added prescaler for 16 bit pwm in LPC1347 target

Fork of mbed-dev by mbed official

Committer:
<>
Date:
Fri Sep 02 15:07:44 2016 +0100
Revision:
144:ef7eb2e8f9f7
This updates the lib to the mbed lib v125

Who changed what in which revision?

UserRevisionLine numberNew contents of line
<> 144:ef7eb2e8f9f7 1 /**
<> 144:ef7eb2e8f9f7 2 ******************************************************************************
<> 144:ef7eb2e8f9f7 3 * @file rfAna.c
<> 144:ef7eb2e8f9f7 4 * @brief Implementation of rfAna hw module functions
<> 144:ef7eb2e8f9f7 5 * @internal
<> 144:ef7eb2e8f9f7 6 * @author ON Semiconductor
<> 144:ef7eb2e8f9f7 7 * $Rev: 3445 $
<> 144:ef7eb2e8f9f7 8 * $Date: 2015-06-22 13:51:24 +0530 (Mon, 22 Jun 2015) $
<> 144:ef7eb2e8f9f7 9 ******************************************************************************
<> 144:ef7eb2e8f9f7 10 * @copyright (c) 2012 ON Semiconductor. All rights reserved.
<> 144:ef7eb2e8f9f7 11 * ON Semiconductor is supplying this software for use with ON Semiconductor
<> 144:ef7eb2e8f9f7 12 * processor based microcontrollers only.
<> 144:ef7eb2e8f9f7 13 *
<> 144:ef7eb2e8f9f7 14 * THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
<> 144:ef7eb2e8f9f7 15 * OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
<> 144:ef7eb2e8f9f7 16 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
<> 144:ef7eb2e8f9f7 17 * ON SEMICONDUCTOR SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL,
<> 144:ef7eb2e8f9f7 18 * INCIDENTAL, OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
<> 144:ef7eb2e8f9f7 19 * @endinternal
<> 144:ef7eb2e8f9f7 20 *
<> 144:ef7eb2e8f9f7 21 * @ingroup rfAna
<> 144:ef7eb2e8f9f7 22 *
<> 144:ef7eb2e8f9f7 23 * @details
<> 144:ef7eb2e8f9f7 24 *
<> 144:ef7eb2e8f9f7 25 * <h1> Reference document(s) </h1>
<> 144:ef7eb2e8f9f7 26 */
<> 144:ef7eb2e8f9f7 27
<> 144:ef7eb2e8f9f7 28 /*************************************************************************************************
<> 144:ef7eb2e8f9f7 29 * *
<> 144:ef7eb2e8f9f7 30 * Header files *
<> 144:ef7eb2e8f9f7 31 * *
<> 144:ef7eb2e8f9f7 32 *************************************************************************************************/
<> 144:ef7eb2e8f9f7 33
<> 144:ef7eb2e8f9f7 34 #include "memory_map.h"
<> 144:ef7eb2e8f9f7 35 #include "rfAna.h"
<> 144:ef7eb2e8f9f7 36 #include "clock.h"
<> 144:ef7eb2e8f9f7 37
<> 144:ef7eb2e8f9f7 38 #ifdef REVA
<> 144:ef7eb2e8f9f7 39 #include "test.h"
<> 144:ef7eb2e8f9f7 40 #endif
<> 144:ef7eb2e8f9f7 41
<> 144:ef7eb2e8f9f7 42 /*************************************************************************************************
<> 144:ef7eb2e8f9f7 43 * *
<> 144:ef7eb2e8f9f7 44 * Global variables *
<> 144:ef7eb2e8f9f7 45 * *
<> 144:ef7eb2e8f9f7 46 *************************************************************************************************/
<> 144:ef7eb2e8f9f7 47
<> 144:ef7eb2e8f9f7 48 /** Rf channel and tx power lookup tables (constant)
<> 144:ef7eb2e8f9f7 49 * @details
<> 144:ef7eb2e8f9f7 50 *
<> 144:ef7eb2e8f9f7 51 * The rf channel table is used to program internal hardware register for different 15.4 rf channels.
