added prescaler for 16 bit pwm in LPC1347 target

Fork of mbed-dev by mbed official

Committer:
JojoS
Date:
Sat Sep 10 15:32:04 2016 +0000
Revision:
147:ba84b7dc41a7
Parent:
144:ef7eb2e8f9f7
added prescaler for 16 bit timers (solution as in LPC11xx), default prescaler 31 for max 28 ms period time

Who changed what in which revision?

UserRevisionLine numberNew contents of line
<> 144:ef7eb2e8f9f7 1 /* mbed Microcontroller Library
<> 144:ef7eb2e8f9f7 2 * Copyright (c) 2006-2013 ARM Limited
<> 144:ef7eb2e8f9f7 3 *
<> 144:ef7eb2e8f9f7 4 * Licensed under the Apache License, Version 2.0 (the "License");
<> 144:ef7eb2e8f9f7 5 * you may not use this file except in compliance with the License.
<> 144:ef7eb2e8f9f7 6 * You may obtain a copy of the License at
<> 144:ef7eb2e8f9f7 7 *
<> 144:ef7eb2e8f9f7 8 * http://www.apache.org/licenses/LICENSE-2.0
<> 144:ef7eb2e8f9f7 9 *
<> 144:ef7eb2e8f9f7 10 * Unless required by applicable law or agreed to in writing, software
<> 144:ef7eb2e8f9f7 11 * distributed under the License is distributed on an "AS IS" BASIS,
<> 144:ef7eb2e8f9f7 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
<> 144:ef7eb2e8f9f7 13 * See the License for the specific language governing permissions and
<> 144:ef7eb2e8f9f7 14 * limitations under the License.
<> 144:ef7eb2e8f9f7 15 *
<> 144:ef7eb2e8f9f7 16 * Ported to NXP LPC43XX by Micromint USA <support@micromint.com>
<> 144:ef7eb2e8f9f7 17 */
<> 144:ef7eb2e8f9f7 18 #include "mbed_assert.h"
<> 144:ef7eb2e8f9f7 19 #include "pwmout_api.h"
<> 144:ef7eb2e8f9f7 20 #include "cmsis.h"
<> 144:ef7eb2e8f9f7 21 #include "pinmap.h"
<> 144:ef7eb2e8f9f7 22 #include "mbed_error.h"
<> 144:ef7eb2e8f9f7 23
<> 144:ef7eb2e8f9f7 24 // PWM implementation for the LPC43xx using State Configurable Timer (SCT)
<> 144:ef7eb2e8f9f7 25 // * PWM_0 to PWM_15 on mbed use CTOUT_0 to CTOUT_15 outputs on LPC43xx
<> 144:ef7eb2e8f9f7 26 // * Event 0 is PWM period, events 1 to PWM_EVENT_MAX are PWM channels
<> 144:ef7eb2e8f9f7 27 // * Default is unified 32-bit timer, but could be configured to use
<> 144:ef7eb2e8f9f7 28 // a 16-bit timer so a timer is available for other SCT functions
<> 144:ef7eb2e8f9f7 29
<> 144:ef7eb2e8f9f7 30 // configuration options
<> 144:ef7eb2e8f9f7 31 #define PWM_FREQ_BASE 1000000 // Base frequency 1 MHz = 1000000
<> 144:ef7eb2e8f9f7 32 #define PWM_MODE 1 // 0 = 32-bit, 1 = 16-bit low, 2 = 16-bit high
<> 144:ef7eb2e8f9f7 33
<> 144:ef7eb2e8f9f7 34 // macros
<> 144:ef7eb2e8f9f7 35 #define PWM_SETCOUNT(x) (x - 1) // set count value
<> 144:ef7eb2e8f9f7 36 #define PWM_GETCOUNT(x) (x + 1) // get count value
<> 144:ef7eb2e8f9f7 37 #if (PWM_MODE == 0) // unified 32-bit counter, events 1 to 15
<> 144:ef7eb2e8f9f7 38 #define PWM_EVENT_MAX (CONFIG_SCT_nEV - 1) // Max PWM channels
<> 144:ef7eb2e8f9f7 39 #define PWM_CONFIG SCT_CONFIG_32BIT_COUNTER // default config
