added prescaler for 16 bit pwm in LPC1347 target

Fork of mbed-dev by mbed official

Committer:
JojoS
Date:
Sat Sep 10 15:32:04 2016 +0000
Revision:
147:ba84b7dc41a7
Parent:
144:ef7eb2e8f9f7
added prescaler for 16 bit timers (solution as in LPC11xx), default prescaler 31 for max 28 ms period time

Who changed what in which revision?

UserRevisionLine numberNew contents of line
<> 144:ef7eb2e8f9f7 1 /**
<> 144:ef7eb2e8f9f7 2 ******************************************************************************
<> 144:ef7eb2e8f9f7 3 * @file rfAna.c
<> 144:ef7eb2e8f9f7 4 * @brief Implementation of rfAna hw module functions
<> 144:ef7eb2e8f9f7 5 * @internal
<> 144:ef7eb2e8f9f7 6 * @author ON Semiconductor
<> 144:ef7eb2e8f9f7 7 * $Rev: 3445 $
<> 144:ef7eb2e8f9f7 8 * $Date: 2015-06-22 13:51:24 +0530 (Mon, 22 Jun 2015) $
<> 144:ef7eb2e8f9f7 9 ******************************************************************************
<> 144:ef7eb2e8f9f7 10 * @copyright (c) 2012 ON Semiconductor. All rights reserved.
<> 144:ef7eb2e8f9f7 11 * ON Semiconductor is supplying this software for use with ON Semiconductor
<> 144:ef7eb2e8f9f7 12 * processor based microcontrollers only.
<> 144:ef7eb2e8f9f7 13 *
<> 144:ef7eb2e8f9f7 14 * THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
<> 144:ef7eb2e8f9f7 15 * OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
<> 144:ef7eb2e8f9f7 16 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
<> 144:ef7eb2e8f9f7 17 * ON SEMICONDUCTOR SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL,
<> 144:ef7eb2e8f9f7 18 * INCIDENTAL, OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
<> 144:ef7eb2e8f9f7 19 * @endinternal
<> 144:ef7eb2e8f9f7 20 *
<> 144:ef7eb2e8f9f7 21 * @ingroup rfAna
<> 144:ef7eb2e8f9f7 22 *
<> 144:ef7eb2e8f9f7 23 * @details
<> 144:ef7eb2e8f9f7 24 *
<> 144:ef7eb2e8f9f7 25 * <h1> Reference document(s) </h1>
<> 144:ef7eb2e8f9f7 26 */
<> 144:ef7eb2e8f9f7 27
<> 144:ef7eb2e8f9f7 28 /*************************************************************************************************
<> 144:ef7eb2e8f9f7 29 * *
<> 144:ef7eb2e8f9f7 30 * Header files *
<> 144:ef7eb2e8f9f7 31 * *
<> 144:ef7eb2e8f9f7 32 *************************************************************************************************/
<> 144:ef7eb2e8f9f7 33
<> 144:ef7eb2e8f9f7 34 #include "memory_map.h"
<> 144:ef7eb2e8f9f7 35 #include "rfAna.h"
<> 144:ef7eb2e8f9f7 36 #include "clock.h"
<> 144:ef7eb2e8f9f7 37
<> 144:ef7eb2e8f9f7 38 #ifdef REVA
<> 144:ef7eb2e8f9f7 39 #include "test.h"
<> 144:ef7eb2e8f9f7 40 #endif
<> 144:ef7eb2e8f9f7 41
<> 144:ef7eb2e8f9f7 42 /*************************************************************************************************
<> 144:ef7eb2e8f9f7 43 * *
<> 144:ef7eb2e8f9f7 44 * Global variables *
<> 144:ef7eb2e8f9f7 45 * *
<> 144:ef7eb2e8f9f7 46 *************************************************************************************************/
<> 144:ef7eb2e8f9f7 47
<> 144:ef7eb2e8f9f7 48 /** Rf channel and tx power lookup tables (constant)
<> 144:ef7eb2e8f9f7 49 * @details
<> 144:ef7eb2e8f9f7 50 *
<> 144:ef7eb2e8f9f7 51 * The rf channel table is used to program internal hardware register for different 15.4 rf channels.