<> 144:ef7eb2e8f9f7 52 * It has 16 entries corresponding to 16 15.4 channels.
<> 144:ef7eb2e8f9f7 53 * Entry 1 <-> Channel 11
<> 144:ef7eb2e8f9f7 54 * ...
<> 144:ef7eb2e8f9f7 55 * Entry 16 <-> Channel 26
<> 144:ef7eb2e8f9f7 56 *
<> 144:ef7eb2e8f9f7 57 * Each entry is compound of 4 items.
<> 144:ef7eb2e8f9f7 58 * Item 0: Rx Frequency integer divide portion
<> 144:ef7eb2e8f9f7 59 * Item 1: Rx Frequency fractional divide portion
<> 144:ef7eb2e8f9f7 60 * Item 2: Tx Frequency integer divide portion
<> 144:ef7eb2e8f9f7 61 * Item 3: Tx Frequency fractional divide portion
<> 144:ef7eb2e8f9f7 62 *
<> 144:ef7eb2e8f9f7 63 * The tx power table is used to program internal hardware register for different 15.4 tx power levels.
<> 144:ef7eb2e8f9f7 64 * It has 43 entries corresponding to tx power levels from -32dBm to +10dBm.
<> 144:ef7eb2e8f9f7 65 * Entry 1 <-> -32dB
<> 144:ef7eb2e8f9f7 66 * Entry 2 <-> -31dB
<> 144:ef7eb2e8f9f7 67 * ...
<> 144:ef7eb2e8f9f7 68 * Entry 2 <-> 9dB
<> 144:ef7eb2e8f9f7 69 * Entry 43 <-> +10dB
<> 144:ef7eb2e8f9f7 70 *
<> 144:ef7eb2e8f9f7 71 * Each entry is compound of 1 byte.
<> 144:ef7eb2e8f9f7 72 */
<> 144:ef7eb2e8f9f7 73
<> 144:ef7eb2e8f9f7 74 // RR: Making high side injection changes to RevD
<> 144:ef7eb2e8f9f7 75 #ifdef REVD
<> 144:ef7eb2e8f9f7 76
<> 144:ef7eb2e8f9f7 77 /** This rf LUT is built for high side injection, using low side injection
<> 144:ef7eb2e8f9f7 78 * would requiere to change this LUT. */
<> 144:ef7eb2e8f9f7 79 const uint32_t rfLut[16][4] = {{0x50,0x00D4A7,0x4B,0x00A000},
<> 144:ef7eb2e8f9f7 80 {0x50,0x017F52,0x4B,0x014001},
<> 144:ef7eb2e8f9f7 81 {0x51,0xFE29FB,0x4B,0x01E001},
<> 144:ef7eb2e8f9f7 82 {0x51,0xFED4A6,0x4C,0xFE7FFF},
<> 144:ef7eb2e8f9f7 83 {0x51,0xFF7F51,0x4C,0xFF1FFF},
<> 144:ef7eb2e8f9f7 84 {0x51,0x0029FC,0x4C,0xFFC000},
<> 144:ef7eb2e8f9f7 85 {0x51,0x00D4A7,0x4C,0x006000},
<> 144:ef7eb2e8f9f7 86 {0x51,0x017F52,0x4C,0x010001},
<> 144:ef7eb2e8f9f7 87 {0x52,0xFE29FB,0x4C,0x01A001},
<> 144:ef7eb2e8f9f7 88 {0x52,0xFED4A6,0x4D,0xFE3FFF},
<> 144:ef7eb2e8f9f7 89 {0x52,0xFF7F51,0x4D,0xFEDFFF},
<> 144:ef7eb2e8f9f7 90 {0x52,0x0029FC,0x4D,0xFF8000},
<> 144:ef7eb2e8f9f7 91 {0x52,0x00D4A7,0x4D,0x002000},
<> 144:ef7eb2e8f9f7 92 {0x52,0x017F52,0x4D,0x00C001},