<> 144:ef7eb2e8f9f7 40 #define PWM_CTRL &LPC_SCT->CTRL_U // control register
<> 144:ef7eb2e8f9f7 41 #define PWM_HALT SCT_CTRL_HALT_L // halt counter
<> 144:ef7eb2e8f9f7 42 #define PWM_CLEAR SCT_CTRL_CLRCTR_L // clock clear
<> 144:ef7eb2e8f9f7 43 #define PWM_PRE(x) SCT_CTRL_PRE_L(x) // clock prescale
<> 144:ef7eb2e8f9f7 44 #define PWM_EVT_MASK (1 << 12) // event control mask
<> 144:ef7eb2e8f9f7 45 #define PWM_LIMIT &LPC_SCT->LIMIT_L // limit register
<> 144:ef7eb2e8f9f7 46 #define PWM_MATCH(x) &LPC_SCT->MATCH[x].U // match register
<> 144:ef7eb2e8f9f7 47 #define PWM_MR(x) &LPC_SCT->MATCHREL[x].U // 32-bit match reload register
<> 144:ef7eb2e8f9f7 48 #elif (PWM_MODE == 1) // 16-bit low counter, events 1 to 7
<> 144:ef7eb2e8f9f7 49 #define PWM_EVENT_MAX (CONFIG_SCT_nEV/2 - 1) // Max PWM channels
<> 144:ef7eb2e8f9f7 50 #define PWM_CONFIG SCT_CONFIG_16BIT_COUNTER // default config
<> 144:ef7eb2e8f9f7 51 #define PWM_CTRL &LPC_SCT->CTRL_L // control register
<> 144:ef7eb2e8f9f7 52 #define PWM_HALT SCT_CTRL_HALT_L // halt counter
<> 144:ef7eb2e8f9f7 53 #define PWM_CLEAR SCT_CTRL_CLRCTR_L // clock clear
<> 144:ef7eb2e8f9f7 54 #define PWM_PRE(x) SCT_CTRL_PRE_L(x) // clock prescale
<> 144:ef7eb2e8f9f7 55 #define PWM_EVT_MASK (1 << 12) // event control mask
<> 144:ef7eb2e8f9f7 56 #define PWM_LIMIT &LPC_SCT->LIMIT_L // limit register
<> 144:ef7eb2e8f9f7 57 #define PWM_MATCH(x) &LPC_SCT->MATCH[x].L // match register
<> 144:ef7eb2e8f9f7 58 #define PWM_MR(x) &LPC_SCT->MATCHREL[x].L // 16-bit match reload register
<> 144:ef7eb2e8f9f7 59 #elif (PWM_MODE == 2) // 16-bit high counter, events 1 to 7
<> 144:ef7eb2e8f9f7 60 // [TODO] use events 8 to 15 on mode 2
<> 144:ef7eb2e8f9f7 61 #define PWM_EVENT_MAX (CONFIG_SCT_nEV/2 - 1) // Max PWM channels
<> 144:ef7eb2e8f9f7 62 #define PWM_CONFIG SCT_CONFIG_16BIT_COUNTER // default config
<> 144:ef7eb2e8f9f7 63 #define PWM_CTRL &LPC_SCT->CTRL_H // control register
<> 144:ef7eb2e8f9f7 64 #define PWM_HALT SCT_CTRL_HALT_L // halt counter
<> 144:ef7eb2e8f9f7 65 #define PWM_CLEAR SCT_CTRL_CLRCTR_L // clock clear
<> 144:ef7eb2e8f9f7 66 #define PWM_PRE(x) SCT_CTRL_PRE_L(x) // clock prescale
<> 144:ef7eb2e8f9f7 67 #define PWM_EVT_MASK ((1 << 4) | (1 << 12)) // event control mask
<> 144:ef7eb2e8f9f7 68 #define PWM_LIMIT &LPC_SCT->LIMIT_H // limit register
<> 144:ef7eb2e8f9f7 69 #define PWM_MATCH(x) &LPC_SCT->MATCH[x].H // match register
<> 144:ef7eb2e8f9f7 70 #define PWM_MR(x) &LPC_SCT->MATCHREL[x].H // 16-bit match reload register
<> 144:ef7eb2e8f9f7 71 #else
<> 144:ef7eb2e8f9f7 72 #error "PWM mode not implemented"
<> 144:ef7eb2e8f9f7 73 #endif
<> 144:ef7eb2e8f9f7 74 #define PWM_MR0 PWM_MR(0) // MR register 0 is for period
<> 144:ef7eb2e8f9f7 75
<> 144:ef7eb2e8f9f7 76 static uint8_t event = 0;
<> 144:ef7eb2e8f9f7 77
<> 144:ef7eb2e8f9f7 78 // PORT ID, PWM ID, Pin function