<> 144:ef7eb2e8f9f7 52 * It has 16 entries corresponding to 16 15.4 channels.
<> 144:ef7eb2e8f9f7 53 * Entry 1 <-> Channel 11
<> 144:ef7eb2e8f9f7 54 * ...
<> 144:ef7eb2e8f9f7 55 * Entry 16 <-> Channel 26
<> 144:ef7eb2e8f9f7 56 *
<> 144:ef7eb2e8f9f7 57 * Each entry is compound of 4 items.
<> 144:ef7eb2e8f9f7 58 * Item 0: Rx Frequency integer divide portion
<> 144:ef7eb2e8f9f7 59 * Item 1: Rx Frequency fractional divide portion
<> 144:ef7eb2e8f9f7 60 * Item 2: Tx Frequency integer divide portion
<> 144:ef7eb2e8f9f7 61 * Item 3: Tx Frequency fractional divide portion
<> 144:ef7eb2e8f9f7 62 *
<> 144:ef7eb2e8f9f7 63 * The tx power table is used to program internal hardware register for different 15.4 tx power levels.
<> 144:ef7eb2e8f9f7 64 * It has 43 entries corresponding to tx power levels from -32dBm to +10dBm.
<> 144:ef7eb2e8f9f7 65 * Entry 1 <-> -32dB
<> 144:ef7eb2e8f9f7 66 * Entry 2 <-> -31dB
<> 144:ef7eb2e8f9f7 67 * ...
<> 144:ef7eb2e8f9f7 68 * Entry 2 <-> 9dB
<> 144:ef7eb2e8f9f7 69 * Entry 43 <-> +10dB
<> 144:ef7eb2e8f9f7 70 *
<> 144:ef7eb2e8f9f7 71 * Each entry is compound of 1 byte.
<> 144:ef7eb2e8f9f7 72 */
<> 144:ef7eb2e8f9f7 73
<> 144:ef7eb2e8f9f7 74 // RR: Making high side injection changes to RevD
<> 144:ef7eb2e8f9f7 75 #ifdef REVD
<> 144:ef7eb2e8f9f7 76
<> 144:ef7eb2e8f9f7 77 /** This rf LUT is built for high side injection, using low side injection
<> 144:ef7eb2e8f9f7 78 * would requiere to change this LUT. */
<> 144:ef7eb2e8f9f7 79 const uint32_t rfLut[16][4] = {{0x50,0x00D4A7,0x4B,0x00A000},
<> 144:ef7eb2e8f9f7 80 {0x50,0x017F52,0x4B,0x014001},
<> 144:ef7eb2e8f9f7 81 {0x51,0xFE29FB,0x4B,0x01E001},
<> 144:ef7eb2e8f9f7 82 {0x51,0xFED4A6,0x4C,0xFE7FFF},
<> 144:ef7eb2e8f9f7 83 {0x51,0xFF7F51,0x4C,0xFF1FFF},
<> 144:ef7eb2e8f9f7 84 {0x51,0x0029FC,0x4C,0xFFC000},
<> 144:ef7eb2e8f9f7 85 {0x51,0x00D4A7,0x4C,0x006000},
<> 144:ef7eb2e8f9f7 86 {0x51,0x017F52,0x4C,0x010001},
<> 144:ef7eb2e8f9f7 87 {0x52,0xFE29FB,0x4C,0x01A001},
<> 144:ef7eb2e8f9f7 88 {0x52,0xFED4A6,0x4D,0xFE3FFF},
<> 144:ef7eb2e8f9f7 89 {0x52,0xFF7F51,0x4D,0xFEDFFF},
<> 144:ef7eb2e8f9f7 90 {0x52,0x0029FC,0x4D,0xFF8000},
<> 144:ef7eb2e8f9f7 91 {0x52,0x00D4A7,0x4D,0x002000},
<> 144:ef7eb2e8f9f7 92 {0x52,0x017F52,0x4D,0x00C001},