<> 144:ef7eb2e8f9f7 93 {0x53,0xFE29FB,0x4D,0x016001},
<> 144:ef7eb2e8f9f7 94 {0x53,0xFED4A6,0x4E,0xFDFFFE}
<> 144:ef7eb2e8f9f7 95 };
<> 144:ef7eb2e8f9f7 96
<> 144:ef7eb2e8f9f7 97 const uint8_t txPowerLut[43] = {0,0,0, // -32dBm to -30dBm
<> 144:ef7eb2e8f9f7 98 0,0,0,0,0,0,0,0,0,0, // -29dBm to -20dBm
<> 144:ef7eb2e8f9f7 99 0,0,0,0,0,0,0,0,1,2, // -19dBm to -10dBm
<> 144:ef7eb2e8f9f7 100 3,4,5,6,7,8,9,10,11,12, // -9dBm to 0dBm
<> 144:ef7eb2e8f9f7 101 13,14,15,16,17,18,19,20,20,20
<> 144:ef7eb2e8f9f7 102 }; // +1dBm to +10 dBm
<> 144:ef7eb2e8f9f7 103
<> 144:ef7eb2e8f9f7 104 #endif /* REVD */
<> 144:ef7eb2e8f9f7 105
<> 144:ef7eb2e8f9f7 106 #ifdef REVC
<> 144:ef7eb2e8f9f7 107 /** This rf LUT is built for low side injection, using high side injection
<> 144:ef7eb2e8f9f7 108 * would requiere to change this LUT. */
<> 144:ef7eb2e8f9f7 109 const uint32_t rfLut[16][4] = {{0x47,0xFF15FC,0x4B,0x00A000},
<> 144:ef7eb2e8f9f7 110 {0x47,0xFFAC93,0x4B,0x014001},
<> 144:ef7eb2e8f9f7 111 {0x47,0x00432A,0x4B,0x01E001},
<> 144:ef7eb2e8f9f7 112 {0x47,0x00D9C1,0x4C,0xFE7FFF},
<> 144:ef7eb2e8f9f7 113 {0x47,0x017058,0x4C,0xFF1FFF},
<> 144:ef7eb2e8f9f7 114 {0x48,0xFE06EC,0x4C,0xFFC000},
<> 144:ef7eb2e8f9f7 115 {0x48,0xFE9D83,0x4C,0x006000},
<> 144:ef7eb2e8f9f7 116 {0x48,0xFF341A,0x4C,0x010001},
<> 144:ef7eb2e8f9f7 117 {0x48,0xFFCAB1,0x4C,0x01A001},
<> 144:ef7eb2e8f9f7 118 {0x48,0x006148,0x4D,0xFE3FFF},
<> 144:ef7eb2e8f9f7 119 {0x48,0x00F7DF,0x4D,0xFEDFFF},
<> 144:ef7eb2e8f9f7 120 {0x48,0x018E76,0x4D,0xFF8000},
<> 144:ef7eb2e8f9f7 121 {0x49,0xFE250A,0x4D,0x002000},
<> 144:ef7eb2e8f9f7 122 {0x49,0xFEBBA1,0x4D,0x00C001},
<> 144:ef7eb2e8f9f7 123 {0x49,0xFF5238,0x4D,0x016001},
<> 144:ef7eb2e8f9f7 124 {0x49,0xFFE8CF,0x4E,0xFDFFFE}
<> 144:ef7eb2e8f9f7 125 };
<> 144:ef7eb2e8f9f7 126
<> 144:ef7eb2e8f9f7 127 const uint8_t txPowerLut[43] = {0,0,0, // -32dBm to -30dBm
<> 144:ef7eb2e8f9f7 128 0,0,0,0,0,0,0,0,0,0, // -29dBm to -20dBm
<> 144:ef7eb2e8f9f7 129 0,0,0,0,0,0,1,1,2,2, // -19dBm to -10dBm (clamp low at -14dB)
<> 144:ef7eb2e8f9f7 130 3,3,4,6,7,9,10,12,13,15, // -9dBm to 0dBm
<> 144:ef7eb2e8f9f7 131 17,19,20,20,20,20,20,20,20,20
<> 144:ef7eb2e8f9f7 132 }; // +1dBm to +10 dBm (clamp high at +3dB)
<> 144:ef7eb2e8f9f7 133 #endif /* REVC */
