Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: biquadFilter mbed MODSERIAL
main.cpp
- Committer:
- Jitse_Giesen
- Date:
- 2017-11-02
- Revision:
- 14:df5822cd0198
- Parent:
- 13:3a17bdfbbba1
- Child:
- 15:3a09783b2406
File content as of revision 14:df5822cd0198:
#include "mbed.h" #include "math.h" //#include "encoder.h" #include "QEI.h" #include "BiQuad.h" #include "MODSERIAL.h" MODSERIAL pc(USBTX, USBRX); //Defining all in- and outputs //EMG input AnalogIn emgBR( A0 ); //Right Biceps AnalogIn emgBL( A1 ); //Left Biceps //Output motor 1 and reading Encoder motor 1 DigitalOut motor1DirectionPin(D4); PwmOut motor1MagnitudePin(D5); QEI Encoder1(D12,D13,NC,32); //Output motor 2 and reading Encoder motor 2 DigitalOut motor2DirectionPin(D7); PwmOut motor2MagnitudePin(D6); QEI Encoder2(D10,D11,NC,32); //Output motor 3 and reading Encoder motor 3 DigitalOut motor3DirectionPin(D8); PwmOut motor3MagnitudePin(D9); QEI Encoder3(D2,D3,NC,32); //LED output, needed for feedback DigitalOut led_R(LED_RED); DigitalOut led_G(LED_GREEN); DigitalOut led_B(LED_BLUE); //Setting Tickers for sampling EMG and determing if the threshold is met Ticker sample_timer; Ticker threshold_timerR; Ticker threshold_timerL; Timer t_thresholdR; Timer t_thresholdL; float currentTimeTR; float currentTimeTL; InterruptIn button(SW2); // Wordt uiteindelijk vervangen door EMG InterruptIn button2(SW3); Timer t; float speedfactor; // = 0.01; snelheid in, zonder potmeter gebruik <- waarom is dit zo? // Defining variables delta (the difference between position and desired position) <- Is dit zo? int delta1; int delta2; int delta3; // Boolean needed to know if new input coordinates have to be given bool Move_done = false; bool Input_done = true; /* Defining all the different BiQuad filters, which contain a Notch filter, High-pass filter and Low-pass filter. The Notch filter cancels all frequencies between 49 and 51 Hz, the High-pass filter cancels all frequencies below 20 Hz and the Low-pass filter cancels out all frequencies below 4 Hz. The filters are declared four times, so that they can be used for sampling of right and left biceps, during measurements and calibration. */ /* Defining all the normalized values of b and a in the Notch filter for the creation of the Notch BiQuad */ BiQuad bqNotch1( 0.9876, -1.5981, 0.9876, -1.5981, 0.9752 ); BiQuad bqNotch2( 0.9876, -1.5981, 0.9876, -1.5981, 0.9752 ); BiQuad bqNotchTR( 0.9876, -1.5981, 0.9876, -1.5981, 0.9752 ); BiQuad bqNotchTL( 0.9876, -1.5981, 0.9876, -1.5981, 0.9752 ); /* Defining all the normalized values of b and a in the High-pass filter for the creation of the High-pass BiQuad */ BiQuad bqHigh1( 0.8371, -1.6742, 0.8371, -1.6475, 0.7009 ); BiQuad bqHigh2( 0.8371, -1.6742, 0.8371, -1.6475, 0.7009 ); BiQuad bqHighTR( 0.8371, -1.6742, 0.8371, -1.6475, 0.7009 ); BiQuad bqHighTL( 0.8371, -1.6742, 0.8371, -1.6475, 0.7009 ); /* Defining all the normalized values of b and a in the Low-pass filter for the creation of the Low-pass BiQuad */ BiQuad bqLow1( 6.0985e-4, 0.0012, 6.0985e-4, -1.9289, 0.9314 ); BiQuad bqLow2( 6.0985e-4, 0.0012, 6.0985e-4, -1.9289, 0.9314 ); BiQuad bqLowTR( 6.0985e-4, 0.0012, 6.0985e-4, -1.9289, 0.9314 ); BiQuad bqLowTL( 6.0985e-4, 0.0012, 6.0985e-4, -1.9289, 0.9314 ); // Creating a variable needed for the creation of the BiQuadChain BiQuadChain bqChain1; BiQuadChain bqChain2; BiQuadChain bqChainTR; BiQuadChain bqChainTL; //Declaring all floats needed in the filtering process float emgBRfiltered; //Right biceps Notch+High pass filter float emgBRrectified; //Right biceps rectified float emgBRcomplete; //Right biceps low-pass filter, filtering complete float