<> 144:ef7eb2e8f9f7 93 {0x53,0xFE29FB,0x4D,0x016001},
<> 144:ef7eb2e8f9f7 94 {0x53,0xFED4A6,0x4E,0xFDFFFE}
<> 144:ef7eb2e8f9f7 95 };
<> 144:ef7eb2e8f9f7 96
<> 144:ef7eb2e8f9f7 97 const uint8_t txPowerLut[43] = {0,0,0, // -32dBm to -30dBm
<> 144:ef7eb2e8f9f7 98 0,0,0,0,0,0,0,0,0,0, // -29dBm to -20dBm
<> 144:ef7eb2e8f9f7 99 0,0,0,0,0,0,0,0,1,2, // -19dBm to -10dBm
<> 144:ef7eb2e8f9f7 100 3,4,5,6,7,8,9,10,11,12, // -9dBm to 0dBm
<> 144:ef7eb2e8f9f7 101 13,14,15,16,17,18,19,20,20,20
<> 144:ef7eb2e8f9f7 102 }; // +1dBm to +10 dBm
<> 144:ef7eb2e8f9f7 103
<> 144:ef7eb2e8f9f7 104 #endif /* REVD */
<> 144:ef7eb2e8f9f7 105
<> 144:ef7eb2e8f9f7 106 #ifdef REVC
<> 144:ef7eb2e8f9f7 107 /** This rf LUT is built for low side injection, using high side injection
<> 144:ef7eb2e8f9f7 108 * would requiere to change this LUT. */
<> 144:ef7eb2e8f9f7 109 const uint32_t rfLut[16][4] = {{0x47,0xFF15FC,0x4B,0x00A000},
<> 144:ef7eb2e8f9f7 110 {0x47,0xFFAC93,0x4B,0x014001},
<> 144:ef7eb2e8f9f7 111 {0x47,0x00432A,0x4B,0x01E001},
<> 144:ef7eb2e8f9f7 112 {0x47,0x00D9C1,0x4C,0xFE7FFF},
<> 144:ef7eb2e8f9f7 113 {0x47,0x017058,0x4C,0xFF1FFF},
<> 144:ef7eb2e8f9f7 114 {0x48,0xFE06EC,0x4C,0xFFC000},
<> 144:ef7eb2e8f9f7 115 {0x48,0xFE9D83,0x4C,0x006000},
<> 144:ef7eb2e8f9f7 116 {0x48,0xFF341A,0x4C,0x010001},
<> 144:ef7eb2e8f9f7 117 {0x48,0xFFCAB1,0x4C,0x01A001},
<> 144:ef7eb2e8f9f7 118 {0x48,0x006148,0x4D,0xFE3FFF},
<> 144:ef7eb2e8f9f7 119 {0x48,0x00F7DF,0x4D,0xFEDFFF},
<> 144:ef7eb2e8f9f7 120 {0x48,0x018E76,0x4D,0xFF8000},
<> 144:ef7eb2e8f9f7 121 {0x49,0xFE250A,0x4D,0x002000},
<> 144:ef7eb2e8f9f7 122 {0x49,0xFEBBA1,0x4D,0x00C001},
<> 144:ef7eb2e8f9f7 123 {0x49,0xFF5238,0x4D,0x016001},
<> 144:ef7eb2e8f9f7 124 {0x49,0xFFE8CF,0x4E,0xFDFFFE}
<> 144:ef7eb2e8f9f7 125 };
<> 144:ef7eb2e8f9f7 126
<> 144:ef7eb2e8f9f7 127 const uint8_t txPowerLut[43] = {0,0,0, // -32dBm to -30dBm
<> 144:ef7eb2e8f9f7 128 0,0,0,0,0,0,0,0,0,0, // -29dBm to -20dBm
<> 144:ef7eb2e8f9f7 129 0,0,0,0,0,0,1,1,2,2, // -19dBm to -10dBm (clamp low at -14dB)
<> 144:ef7eb2e8f9f7 130 3,3,4,6,7,9,10,12,13,15, // -9dBm to 0dBm
<> 144:ef7eb2e8f9f7 131 17,19,20,20,20,20,20,20,20,20
<> 144:ef7eb2e8f9f7 132 }; // +1dBm to +10 dBm (clamp high at +3dB)
<> 144:ef7eb2e8f9f7 133 #endif /* REVC */