<> 144:ef7eb2e8f9f7 134
<> 144:ef7eb2e8f9f7 135 #ifdef REVB
<> 144:ef7eb2e8f9f7 136 /** This rf LUT is built for low side injection, using high side injection
<> 144:ef7eb2e8f9f7 137 * would requiere to change this LUT. */
<> 144:ef7eb2e8f9f7 138 const uint32_t rfLut[16][4] = {{0x47,0xFF15FC,0x4B,0x00A000},
<> 144:ef7eb2e8f9f7 139 {0x47,0xFFAC93,0x4B,0x014001},
<> 144:ef7eb2e8f9f7 140 {0x47,0x00432A,0x4B,0x01E001},
<> 144:ef7eb2e8f9f7 141 {0x47,0x00D9C1,0x4C,0xFE7FFF},
<> 144:ef7eb2e8f9f7 142 {0x47,0x017058,0x4C,0xFF1FFF},
<> 144:ef7eb2e8f9f7 143 {0x48,0xFE06EC,0x4C,0xFFC000},
<> 144:ef7eb2e8f9f7 144 {0x48,0xFE9D83,0x4C,0x006000},
<> 144:ef7eb2e8f9f7 145 {0x48,0xFF341A,0x4C,0x010001},
<> 144:ef7eb2e8f9f7 146 {0x48,0xFFCAB1,0x4C,0x01A001},
<> 144:ef7eb2e8f9f7 147 {0x48,0x006148,0x4D,0xFE3FFF},
<> 144:ef7eb2e8f9f7 148 {0x48,0x00F7DF,0x4D,0xFEDFFF},
<> 144:ef7eb2e8f9f7 149 {0x48,0x018E76,0x4D,0xFF8000},
<> 144:ef7eb2e8f9f7 150 {0x49,0xFE250A,0x4D,0x002000},
<> 144:ef7eb2e8f9f7 151 {0x49,0xFEBBA1,0x4D,0x00C001},
<> 144:ef7eb2e8f9f7 152 {0x49,0xFF5238,0x4D,0x016001},
<> 144:ef7eb2e8f9f7 153 {0x49,0xFFE8CF,0x4E,0xFDFFFE}
<> 144:ef7eb2e8f9f7 154 };
<> 144:ef7eb2e8f9f7 155
<> 144:ef7eb2e8f9f7 156 const uint8_t txPowerLut[43] = {0,0,0, // -32dBm to -30dBm
<> 144:ef7eb2e8f9f7 157 0,0,0,0,0,0,0,0,0,0, // -29dBm to -20dBm
<> 144:ef7eb2e8f9f7 158 0,0,0,0,0,0,1,1,2,2, // -19dBm to -10dBm (clamp low at -14dB)
<> 144:ef7eb2e8f9f7 159 3,3,4,6,7,9,10,12,13,15, // -9dBm to 0dBm
<> 144:ef7eb2e8f9f7 160 17,19,20,20,20,20,20,20,20,20
<> 144:ef7eb2e8f9f7 161 }; // +1dBm to +10 dBm (clamp high at +3dB)
<> 144:ef7eb2e8f9f7 162 #endif
<> 144:ef7eb2e8f9f7 163
<> 144:ef7eb2e8f9f7 164 #ifdef REVA
<> 144:ef7eb2e8f9f7 165 const uint32_t rfLut[16][4] = {{0x57,0xFF5D2F,0x51,0x018001},
<> 144:ef7eb2e8f9f7 166 {0x57,0x0007DA,0x52,0xFE1FFF},
<> 144:ef7eb2e8f9f7 167 {0x57,0x00B285,0x52,0xFEBFFF},
<> 144:ef7eb2e8f9f7 168 {0x57,0x015D30,0x52,0xFF6000},
<> 144:ef7eb2e8f9f7 169 {0x58,0xFE07D8,0x52,0x000000},
<> 144:ef7eb2e8f9f7 170 {0x58,0xFEB283,0x52,0x00A000},
<> 144:ef7eb2e8f9f7 171 {0x58,0xFF5D2F,0x52,0x014001},
<> 144:ef7eb2e8f9f7 172 {0x58,0x0007DA,0x52,0x01E001},
<> 144:ef7eb2e8f9f7 173 {0x58,0x00B285,0x53,0xFE7FFF},