emgBLfiltered; //Left biceps Notch+High pass filter float emgBLrectified; //Left biceps rectified float emgBLcomplete; //Left biceps low-pass filter, filtering complete // Declaring all variables needed for getting the Threshold value float numsamples = 500; float emgBRsum = 0; float emgBRmeanMVC; float thresholdBR; float emgBLsum = 0; float emgBLmeanMVC; float thresholdBL; /* Function to sample the EMG of the Right Biceps and get a Threshold value from it, which can be used throughout the process */ void Threshold_samplingBR() { t_thresholdR.start(); currentTimeTR = t_thresholdR.read(); if (currentTimeTR <= 1) { emgBRfiltered = bqChainTR.step( emgBR.read() ); //Notch+High-pass emgBRrectified = fabs(emgBRfiltered); //Rectification emgBRcomplete = bqLowTR.step(emgBRrectified); //Low-pass emgBRsum = emgBRsum + emgBRcomplete; } emgBRmeanMVC = emgBRsum/numsamples; thresholdBR = emgBRmeanMVC * 0.20; //pc.printf("ThresholdBR = %f \n", thresholdBR); } /* Function to sample the EMG of the Left Biceps and get a Threshold value from it, which can be used throughout the process */ void Threshold_samplingBL() { t_thresholdL.start(); currentTimeTL = t_thresholdL.read(); if (currentTimeTL <= 1) { emgBLfiltered = bqChain2.step( emgBL.read() ); //Notch+High-pass emgBLrectified = fabs( emgBLfiltered ); //Rectification emgBLcomplete = bqLow2.step( emgBLrectified ); //Low-pass emgBLsum = emgBLsum + emgBLcomplete; } emgBLmeanMVC = emgBLsum/numsamples; thresholdBL = emgBLmeanMVC * 0.20; } // EMG sampling and filtering void EMG_sample() { //Filtering steps for the Right Biceps EMG emgBRfiltered = bqChain1.step( emgBR.read() ); //Notch+High-pass emgBRrectified = fabs(emgBRfiltered); //Rectification emgBRcomplete = bqLow1.step(emgBRrectified); //Low-pass //Filtering steps for the Left Biceps EMG emgBLfiltered = bqChain2.step( emgBL.read() ); //Notch+High-pass emgBLrectified = fabs( emgBLfiltered ); //Rectification emgBLcomplete = bqLow2.step( emgBLrectified ); //Low-pass } // Function to make the BiQuadChain for the Notch and High pass filter for all three filters void getbqChain() { bqChain1.add(&bqNotch1).add(&bqHigh1); //Making the BiQuadChain bqChain2.add(&bqNotch2).add(&bqHigh2); bqChainTR.add(&bqNotchTR).add(&bqHighTR); bqChainTL.add(&bqNotchTR).add(&bqHighTL); } // Initial input value for couting the X-values int Xin=0 ; int Xin_new; float huidigetijdX; // Feedback system for counting values of X void ledtX(){ t.reset(); Xin++; pc.printf("Xin is %i\n",Xin); led_G=0; led_R=1; wait(0.2); led_G=1; led_R=0; wait(0.5); } // Couting system for values of X int tellerX(){ if (Move_done == true) { t.reset(); led_G=1; led_B=1; led_R=0; while(true){ button.fall(ledtX); /*if (emgBRcomplete > thresholdBR) { ledtX(); } */ t.start(); huidigetijdX=t.read(); if (huidigetijdX>2){ led_R=1; //Go to the next program (counting values for Y) Xin_new = Xin; Xin = 0; return Xin_new; } } } return 0; } // Initial values needed for Y (see comments at X function) int Yin=0; int Yin_new; float huidigetijdY; //Feedback system for couting values of Y void ledtY(){ t.reset(); Yin++; pc.printf("Yin is %i\n",Yin); led_G=0; led_B=1; wait(0.2); led_G=1; led_B=0; wait(0.5); } // Couting system for values of Y int tellerY(){ if (Move_done == true) { t.reset(); led_G=1; led_B=0; led_R=1; while(true){ button.fall(ledtY); /*if (emgBRcomplete > thresholdBR) { ledtY(); }*/ t.start(); huidigetijdY=t.read(); if (huidigetijdY>2){ led_B=1; Yin_new = Yin; Yin = 0; Input_done = true; Move_done = false; return Yin_new; } } } return 0; // ga door naar het volgende programma } // Declaring all variables needed for calculating rope lengths, float Pox = 