 /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/
<> 144:ef7eb2e8f9f7 933 return (HAL_RCC_GetHCLKFreq() >> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE1)>> POSITION_VAL(RCC_CFGR_PPRE1)]);
<> 144:ef7eb2e8f9f7 934 }
<> 144:ef7eb2e8f9f7 935
<> 144:ef7eb2e8f9f7 936 /**
<> 144:ef7eb2e8f9f7 937 * @brief Returns the PCLK2 frequency
<> 144:ef7eb2e8f9f7 938 * @note Each time PCLK2 changes, this function must be called to update the
<> 144:ef7eb2e8f9f7 939 * right PCLK2 value. Otherwise, any configuration based on this function will be incorrect.
<> 144:ef7eb2e8f9f7 940 * @retval PCLK2 frequency
<> 144:ef7eb2e8f9f7 941 */
<> 144:ef7eb2e8f9f7 942 uint32_t HAL_RCC_GetPCLK2Freq(void)
<> 144:ef7eb2e8f9f7 943 {
<> 144:ef7eb2e8f9f7 944 /* Get HCLK source and Compute PCLK2 frequency ---------------------------*/
<> 144:ef7eb2e8f9f7 945 return (HAL_RCC_GetHCLKFreq()>> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE2)>> POSITION_VAL(RCC_CFGR_PPRE2)]);
<> 144:ef7eb2e8f9f7 946 }
<> 144:ef7eb2e8f9f7 947
<> 144:ef7eb2e8f9f7 948 /**
<> 144:ef7eb2e8f9f7 949 * @brief Configures the RCC_OscInitStruct according to the internal
<> 144:ef7eb2e8f9f7 950 * RCC configuration registers.
<> 144:ef7eb2e8f9f7 951 * @param RCC_OscInitStruct: pointer to an RCC_OscInitTypeDef structure that
<> 144:ef7eb2e8f9f7 952 * will be configured.
<> 144:ef7eb2e8f9f7 953 * @retval None
<> 144:ef7eb2e8f9f7 954 */
<> 144:ef7eb2e8f9f7 955 void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
<> 144:ef7eb2e8f9f7 956 {
<> 144:ef7eb2e8f9f7 957 /* Set all possible values for the Oscillator type parameter ---------------*/
<> 144:ef7eb2e8f9f7 958 RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI;
<> 144:ef7eb2e8f9f7 959
<> 144:ef7eb2e8f9f7 960 /* Get the HSE configuration -----------------------------------------------*/
<> 144:ef7eb2e8f9f7 961 if((RCC->CR &RCC_CR_HSEBYP) == RCC_CR_HSEBYP)
<> 144:ef7eb2e8f9f7 962 {
<> 144:ef7eb2e8f9f7 963 RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS;
<> 144:ef7eb2e8f9f7 964 }
<> 144:ef7eb2e8f9f7 965 else if((RCC->CR &RCC_CR_HSEON) == RCC_CR_HSEON)
<> 144:ef7eb2e8f9f7 966 {
<> 144:ef7eb2e8f9f7 967 RCC_OscInitStruct->HSEState = RCC_HSE_ON;
<> 144:ef7eb2e8f9f7 968 }
<> 144:ef7eb2e8f9f7 969 else
<> 144:ef7eb2e8f9f7 970 {
<> 144:ef7eb2e8f9f7 971 RCC_OscInitStruct->HSEState = RCC_HSE_OFF;
<> 144:ef7eb2e8f9f7 972 }
<> 144:ef7eb2e8f9f7 973
<> 144:ef7eb2e8f9f7 974 /* Get the HSI configuration -----------------------------------------------*/
<> 144:ef7eb2e8f9f7 975 if((RCC->CR &RCC_CR_HSION) == RCC_CR_HSION)
<> 144:ef7eb2e8f9f7 976 {
<> 144:ef7eb2e8f9f7 977 RCC_OscInitStruct->HSIState = RCC_HSI_ON;
<> 144:ef7eb2e8f9f7 978 }
<> 144:ef7eb2e8f9f7 979 else
<> 144:ef7eb2e8f9f7 980 {
<> 144:ef7eb2e8f9f7 981 RCC_OscInitStruct->HSIState = RCC_HSI_OFF;
<> 144:ef7eb2e8f9f7 982 }
<> 144:ef7eb2e8f9f7 983