<> 144:ef7eb2e8f9f7 79 static const PinMap PinMap_PWM[] = {
<> 144:ef7eb2e8f9f7 80 {P1_1, PWM_7, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 81 {P1_2, PWM_6, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 82 {P1_3, PWM_8, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 83 {P1_4, PWM_9, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 84 {P1_5, PWM_10, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 85 {P1_7, PWM_13, (SCU_PINIO_FAST | 2)},
<> 144:ef7eb2e8f9f7 86 {P1_8, PWM_12, (SCU_PINIO_FAST | 2)},
<> 144:ef7eb2e8f9f7 87 {P1_9, PWM_11, (SCU_PINIO_FAST | 2)},
<> 144:ef7eb2e8f9f7 88 {P1_10, PWM_14, (SCU_PINIO_FAST | 2)},
<> 144:ef7eb2e8f9f7 89 {P1_11, PWM_15, (SCU_PINIO_FAST | 2)},
<> 144:ef7eb2e8f9f7 90 {P2_7, PWM_1, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 91 {P2_8, PWM_0, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 92 {P2_9, PWM_3, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 93 {P2_10, PWM_2, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 94 {P2_11, PWM_5, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 95 {P2_12, PWM_4, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 96 {P4_1, PWM_1, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 97 {P4_2, PWM_0, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 98 {P4_3, PWM_3, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 99 {P4_4, PWM_2, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 100 {P4_5, PWM_5, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 101 {P4_6, PWM_4, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 102 {P6_5, PWM_6, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 103 {P6_12, PWM_7, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 104 {P7_0, PWM_14, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 105 {P7_1, PWM_15, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 106 {P7_4, PWM_13, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 107 {P7_5, PWM_12, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 108 {P7_6, PWM_11, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 109 {P7_7, PWM_8, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 110 {PA_4, PWM_9, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 111 {PB_0, PWM_10, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 112 {PB_1, PWM_6, (SCU_PINIO_FAST | 5)},
<> 144:ef7eb2e8f9f7 113 {PB_2, PWM_7, (SCU_PINIO_FAST | 5)},
<> 144:ef7eb2e8f9f7 114 {PB_3, PWM_8, (SCU_PINIO_FAST | 5)},
<> 144:ef7eb2e8f9f7 115 {PD_0, PWM_15, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 116 {PD_2, PWM_7, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 117 {PD_3, PWM_6, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 118 {PD_4, PWM_8, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 119 {PD_5, PWM_9, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 120 {PD_6, PWM_10, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 121 {PD_9, PWM_13, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 122 {PD_11, PWM_14, (SCU_PINIO_FAST | 6)},