<> 144:ef7eb2e8f9f7 174 {0x58,0x015D30,0x53,0xFF1FFF},
<> 144:ef7eb2e8f9f7 175 {0x59,0xFE07D8,0x53,0xFFC000},
<> 144:ef7eb2e8f9f7 176 {0x59,0xFEB283,0x53,0x006000},
<> 144:ef7eb2e8f9f7 177 {0x59,0xFF5D2F,0x53,0x010001},
<> 144:ef7eb2e8f9f7 178 {0x59,0x0007DA,0x53,0x01A001},
<> 144:ef7eb2e8f9f7 179 {0x59,0x00B285,0x53,0xFE3FFF},
<> 144:ef7eb2e8f9f7 180 {0x59,0x015D30,0x53,0xFEDFFF}
<> 144:ef7eb2e8f9f7 181 };
<> 144:ef7eb2e8f9f7 182
<> 144:ef7eb2e8f9f7 183 const uint8_t txPowerLut[43] = {1,2,3, // -32dBm to -30dBm
<> 144:ef7eb2e8f9f7 184 4,5,5,5,5,5,5,5,5,5, // -29dBm to -20dBm (clamp at -28dB)
<> 144:ef7eb2e8f9f7 185 5,5,5,5,5,5,5,5,5,5, // -19dBm to -10dBm
<> 144:ef7eb2e8f9f7 186 5,5,5,5,5,5,5,5,5,5, // -9dBm to 0dBm
<> 144:ef7eb2e8f9f7 187 5,5,5,5,5,5,5,5,5,5
<> 144:ef7eb2e8f9f7 188 }; // +1dBm to +10 dBm
<> 144:ef7eb2e8f9f7 189 #endif
<> 144:ef7eb2e8f9f7 190
<> 144:ef7eb2e8f9f7 191 /*************************************************************************************************
<> 144:ef7eb2e8f9f7 192 * *
<> 144:ef7eb2e8f9f7 193 * Functions *
<> 144:ef7eb2e8f9f7 194 * *
<> 144:ef7eb2e8f9f7 195 *************************************************************************************************/
<> 144:ef7eb2e8f9f7 196
<> 144:ef7eb2e8f9f7 197 void fRfAnaInit()
<> 144:ef7eb2e8f9f7 198 {
<> 144:ef7eb2e8f9f7 199 // Enable rfana clock
<> 144:ef7eb2e8f9f7 200 CLOCK_ENABLE(CLOCK_RFANA);
<> 144:ef7eb2e8f9f7 201
<> 144:ef7eb2e8f9f7 202 #ifdef REVA
<> 144:ef7eb2e8f9f7 203 // Force Pll lock (it shouldn't be needed for either silicon if the part is configured/trimmed properly)
<> 144:ef7eb2e8f9f7 204 fTestForcePllLock();
<> 144:ef7eb2e8f9f7 205 // Bypass Pll regulator
<> 144:ef7eb2e8f9f7 206 fTestBypassPllReg();
<> 144:ef7eb2e8f9f7 207 #endif
<> 144:ef7eb2e8f9f7 208
<> 144:ef7eb2e8f9f7 209 // Set PLL timing
<> 144:ef7eb2e8f9f7 210 RFANAREG->PLL_TIMING.BITS.PLL_RESET_TIME = 0x1E; // 30us
<> 144:ef7eb2e8f9f7 211 RFANAREG->PLL_TIMING.BITS.PLL_LOCK_TIME = 0x2F; // 47us
<> 144:ef7eb2e8f9f7 212
<> 144:ef7eb2e8f9f7 213 // Set other parameters
<> 144:ef7eb2e8f9f7 214 RFANAREG->RX_CONTROL.BITS.LNA_GAIN_MODE = 0x1; // High Gain mode
<> 144:ef7eb2e8f9f7 215 RFANAREG->RX_CONTROL.BITS.ADC_DITHER_MODE = 0x0; // Dither mode disabled