<> 144:ef7eb2e8f9f7 134
<> 144:ef7eb2e8f9f7 135 #ifdef REVB
<> 144:ef7eb2e8f9f7 136 /** This rf LUT is built for low side injection, using high side injection
<> 144:ef7eb2e8f9f7 137 * would requiere to change this LUT. */
<> 144:ef7eb2e8f9f7 138 const uint32_t rfLut[16][4] = {{0x47,0xFF15FC,0x4B,0x00A000},
<> 144:ef7eb2e8f9f7 139 {0x47,0xFFAC93,0x4B,0x014001},
<> 144:ef7eb2e8f9f7 140 {0x47,0x00432A,0x4B,0x01E001},
<> 144:ef7eb2e8f9f7 141 {0x47,0x00D9C1,0x4C,0xFE7FFF},
<> 144:ef7eb2e8f9f7 142 {0x47,0x017058,0x4C,0xFF1FFF},
<> 144:ef7eb2e8f9f7 143 {0x48,0xFE06EC,0x4C,0xFFC000},
<> 144:ef7eb2e8f9f7 144 {0x48,0xFE9D83,0x4C,0x006000},
<> 144:ef7eb2e8f9f7 145 {0x48,0xFF341A,0x4C,0x010001},
<> 144:ef7eb2e8f9f7 146 {0x48,0xFFCAB1,0x4C,0x01A001},
<> 144:ef7eb2e8f9f7 147 {0x48,0x006148,0x4D,0xFE3FFF},
<> 144:ef7eb2e8f9f7 148 {0x48,0x00F7DF,0x4D,0xFEDFFF},
<> 144:ef7eb2e8f9f7 149 {0x48,0x018E76,0x4D,0xFF8000},
<> 144:ef7eb2e8f9f7 150 {0x49,0xFE250A,0x4D,0x002000},
<> 144:ef7eb2e8f9f7 151 {0x49,0xFEBBA1,0x4D,0x00C001},
<> 144:ef7eb2e8f9f7 152 {0x49,0xFF5238,0x4D,0x016001},
<> 144:ef7eb2e8f9f7 153 {0x49,0xFFE8CF,0x4E,0xFDFFFE}
<> 144:ef7eb2e8f9f7 154 };
<> 144:ef7eb2e8f9f7 155
<> 144:ef7eb2e8f9f7 156 const uint8_t txPowerLut[43] = {0,0,0, // -32dBm to -30dBm
<> 144:ef7eb2e8f9f7 157 0,0,0,0,0,0,0,0,0,0, // -29dBm to -20dBm
<> 144:ef7eb2e8f9f7 158 0,0,0,0,0,0,1,1,2,2, // -19dBm to -10dBm (clamp low at -14dB)
<> 144:ef7eb2e8f9f7 159 3,3,4,6,7,9,10,12,13,15, // -9dBm to 0dBm
<> 144:ef7eb2e8f9f7 160 17,19,20,20,20,20,20,20,20,20
<> 144:ef7eb2e8f9f7 161 }; // +1dBm to +10 dBm (clamp high at +3dB)
<> 144:ef7eb2e8f9f7 162 #endif
<> 144:ef7eb2e8f9f7 163
<> 144:ef7eb2e8f9f7 164 #ifdef REVA
<> 144:ef7eb2e8f9f7 165 const uint32_t rfLut[16][4] = {{0x57,0xFF5D2F,0x51,0x018001},
<> 144:ef7eb2e8f9f7 166 {0x57,0x0007DA,0x52,0xFE1FFF},
<> 144:ef7eb2e8f9f7 167 {0x57,0x00B285,0x52,0xFEBFFF},
<> 144:ef7eb2e8f9f7 168 {0x57,0x015D30,0x52,0xFF6000},
<> 144:ef7eb2e8f9f7 169 {0x58,0xFE07D8,0x52,0x000000},
<> 144:ef7eb2e8f9f7 170 {0x58,0xFEB283,0x52,0x00A000},
<> 144:ef7eb2e8f9f7 171 {0x58,0xFF5D2F,0x52,0x014001},
<> 144:ef7eb2e8f9f7 172 {0x58,0x0007DA,0x52,0x01E001},
<> 144:ef7eb2e8f9f7 173 {0x58,0x00B285,0x53,0xFE7FFF},