<> 144:ef7eb2e8f9f7 123 {PD_12, PWM_10, (SCU_PINIO_FAST | 6)},
<> 144:ef7eb2e8f9f7 124 {PD_13, PWM_13, (SCU_PINIO_FAST | 6)},
<> 144:ef7eb2e8f9f7 125 {PD_14, PWM_11, (SCU_PINIO_FAST | 6)},
<> 144:ef7eb2e8f9f7 126 {PD_15, PWM_8, (SCU_PINIO_FAST | 6)},
<> 144:ef7eb2e8f9f7 127 {PD_16, PWM_12, (SCU_PINIO_FAST | 6)},
<> 144:ef7eb2e8f9f7 128 {PE_5, PWM_3, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 129 {PE_6, PWM_2, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 130 {PE_7, PWM_5, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 131 {PE_8, PWM_4, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 132 {PE_11, PWM_12, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 133 {PE_12, PWM_11, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 134 {PE_13, PWM_14, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 135 {PE_15, PWM_0, (SCU_PINIO_FAST | 1)},
<> 144:ef7eb2e8f9f7 136 {PF_9, PWM_1, (SCU_PINIO_FAST | 2)},
<> 144:ef7eb2e8f9f7 137 {NC, NC, 0}
<> 144:ef7eb2e8f9f7 138 };
<> 144:ef7eb2e8f9f7 139
<> 144:ef7eb2e8f9f7 140 static unsigned int pwm_clock_mhz;
<> 144:ef7eb2e8f9f7 141
<> 144:ef7eb2e8f9f7 142 static void _pwmout_dev_init() {
<> 144:ef7eb2e8f9f7 143 uint32_t i;
<> 144:ef7eb2e8f9f7 144
<> 144:ef7eb2e8f9f7 145 // set SCT clock and config
<> 144:ef7eb2e8f9f7 146 LPC_CCU1->CLKCCU[CLK_MX_SCT].CFG = (1 << 0); // enable SCT clock in CCU1
<> 144:ef7eb2e8f9f7 147 LPC_SCT->CONFIG |= PWM_CONFIG; // set config options
<> 144:ef7eb2e8f9f7 148 *PWM_CTRL |= PWM_HALT; // set HALT bit to stop counter
<> 144:ef7eb2e8f9f7 149 // clear counter and set prescaler for desired freq
<> 144:ef7eb2e8f9f7 150 *PWM_CTRL |= PWM_CLEAR | PWM_PRE(SystemCoreClock / PWM_FREQ_BASE - 1);
<> 144:ef7eb2e8f9f7 151 pwm_clock_mhz = PWM_FREQ_BASE / 1000000;
<> 144:ef7eb2e8f9f7 152
<> 144:ef7eb2e8f9f7 153 // configure SCT events
<> 144:ef7eb2e8f9f7 154 for (i = 0; i < PWM_EVENT_MAX; i++) {
<> 144:ef7eb2e8f9f7 155 *PWM_MATCH(i) = 0; // match register
<> 144:ef7eb2e8f9f7 156 *PWM_MR(i) = 0; // match reload register
<> 144:ef7eb2e8f9f7 157 LPC_SCT->EVENT[i].STATE = 0xFFFFFFFF; // event happens in all states
<> 144:ef7eb2e8f9f7 158 LPC_SCT->EVENT[i].CTRL = (i << 0) | PWM_EVT_MASK; // match condition only
<> 144:ef7eb2e8f9f7 159 }
<> 144:ef7eb2e8f9f7 160 *PWM_LIMIT = (1 << 0) ; // set event 0 as limit
<> 144:ef7eb2e8f9f7 161 // initialize period to 20ms: standard for servos, and fine for e.g. brightness control
<> 144:ef7eb2e8f9f7 162 *PWM_MR0 = PWM_SETCOUNT((uint32_t)(((20 * PWM_FREQ_BASE) / 1000000) * 1000));
<> 144:ef7eb2e8f9f7 163
<> 144:ef7eb2e8f9f7 164 // initialize SCT outputs
<> 144:ef7eb2e8f9f7 165 for (i = 0; i < CONFIG_SCT_nOU; i++) {