<> 144:ef7eb2e8f9f7 984 RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->CR &RCC_CR_HSITRIM) >> POSITION_VAL(RCC_CR_HSITRIM));
<> 144:ef7eb2e8f9f7 985
<> 144:ef7eb2e8f9f7 986 /* Get the LSE configuration -----------------------------------------------*/
<> 144:ef7eb2e8f9f7 987 if((RCC->BDCR &RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP)
<> 144:ef7eb2e8f9f7 988 {
<> 144:ef7eb2e8f9f7 989 RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS;
<> 144:ef7eb2e8f9f7 990 }
<> 144:ef7eb2e8f9f7 991 else if((RCC->BDCR &RCC_BDCR_LSEON) == RCC_BDCR_LSEON)
<> 144:ef7eb2e8f9f7 992 {
<> 144:ef7eb2e8f9f7 993 RCC_OscInitStruct->LSEState = RCC_LSE_ON;
<> 144:ef7eb2e8f9f7 994 }
<> 144:ef7eb2e8f9f7 995 else
<> 144:ef7eb2e8f9f7 996 {
<> 144:ef7eb2e8f9f7 997 RCC_OscInitStruct->LSEState = RCC_LSE_OFF;
<> 144:ef7eb2e8f9f7 998 }
<> 144:ef7eb2e8f9f7 999
<> 144:ef7eb2e8f9f7 1000 /* Get the LSI configuration -----------------------------------------------*/
<> 144:ef7eb2e8f9f7 1001 if((RCC->CSR &RCC_CSR_LSION) == RCC_CSR_LSION)
<> 144:ef7eb2e8f9f7 1002 {
<> 144:ef7eb2e8f9f7 1003 RCC_OscInitStruct->LSIState = RCC_LSI_ON;
<> 144:ef7eb2e8f9f7 1004 }
<> 144:ef7eb2e8f9f7 1005 else
<> 144:ef7eb2e8f9f7 1006 {
<> 144:ef7eb2e8f9f7 1007 RCC_OscInitStruct->LSIState = RCC_LSI_OFF;
<> 144:ef7eb2e8f9f7 1008 }
<> 144:ef7eb2e8f9f7 1009
<> 144:ef7eb2e8f9f7 1010 /* Get the PLL configuration -----------------------------------------------*/
<> 144:ef7eb2e8f9f7 1011 if((RCC->CR &RCC_CR_PLLON) == RCC_CR_PLLON)
<> 144:ef7eb2e8f9f7 1012 {
<> 144:ef7eb2e8f9f7 1013 RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON;
<> 144:ef7eb2e8f9f7 1014 }
<> 144:ef7eb2e8f9f7 1015 else
<> 144:ef7eb2e8f9f7 1016 {
<> 144:ef7eb2e8f9f7 1017 RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF;
<> 144:ef7eb2e8f9f7 1018 }
<> 144:ef7eb2e8f9f7 1019 RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC);
<> 144:ef7eb2e8f9f7 1020 RCC_OscInitStruct->PLL.PLLM = (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM);
<> 144:ef7eb2e8f9f7 1021 RCC_OscInitStruct->PLL.PLLN = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN));
<> 144:ef7eb2e8f9f7 1022 RCC_OscInitStruct->PLL.PLLP = (uint32_t)((((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) + RCC_PLLCFGR_PLLP_0) << 1) >> POSITION_VAL(RCC_PLLCFGR_PLLP));
<> 144:ef7eb2e8f9f7 1023 RCC_OscInitStruct->PLL.PLLQ = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLLQ) >> POSITION_VAL(RCC_PLLCFGR_PLLQ));
<> 144:ef7eb2e8f9f7 1024 }
<> 144:ef7eb2e8f9f7 1025
<> 144:ef7eb2e8f9f7 1026 /**
<> 144:ef7eb2e8f9f7 1027 * @brief Configures the RCC_ClkInitStruct according to the internal
<> 144:ef7eb2e8f9f7 1028 * RCC configuration registers.
<> 144:ef7eb2e8f9f7 1029 * @param RCC_ClkInitStruct: pointer to an RCC_ClkInitTypeDef structure that
<> 144:ef7eb2e8f9f7 1030 * will be configured.
<> 144:ef7eb2e8f9f7 1031 * @param pFLatency: Pointer on the Flash Latency.