<> 144:ef7eb2e8f9f7 174 {0x58,0x015D30,0x53,0xFF1FFF},
<> 144:ef7eb2e8f9f7 175 {0x59,0xFE07D8,0x53,0xFFC000},
<> 144:ef7eb2e8f9f7 176 {0x59,0xFEB283,0x53,0x006000},
<> 144:ef7eb2e8f9f7 177 {0x59,0xFF5D2F,0x53,0x010001},
<> 144:ef7eb2e8f9f7 178 {0x59,0x0007DA,0x53,0x01A001},
<> 144:ef7eb2e8f9f7 179 {0x59,0x00B285,0x53,0xFE3FFF},
<> 144:ef7eb2e8f9f7 180 {0x59,0x015D30,0x53,0xFEDFFF}
<> 144:ef7eb2e8f9f7 181 };
<> 144:ef7eb2e8f9f7 182
<> 144:ef7eb2e8f9f7 183 const uint8_t txPowerLut[43] = {1,2,3, // -32dBm to -30dBm
<> 144:ef7eb2e8f9f7 184 4,5,5,5,5,5,5,5,5,5, // -29dBm to -20dBm (clamp at -28dB)
<> 144:ef7eb2e8f9f7 185 5,5,5,5,5,5,5,5,5,5, // -19dBm to -10dBm
<> 144:ef7eb2e8f9f7 186 5,5,5,5,5,5,5,5,5,5, // -9dBm to 0dBm
<> 144:ef7eb2e8f9f7 187 5,5,5,5,5,5,5,5,5,5
<> 144:ef7eb2e8f9f7 188 }; // +1dBm to +10 dBm
<> 144:ef7eb2e8f9f7 189 #endif
<> 144:ef7eb2e8f9f7 190
<> 144:ef7eb2e8f9f7 191 /*************************************************************************************************
<> 144:ef7eb2e8f9f7 192 * *
<> 144:ef7eb2e8f9f7 193 * Functions *
<> 144:ef7eb2e8f9f7 194 * *
<> 144:ef7eb2e8f9f7 195 *************************************************************************************************/
<> 144:ef7eb2e8f9f7 196
<> 144:ef7eb2e8f9f7 197 void fRfAnaInit()
<> 144:ef7eb2e8f9f7 198 {
<> 144:ef7eb2e8f9f7 199 // Enable rfana clock
<> 144:ef7eb2e8f9f7 200 CLOCK_ENABLE(CLOCK_RFANA);
<> 144:ef7eb2e8f9f7 201
<> 144:ef7eb2e8f9f7 202 #ifdef REVA
<> 144:ef7eb2e8f9f7 203 // Force Pll lock (it shouldn't be needed for either silicon if the part is configured/trimmed properly)
<> 144:ef7eb2e8f9f7 204 fTestForcePllLock();
<> 144:ef7eb2e8f9f7 205 // Bypass Pll regulator
<> 144:ef7eb2e8f9f7 206 fTestBypassPllReg();
<> 144:ef7eb2e8f9f7 207 #endif
<> 144:ef7eb2e8f9f7 208
<> 144:ef7eb2e8f9f7 209 // Set PLL timing
<> 144:ef7eb2e8f9f7 210 RFANAREG->PLL_TIMING.BITS.PLL_RESET_TIME = 0x1E; // 30us
<> 144:ef7eb2e8f9f7 211 RFANAREG->PLL_TIMING.BITS.PLL_LOCK_TIME = 0x2F; // 47us
<> 144:ef7eb2e8f9f7 212
<> 144:ef7eb2e8f9f7 213 // Set other parameters
<> 144:ef7eb2e8f9f7 214 RFANAREG->RX_CONTROL.BITS.LNA_GAIN_MODE = 0x1; // High Gain mode
<> 144:ef7eb2e8f9f7 215 RFANAREG->RX_CONTROL.BITS.ADC_DITHER_MODE = 0x0; // Dither mode disabled