<> 144:ef7eb2e8f9f7 166 LPC_SCT->OUT[i].SET = (1 << 0); // event 0 will set SCTOUT_xx
<> 144:ef7eb2e8f9f7 167 LPC_SCT->OUT[i].CLR = 0; // set clear event when duty cycle
<> 144:ef7eb2e8f9f7 168 }
<> 144:ef7eb2e8f9f7 169 LPC_SCT->OUTPUT = 0; // default outputs to clear
<> 144:ef7eb2e8f9f7 170
<> 144:ef7eb2e8f9f7 171 *PWM_CTRL &= ~PWM_HALT; // clear HALT bit to start counter
<> 144:ef7eb2e8f9f7 172 }
<> 144:ef7eb2e8f9f7 173
<> 144:ef7eb2e8f9f7 174 void pwmout_init(pwmout_t* obj, PinName pin) {
<> 144:ef7eb2e8f9f7 175 // determine the channel
<> 144:ef7eb2e8f9f7 176 PWMName pwm = (PWMName)pinmap_peripheral(pin, PinMap_PWM);
<> 144:ef7eb2e8f9f7 177 MBED_ASSERT((pwm != (PWMName)NC) && (event < PWM_EVENT_MAX));
<> 144:ef7eb2e8f9f7 178
<> 144:ef7eb2e8f9f7 179 // init SCT clock and outputs on first PWM init
<> 144:ef7eb2e8f9f7 180 if (event == 0) {
<> 144:ef7eb2e8f9f7 181 _pwmout_dev_init();
<> 144:ef7eb2e8f9f7 182 }
<> 144:ef7eb2e8f9f7 183 // init PWM object
<> 144:ef7eb2e8f9f7 184 event++;
<> 144:ef7eb2e8f9f7 185 obj->pwm = pwm; // pwm output
<> 144:ef7eb2e8f9f7 186 obj->mr = event; // index of match reload register
<> 144:ef7eb2e8f9f7 187
<> 144:ef7eb2e8f9f7 188 // initial duty cycle is 0
<> 144:ef7eb2e8f9f7 189 pwmout_write(obj, 0);
<> 144:ef7eb2e8f9f7 190
<> 144:ef7eb2e8f9f7 191 // Wire pinout
<> 144:ef7eb2e8f9f7 192 pinmap_pinout(pin, PinMap_PWM);
<> 144:ef7eb2e8f9f7 193 }
<> 144:ef7eb2e8f9f7 194
<> 144:ef7eb2e8f9f7 195 void pwmout_free(pwmout_t* obj) {
<> 144:ef7eb2e8f9f7 196 // [TODO]
<> 144:ef7eb2e8f9f7 197 }
<> 144:ef7eb2e8f9f7 198
<> 144:ef7eb2e8f9f7 199 void pwmout_write(pwmout_t* obj, float value) {
<> 144:ef7eb2e8f9f7 200 if (value < 0.0f) {
<> 144:ef7eb2e8f9f7 201 value = 0.0;
<> 144:ef7eb2e8f9f7 202 } else if (value > 1.0f) {
<> 144:ef7eb2e8f9f7 203 value = 1.0;
<> 144:ef7eb2e8f9f7 204 }
<> 144:ef7eb2e8f9f7 205
<> 144:ef7eb2e8f9f7 206 // set new pulse width
<> 144:ef7eb2e8f9f7 207 uint32_t us = (uint32_t)((float)PWM_GETCOUNT(*PWM_MR0) * value) * pwm_clock_mhz;
<> 144:ef7eb2e8f9f7 208 pwmout_pulsewidth_us(obj, us);
<> 144:ef7eb2e8f9f7 209 }
<> 144:ef7eb2e8f9f7 210
<> 144:ef7eb2e8f9f7 211 float pwmout_read(pwmout_t* obj) {
<> 144:ef7eb2e8f9f7 212 float v = (float)PWM_GETCOUNT(*PWM_MR(obj->mr)) / (float)PWM_GETCOUNT(*PWM_MR0);
<> 144:ef7eb2e8f9f7 213 return (v > 1.0f) ? (1.0f) : (v);
<> 144:ef7eb2e8f9f7 214 }
<> 144:ef7eb2e8f9f7 215
<> 144:ef7eb2e8f9f7 216 void pwmout_period(pwmout_t* obj, float seconds) {
<> 144:ef7eb2e8f9f7 217 pwmout_period_us(obj, seconds * 1000000.0f);
<> 144:ef7eb2e8f9f7 218 }
<> 144:ef7eb2e8f9f7 219
<> 144:ef7eb2e8f9f7 220 void pwmout_period_ms(pwmout_t* obj, int ms) {
<> 144:ef7eb2e8f9f7 221 pwmout_period_us(obj, ms * 1000);
<> 144:ef7eb2e8f9f7 222 }
<> 144:ef7eb2e8f9f7 223
<> 144:ef7eb2e8f9f7 224 // Set the PWM period, keeping the duty cycle the same.