<> 144:ef7eb2e8f9f7 1032 * @retval None
<> 144:ef7eb2e8f9f7 1033 */
<> 144:ef7eb2e8f9f7 1034 void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency)
<> 144:ef7eb2e8f9f7 1035 {
<> 144:ef7eb2e8f9f7 1036 /* Set all possible values for the Clock type parameter --------------------*/
<> 144:ef7eb2e8f9f7 1037 RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
<> 144:ef7eb2e8f9f7 1038
<> 144:ef7eb2e8f9f7 1039 /* Get the SYSCLK configuration --------------------------------------------*/
<> 144:ef7eb2e8f9f7 1040 RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW);
<> 144:ef7eb2e8f9f7 1041
<> 144:ef7eb2e8f9f7 1042 /* Get the HCLK configuration ----------------------------------------------*/
<> 144:ef7eb2e8f9f7 1043 RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE);
<> 144:ef7eb2e8f9f7 1044
<> 144:ef7eb2e8f9f7 1045 /* Get the APB1 configuration ----------------------------------------------*/
<> 144:ef7eb2e8f9f7 1046 RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE1);
<> 144:ef7eb2e8f9f7 1047
<> 144:ef7eb2e8f9f7 1048 /* Get the APB2 configuration ----------------------------------------------*/
<> 144:ef7eb2e8f9f7 1049 RCC_ClkInitStruct->APB2CLKDivider = (uint32_t)((RCC->CFGR & RCC_CFGR_PPRE2) >> 3);
<> 144:ef7eb2e8f9f7 1050
<> 144:ef7eb2e8f9f7 1051 /* Get the Flash Wait State (Latency) configuration ------------------------*/
<> 144:ef7eb2e8f9f7 1052 *pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY);
<> 144:ef7eb2e8f9f7 1053 }
<> 144:ef7eb2e8f9f7 1054
<> 144:ef7eb2e8f9f7 1055 /**
<> 144:ef7eb2e8f9f7 1056 * @brief This function handles the RCC CSS interrupt request.
<> 144:ef7eb2e8f9f7 1057 * @note This API should be called under the NMI_Handler().
<> 144:ef7eb2e8f9f7 1058 * @retval None
<> 144:ef7eb2e8f9f7 1059 */
<> 144:ef7eb2e8f9f7 1060 void HAL_RCC_NMI_IRQHandler(void)
<> 144:ef7eb2e8f9f7 1061 {
<> 144:ef7eb2e8f9f7 1062 /* Check RCC CSSF flag */
<> 144:ef7eb2e8f9f7 1063 if(__HAL_RCC_GET_IT(RCC_IT_CSS))
<> 144:ef7eb2e8f9f7 1064 {
<> 144:ef7eb2e8f9f7 1065 /* RCC Clock Security System interrupt user callback */
<> 144:ef7eb2e8f9f7 1066 HAL_RCC_CSSCallback();
<> 144:ef7eb2e8f9f7 1067
<> 144:ef7eb2e8f9f7 1068 /* Clear RCC CSS pending bit */
<> 144:ef7eb2e8f9f7 1069 __HAL_RCC_CLEAR_IT(RCC_IT_CSS);
<> 144:ef7eb2e8f9f7 1070 }
<> 144:ef7eb2e8f9f7 1071 }
<> 144:ef7eb2e8f9f7 1072
<> 144:ef7eb2e8f9f7 1073 /**
<> 144:ef7eb2e8f9f7 1074 * @brief RCC Clock Security System interrupt callback
<> 144:ef7eb2e8f9f7 1075 * @retval None
<> 144:ef7eb2e8f9f7 1076 */
<> 144:ef7eb2e8f9f7 1077 __weak void HAL_RCC_CSSCallback(void)
<> 144:ef7eb2e8f9f7 1078 {
<> 144:ef7eb2e8f9f7 1079 /* NOTE : This function Should not be modified, when the callback is needed,
<> 144:ef7eb2e8f9f7 1080 the HAL_RCC_CSSCallback could be implemented in the user file
<> 144:ef7eb2e8f9f7 1081 */
<> 144:ef7eb2e8f9f7 1082 }
<> 144:ef7eb2e8f9f7 1083
<> 144:ef7eb2e8f9f7 1084 /**
<> 144:ef7eb2e8f9f7 1085 * @}
<> 144:ef7eb2e8f9f7 1086 */
<> 144:ef7eb2e8f9f7 1087
<> 144:ef7eb2e8f9f7 1088 /**
<> 144:ef7eb2e8f9f7 1089 * @}
<> 144:ef7eb2e8f9f7 1090 */
<> 144:ef7eb2e8f9f7 1091
<> 144:ef7eb2e8f9f7 1092 #endif /* HAL_RCC_MODULE_ENABLED */
<> 144:ef7eb2e8f9f7 1093 /**
<> 144:ef7eb2e8f9f7 1094 * @}
<> 144:ef7eb2e8f9f7 1095 */
<> 144:ef7eb2e8f9f7 1096
<> 144:ef7eb2e8f9f7 1097 /**
<> 144:ef7eb2e8f9f7 1098 * @}
<> 144:ef7eb2e8f9f7 1099 */
<> 144:ef7eb2e8f9f7 1100
<> 144:ef7eb2e8f9f7 1101 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/