<> 144:ef7eb2e8f9f7 216 }
<> 144:ef7eb2e8f9f7 217
<> 144:ef7eb2e8f9f7 218 boolean fRfAnaIoctl (uint32_t request, void *argument)
<> 144:ef7eb2e8f9f7 219 {
<> 144:ef7eb2e8f9f7 220 uint8_t channel, txPower;
<> 144:ef7eb2e8f9f7 221
<> 144:ef7eb2e8f9f7 222 // Enable rfana clock (in case fRfAnaIoctl is used before call of fRfAnaInit)
<> 144:ef7eb2e8f9f7 223 CLOCK_ENABLE(CLOCK_RFANA);
<> 144:ef7eb2e8f9f7 224
<> 144:ef7eb2e8f9f7 225 switch(request) {
<> 144:ef7eb2e8f9f7 226 case SET_RF_CHANNEL:
<> 144:ef7eb2e8f9f7 227 channel = *(uint8_t*)argument;
<> 144:ef7eb2e8f9f7 228
<> 144:ef7eb2e8f9f7 229 // Set tx/rx integer/fractional divide portions
<> 144:ef7eb2e8f9f7 230 RFANAREG->TX_LO_CONTROL.BITS.FRACT_WORD = rfLut[channel - 11][3];
<> 144:ef7eb2e8f9f7 231 RFANAREG->TX_LO_CONTROL.BITS.INT_WORD = rfLut[channel - 11][2];
<> 144:ef7eb2e8f9f7 232 RFANAREG->RX_LO_CONTROL.BITS.FRACT_WORD = rfLut[channel - 11][1];
<> 144:ef7eb2e8f9f7 233 RFANAREG->RX_LO_CONTROL.BITS.INT_WORD = rfLut[channel - 11][0];
<> 144:ef7eb2e8f9f7 234
<> 144:ef7eb2e8f9f7 235 // Set tx/rx vco trims
<> 144:ef7eb2e8f9f7 236 #ifdef REVB
<> 144:ef7eb2e8f9f7 237 /** REVB is requiering to adjust tx/rx vco trims each time a new 15.4 channel is used, in revB it is done
<> 144:ef7eb2e8f9f7 238 * from trims stored in flash A, it has the drawback that it is not workable when flash A is not accessible.*/
<> 144:ef7eb2e8f9f7 239 if (channel < 19) {
<> 144:ef7eb2e8f9f7 240 RFANATRIMREG->PLL_TRIM.BITS.TX_VCO_TRIM = (TRIMREG->TX_VCO_LUT1.WORD) >> ((channel - 11) * 4);
<> 144:ef7eb2e8f9f7 241 RFANATRIMREG->PLL_TRIM.BITS.RX_VCO_TRIM = (TRIMREG->RX_VCO_LUT1.WORD) >> ((channel - 11) * 4);
<> 144:ef7eb2e8f9f7 242 } else {
<> 144:ef7eb2e8f9f7 243 RFANATRIMREG->PLL_TRIM.BITS.TX_VCO_TRIM = (TRIMREG->TX_VCO_LUT2.WORD) >> ((channel - 19) * 4);
<> 144:ef7eb2e8f9f7 244 RFANATRIMREG->PLL_TRIM.BITS.RX_VCO_TRIM = (TRIMREG->RX_VCO_LUT2.WORD) >> ((channel - 19) * 4);
<> 144:ef7eb2e8f9f7 245 }
<> 144:ef7eb2e8f9f7 246 #endif /* REVB */
<> 144:ef7eb2e8f9f7 247 #ifdef REVC
<> 144:ef7eb2e8f9f7 248 /** REVC is requiering to adjust tx/rx vco trims each time a new 15.4 channel is used, in revB it is done
<> 144:ef7eb2e8f9f7 249 * from trims stored in dedicated registers available in digital.*/