<> 144:ef7eb2e8f9f7 225 void pwmout_period_us(pwmout_t* obj, int us) {
<> 144:ef7eb2e8f9f7 226 // calculate number of ticks
<> 144:ef7eb2e8f9f7 227 uint32_t ticks = pwm_clock_mhz * us;
<> 144:ef7eb2e8f9f7 228 uint32_t old_ticks = PWM_GETCOUNT(*PWM_MR0);
<> 144:ef7eb2e8f9f7 229 uint32_t i, v;
<> 144:ef7eb2e8f9f7 230
<> 144:ef7eb2e8f9f7 231 // set new period
<> 144:ef7eb2e8f9f7 232 *PWM_MR0 = PWM_SETCOUNT(ticks);
<> 144:ef7eb2e8f9f7 233
<> 144:ef7eb2e8f9f7 234 // Scale pulse widths to preserve the duty ratio
<> 144:ef7eb2e8f9f7 235 for (i = 1; i < PWM_EVENT_MAX; i++) {
<> 144:ef7eb2e8f9f7 236 v = PWM_GETCOUNT(*PWM_MR(i));
<> 144:ef7eb2e8f9f7 237 if (v > 1) {
<> 144:ef7eb2e8f9f7 238 v = (v * ticks) / old_ticks;
<> 144:ef7eb2e8f9f7 239 *PWM_MR(i) = PWM_SETCOUNT(v);
<> 144:ef7eb2e8f9f7 240 }
<> 144:ef7eb2e8f9f7 241 }
<> 144:ef7eb2e8f9f7 242 }
<> 144:ef7eb2e8f9f7 243
<> 144:ef7eb2e8f9f7 244 void pwmout_pulsewidth(pwmout_t* obj, float seconds) {
<> 144:ef7eb2e8f9f7 245 pwmout_pulsewidth_us(obj, seconds * 1000000.0f);
<> 144:ef7eb2e8f9f7 246 }
<> 144:ef7eb2e8f9f7 247
<> 144:ef7eb2e8f9f7 248 void pwmout_pulsewidth_ms(pwmout_t* obj, int ms) {
<> 144:ef7eb2e8f9f7 249 pwmout_pulsewidth_us(obj, ms * 1000);
<> 144:ef7eb2e8f9f7 250 }
<> 144:ef7eb2e8f9f7 251
<> 144:ef7eb2e8f9f7 252 void pwmout_pulsewidth_us(pwmout_t* obj, int us) {
<> 144:ef7eb2e8f9f7 253 // calculate number of ticks
<> 144:ef7eb2e8f9f7 254 uint32_t v = pwm_clock_mhz * us;
<> 144:ef7eb2e8f9f7 255 //MBED_ASSERT(PWM_GETCOUNT(*PWM_MR0) >= v);
<> 144:ef7eb2e8f9f7 256
<> 144:ef7eb2e8f9f7 257 if (v > 0) {
<> 144:ef7eb2e8f9f7 258 // set new match register value and enable SCT output
<> 144:ef7eb2e8f9f7 259 *PWM_MR(obj->mr) = PWM_SETCOUNT(v);
<> 144:ef7eb2e8f9f7 260 LPC_SCT->OUT[obj->pwm].CLR = (1 << obj->mr); // on event will clear PWM_XX
<> 144:ef7eb2e8f9f7 261 } else {
<> 144:ef7eb2e8f9f7 262 // set match to zero and disable SCT output
<> 144:ef7eb2e8f9f7 263 *PWM_MR(obj->mr) = 0;
<> 144:ef7eb2e8f9f7 264 LPC_SCT->OUT[obj->pwm].CLR = 0;
<> 144:ef7eb2e8f9f7 265 }
<> 144:ef7eb2e8f9f7 266 }