<> 144:ef7eb2e8f9f7 216 }
<> 144:ef7eb2e8f9f7 217
<> 144:ef7eb2e8f9f7 218 boolean fRfAnaIoctl (uint32_t request, void *argument)
<> 144:ef7eb2e8f9f7 219 {
<> 144:ef7eb2e8f9f7 220 uint8_t channel, txPower;
<> 144:ef7eb2e8f9f7 221
<> 144:ef7eb2e8f9f7 222 // Enable rfana clock (in case fRfAnaIoctl is used before call of fRfAnaInit)
<> 144:ef7eb2e8f9f7 223 CLOCK_ENABLE(CLOCK_RFANA);
<> 144:ef7eb2e8f9f7 224
<> 144:ef7eb2e8f9f7 225 switch(request) {
<> 144:ef7eb2e8f9f7 226 case SET_RF_CHANNEL:
<> 144:ef7eb2e8f9f7 227 channel = *(uint8_t*)argument;
<> 144:ef7eb2e8f9f7 228
<> 144:ef7eb2e8f9f7 229 // Set tx/rx integer/fractional divide portions
<> 144:ef7eb2e8f9f7 230 RFANAREG->TX_LO_CONTROL.BITS.FRACT_WORD = rfLut[channel - 11][3];
<> 144:ef7eb2e8f9f7 231 RFANAREG->TX_LO_CONTROL.BITS.INT_WORD = rfLut[channel - 11][2];
<> 144:ef7eb2e8f9f7 232 RFANAREG->RX_LO_CONTROL.BITS.FRACT_WORD = rfLut[channel - 11][1];
<> 144:ef7eb2e8f9f7 233 RFANAREG->RX_LO_CONTROL.BITS.INT_WORD = rfLut[channel - 11][0];
<> 144:ef7eb2e8f9f7 234
<> 144:ef7eb2e8f9f7 235 // Set tx/rx vco trims
<> 144:ef7eb2e8f9f7 236 #ifdef REVB
<> 144:ef7eb2e8f9f7 237 /** REVB is requiering to adjust tx/rx vco trims each time a new 15.4 channel is used, in revB it is done
<> 144:ef7eb2e8f9f7 238 * from trims stored in flash A, it has the drawback that it is not workable when flash A is not accessible.*/
<> 144:ef7eb2e8f9f7 239 if (channel < 19) {
<> 144:ef7eb2e8f9f7 240 RFANATRIMREG->PLL_TRIM.BITS.TX_VCO_TRIM = (TRIMREG->TX_VCO_LUT1.WORD) >> ((channel - 11) * 4);
<> 144:ef7eb2e8f9f7 241 RFANATRIMREG->PLL_TRIM.BITS.RX_VCO_TRIM = (TRIMREG->RX_VCO_LUT1.WORD) >> ((channel - 11) * 4);
<> 144:ef7eb2e8f9f7 242 } else {
<> 144:ef7eb2e8f9f7 243 RFANATRIMREG->PLL_TRIM.BITS.TX_VCO_TRIM = (TRIMREG->TX_VCO_LUT2.WORD) >> ((channel - 19) * 4);
<> 144:ef7eb2e8f9f7 244 RFANATRIMREG->PLL_TRIM.BITS.RX_VCO_TRIM = (TRIMREG->RX_VCO_LUT2.WORD) >> ((channel - 19) * 4);
<> 144:ef7eb2e8f9f7 245 }
<> 144:ef7eb2e8f9f7 246 #endif /* REVB */
<> 144:ef7eb2e8f9f7 247 #ifdef REVC
<> 144:ef7eb2e8f9f7 248 /** REVC is requiering to adjust tx/rx vco trims each time a new 15.4 channel is used, in revB it is done
<> 144:ef7eb2e8f9f7 249 * from trims stored in dedicated registers available in digital.*/