<> 144:ef7eb2e8f9f7 250 if (channel < 19) {
<> 144:ef7eb2e8f9f7 251 RFANATRIMREG->PLL_TRIM.BITS.TX_VCO_TRIM = (RFANATRIMREG->TX_VCO_TRIM_LUT1) >> ((channel - 11) * 4);
<> 144:ef7eb2e8f9f7 252 RFANATRIMREG->PLL_TRIM.BITS.RX_VCO_TRIM = (RFANATRIMREG->RX_VCO_TRIM_LUT1) >> ((channel - 11) * 4);
<> 144:ef7eb2e8f9f7 253 } else {
<> 144:ef7eb2e8f9f7 254 RFANATRIMREG->PLL_TRIM.BITS.TX_VCO_TRIM = (RFANATRIMREG->TX_VCO_TRIM_LUT2) >> ((channel - 19) * 4);
<> 144:ef7eb2e8f9f7 255 RFANATRIMREG->PLL_TRIM.BITS.RX_VCO_TRIM = (RFANATRIMREG->RX_VCO_TRIM_LUT2) >> ((channel - 19) * 4);
<> 144:ef7eb2e8f9f7 256 }
<> 144:ef7eb2e8f9f7 257 #endif /* REVC */
<> 144:ef7eb2e8f9f7 258 #ifdef REVD
<> 144:ef7eb2e8f9f7 259 /** REVD is requiering to adjust tx/rx vco trims each time a new 15.4 channel is used, in revB it is done
<> 144:ef7eb2e8f9f7 260 * from trims stored in dedicated registers available in digital.*/
<> 144:ef7eb2e8f9f7 261 if (channel < 19) {
<> 144:ef7eb2e8f9f7 262 RFANATRIMREG->PLL_TRIM.BITS.TX_VCO_TRIM = (RFANATRIMREG->TX_VCO_TRIM_LUT1) >> ((channel - 11) * 4);
<> 144:ef7eb2e8f9f7 263 RFANATRIMREG->PLL_TRIM.BITS.RX_VCO_TRIM = (RFANATRIMREG->RX_VCO_TRIM_LUT1) >> ((channel - 11) * 4);
<> 144:ef7eb2e8f9f7 264 } else {
<> 144:ef7eb2e8f9f7 265 RFANATRIMREG->PLL_TRIM.BITS.TX_VCO_TRIM = (RFANATRIMREG->TX_VCO_TRIM_LUT2) >> ((channel - 19) * 4);
<> 144:ef7eb2e8f9f7 266 RFANATRIMREG->PLL_TRIM.BITS.RX_VCO_TRIM = (RFANATRIMREG->RX_VCO_TRIM_LUT2) >> ((channel - 19) * 4);
<> 144:ef7eb2e8f9f7 267 }
<> 144:ef7eb2e8f9f7 268 #endif /* REVD */
<> 144:ef7eb2e8f9f7 269 break;
<> 144:ef7eb2e8f9f7 270 case SET_TX_POWER:
<> 144:ef7eb2e8f9f7 271 txPower = *(uint8_t*)argument;
<> 144:ef7eb2e8f9f7 272
<> 144:ef7eb2e8f9f7 273 // Set tx power register
<> 144:ef7eb2e8f9f7 274 if ((txPower & 0x20) == 0) {
<> 144:ef7eb2e8f9f7 275 RFANAREG->TX_POWER = (txPowerLut[txPower + 32] & 0xFF);
<> 144:ef7eb2e8f9f7 276 } else {
<> 144:ef7eb2e8f9f7 277 RFANAREG->TX_POWER = (txPowerLut[txPower - 32] & 0xFF);
<> 144:ef7eb2e8f9f7 278 }
<> 144:ef7eb2e8f9f7 279
<> 144:ef7eb2e8f9f7 280 break;
<> 144:ef7eb2e8f9f7 281 default:
<> 144:ef7eb2e8f9f7 282 return False;
<> 144:ef7eb2e8f9f7 283 }
<> 144:ef7eb2e8f9f7 284 return True;
<> 144:ef7eb2e8f9f7 285 }