<> 144:ef7eb2e8f9f7 250 if (channel < 19) {
<> 144:ef7eb2e8f9f7 251 RFANATRIMREG->PLL_TRIM.BITS.TX_VCO_TRIM = (RFANATRIMREG->TX_VCO_TRIM_LUT1) >> ((channel - 11) * 4);
<> 144:ef7eb2e8f9f7 252 RFANATRIMREG->PLL_TRIM.BITS.RX_VCO_TRIM = (RFANATRIMREG->RX_VCO_TRIM_LUT1) >> ((channel - 11) * 4);
<> 144:ef7eb2e8f9f7 253 } else {
<> 144:ef7eb2e8f9f7 254 RFANATRIMREG->PLL_TRIM.BITS.TX_VCO_TRIM = (RFANATRIMREG->TX_VCO_TRIM_LUT2) >> ((channel - 19) * 4);
<> 144:ef7eb2e8f9f7 255 RFANATRIMREG->PLL_TRIM.BITS.RX_VCO_TRIM = (RFANATRIMREG->RX_VCO_TRIM_LUT2) >> ((channel - 19) * 4);
<> 144:ef7eb2e8f9f7 256 }
<> 144:ef7eb2e8f9f7 257 #endif /* REVC */
<> 144:ef7eb2e8f9f7 258 #ifdef REVD
<> 144:ef7eb2e8f9f7 259 /** REVD is requiering to adjust tx/rx vco trims each time a new 15.4 channel is used, in revB it is done
<> 144:ef7eb2e8f9f7 260 * from trims stored in dedicated registers available in digital.*/
<> 144:ef7eb2e8f9f7 261 if (channel < 19) {
<> 144:ef7eb2e8f9f7 262 RFANATRIMREG->PLL_TRIM.BITS.TX_VCO_TRIM = (RFANATRIMREG->TX_VCO_TRIM_LUT1) >> ((channel - 11) * 4);
<> 144:ef7eb2e8f9f7 263 RFANATRIMREG->PLL_TRIM.BITS.RX_VCO_TRIM = (RFANATRIMREG->RX_VCO_TRIM_LUT1) >> ((channel - 11) * 4);
<> 144:ef7eb2e8f9f7 264 } else {
<> 144:ef7eb2e8f9f7 265 RFANATRIMREG->PLL_TRIM.BITS.TX_VCO_TRIM = (RFANATRIMREG->TX_VCO_TRIM_LUT2) >> ((channel - 19) * 4);
<> 144:ef7eb2e8f9f7 266 RFANATRIMREG->PLL_TRIM.BITS.RX_VCO_TRIM = (RFANATRIMREG->RX_VCO_TRIM_LUT2) >> ((channel - 19) * 4);
<> 144:ef7eb2e8f9f7 267 }
<> 144:ef7eb2e8f9f7 268 #endif /* REVD */
<> 144:ef7eb2e8f9f7 269 break;
<> 144:ef7eb2e8f9f7 270 case SET_TX_POWER:
<> 144:ef7eb2e8f9f7 271 txPower = *(uint8_t*)argument;
<> 144:ef7eb2e8f9f7 272
<> 144:ef7eb2e8f9f7 273 // Set tx power register
<> 144:ef7eb2e8f9f7 274 if ((txPower & 0x20) == 0) {
<> 144:ef7eb2e8f9f7 275 RFANAREG->TX_POWER = (txPowerLut[txPower + 32] & 0xFF);
<> 144:ef7eb2e8f9f7 276 } else {
<> 144:ef7eb2e8f9f7 277 RFANAREG->TX_POWER = (txPowerLut[txPower - 32] & 0xFF);
<> 144:ef7eb2e8f9f7 278 }
<> 144:ef7eb2e8f9f7 279
<> 144:ef7eb2e8f9f7 280 break;
<> 144:ef7eb2e8f9f7 281 default:
<> 144:ef7eb2e8f9f7 282 return False;
<> 144:ef7eb2e8f9f7 283 }
<> 144:ef7eb2e8f9f7 284 return True;
<> 144:ef7eb2e8f9f7 285 }