0; float Poy = 0; float Pbx = 0; float Pby = 887; float Prx = 768; float Pry = 443; float Pex=91; float Pey=278; float diamtrklosje=20; float pi=3.14159265359; float omtrekklosje=diamtrklosje*pi; float Lou; float Lbu; float Lru; float dLod; float dLbd; float dLrd; // Declaring variables needed for calculating motor counts float roto; float rotb; float rotr; float rotzo; float rotzb; float rotzr; float counto; float countb; float countr; float countzo; float countzb; float countzr; int reference_o; int position_o; int error_o; int reference_b; int position_b; int error_b; int reference_r; int position_r; int error_r; float hcounto; float dcounto; float hcountb; float dcountb; float hcountr; float dcountr; // Declaring variables neeeded for calculating motor movements to get to a certain point <- klopt dit? float Psx; float Psy; float Vex; float Vey; float Kz=0.7; // nadersnelheid instellen float modVe; float Vmax=20; float Pstx; float Psty; float T=0.02;//seconds float kpo = 21; float kpb = 21; float kpr = 21; float speedfactor1; float speedfactor2; float speedfactor3; //Deel om motor(en) aan te sturen-------------------------------------------- float motorValue1; float motorValue2; float motorValue3; Ticker controlmotor1; // één ticker van maken? Ticker controlmotor2; // één ticker van maken? Ticker controlmotor3; // één ticker van maken? float P1(int erroro, float kpo) { return erroro*kpo; } void MotorController1() { reference_o = (int) (counto-hcounto); position_o = Encoder1.getPulses(); error_o = reference_o - position_o; //pc.printf("Position_o = %i reference_o=%i Error_o=%i\n\r" ,position_o,reference_o,error_o); if (-20<error_o && error_o<20){ motorValue1 = 0; } else { motorValue1 = P1(error_o, kpo)/4200; } if (motorValue1 >=0) motor1DirectionPin=0; else motor1DirectionPin=1; if (fabs(motorValue1)>1) motor1MagnitudePin = 1; else motor1MagnitudePin = fabs(motorValue1); } float P2(int error_b, float kpb) { return error_b*kpb; } void MotorController2() { reference_b = (int) (-(countb-hcountb)); position_b = Encoder2.getPulses(); error_b = reference_b - position_b; //pc.printf("Position_b = %i reference_b=%i Error_b=%i " ,position_b,reference_b,error_b); if (-20<error_b && error_b<20){ motorValue2 = 0; } else { motorValue2 = P2(error_b, kpb)/4200; } if (motorValue2 <=0) motor2DirectionPin=0; else motor2DirectionPin=1; if (fabs(motorValue2)>1) motor2MagnitudePin = 1; else motor2MagnitudePin = fabs(motorValue2); } float P3(int error_r, float kpr) { return error_r*kpr; } void MotorController3() { reference_r = (int) (-(countr-hcountr)); position_r = Encoder3.getPulses(); error_r = reference_r - position_r; pc.printf("%i; %i; %i\n\r" ,position_b,reference_b,error_b); if (-20<error_r && error_r<20){ motorValue3 = 0; } else { motorValue3 = P3(error_r, kpr)/4200; } if (motorValue3 <=0) motor3DirectionPin=0; else motor3DirectionPin=1; if (fabs(motorValue3)>1) motor3MagnitudePin = 1; else motor3MagnitudePin = fabs(motorValue3); } // einde deel motor------------------------------------------------------------------------------------ Ticker loop; /*Calculates ropelengths that are needed to get to new positions, based on the set coordinates and the position of the poles */ float touwlengtes(){ Lou=sqrt(pow((Pstx-Pox),2)+pow((Psty-Poy),2)); Lbu=sqrt(pow((Pstx-Pbx),2)+pow((Psty-Pby),2)); Lru=sqrt(pow((Pstx-Prx),2)+pow((Psty-Pry),2)); return 0; } /* Calculates rotations (and associated counts) of the motor to get to the desired new position*/ float turns(){ roto=Lou/omtrekklosje; rotb=Lbu/omtrekklosje; rotr=Lru/omtrekklosje; counto=roto*4200; dcounto=counto-hcounto; //pc.printf("counto = %f \n\r", counto); //pc.printf("hcounto = %f \n\r", hcounto); //pc.printf("dcounto = %f \n\r",dcounto); countb=rotb*4200; dcountb=countb-hcountb; //pc.printf("dcountb = %f \n\r",dcountb); countr=rotr*4200; dcountr=countr-hcountr; return 0; } // Waar komen Pstx en Psty vandaan en waar staan ze voor? En is dit maar voor een paal? float Pst(){ Pstx=Pex+Vex*T; // ASDJFASDKGJKASGJASDGJLSDAGHJGDJKJHFGHJUIK<KTBYNUMI<OIUNYBTVRTBYNUMI<UMNYBTVfadhsgfjhghagfryestrjsghdbf Psty=Pey+Vey*T; touwlengtes(); Pex=Pstx; Pey=Psty; //pc.printf("een stappie verder\n\r x=%.2f\n\r y=%.2f\n\r",Pstx,Psty); //pc.printf("met lengtes:\n\r Lo=%.2f Lb=%.2f Lr=%.2f\n\r",Lou,Lbu,Lru); turns(); //pc.printf("rotatie per motor:\n\r o=%.2f b=%.2f r=%.2f\n\r",roto,rotb,rotr); //pc.printf("counts per motor:\n\r o=%.2f b=%.2f r=%.2f\n\r",counto,countb,countr); /*float R; R=Vex/Vey; // met dit stukje kan je zien dat de verhouding tussen Vex en Vey constant is en de end efector dus een rechte lijn maakt pc.printf("\n\r R=%f",R);*/ return 0; } //Calculating desired end position based on the EMG input <- Waarom maar voor een paal? float Ps(){ Psx=(Xin_new)*30+91; Psy=(Yin_new)*30+278; // pc.printf("x=%.2f \n\r y=%.2f \n\r",Psx,Psy); return 0; } // Rekent dit de snelheid uit waarmee de motoren bewegen? void Ve(){ Vex=(Psx-Pex); Vey=(Psy-Pey); /* modVe=sqrt(pow(Vex,2)+pow(Vey,2)); if(modVe>Vmax){ Vex=(Vex/modVe)*Vmax; Vey=(Vey/modVe)*Vmax; }*/ Pst(); // pc.printf("Vex=%.2f \r\n Vey=%.2f \r\n",Vex,Vey); if((fabs(Vex)<0.01f)&&(fabs(Vey)<0.01f)){ Move_done=true; loop.detach(); } } // Calculating the desired position, so that the motors can go here int calculator(){ Ps(); if (Move_done == false) { loop.attach(&Ve,0.02); } return 0; } // Function which makes it possible to lower the end-effector to pick up a piece void zakker(){ dLod=sqrt(pow(Lou,2)+pow((277.85),2))-Lou; //dit is wat je motoren moeten doen om te zakken dLbd=sqrt(pow(Lbu,2)+pow((277.85),2))-Lbu; // dat laatste getal moet nog aangepast worden dLrd=sqrt(pow(Lru,2)+pow((277.85),2))-Lru; rotzo=dLod/omtrekklosje; rotzb=dLbd/omtrekklosje; rotzr=dLrd/omtrekklosje; countzo=rotzo*4200; countzb=rotzb*4200; countzr=rotzr*4200; counto=countzo+hcounto+reference_o; //+ gemaakt van een min countb=-(reference_b-countzb-hcountb);//(countzb)+hcountb+reference_b; countr=-(reference_r-countzr-hcountr);//(countzr)+hcountr+reference_r; pc.printf("dLod=%.2f dLbd=%.2f dLrd=%.2f\n\r",dLod,dLbd,dLrd); //pc.printf("hcounto=%.2f hcountb=%.2f hcountr=%.2f\n\r",hcounto,hcountb,hcountr); pc.printf("o=%.2f b=%.2f countzr=%.2f",countzo,countzb,countzr); // hier moet komen te staan hoe het zakken gaat pc.printf("Position_r = %i;reference_r=%i Error_r=%i\n\r" ,position_o,reference_o,error_o); } void tiller(){ int stijg_o = -12487; //eerst hcounto minus 12487? int stijg_b = -8148; int stijg_r = -7386; double lou_t = sqrt(91.0*91.0+278.0*278.0); //sqrt(pow(91,2)+pow(278,2)); // (Pex - Pox)^2 + (Pey - Poy)^2 double lou_b = sqrt(91.0*91.0+(278.0-887.0)*(278.0-887.0)); //sqrt(pow((91),2)+pow((278-887),2)); double lou_r = sqrt((91.0-768.0)*(91.0-768.0)+(278.0-443.0)*(278.0-443.0)); //sqrt(pow((91-768),2)+pow((278-443),2)); int roto_t = lou_t/omtrekklosje; int roto_b = lou_b/omtrekklosje; int roto_r = lou_r/omtrekklosje; counto = stijg_o + roto_t*4200; countb = stijg_b + roto_b*4200; countr = stijg_r + roto_r*4200; pc.printf("Tiller"); controlmotor1.attach(&MotorController1, 0.01); controlmotor2.attach(&MotorController2, 0.01); controlmotor3.attach(&MotorController3, 0.01); pc.printf("Tiller done"); } void zakken_threshold() { if (Move_done == true) { if (emgBLcomplete > thresholdBL) { zakker(); } } } void setcurrentposition(){ if(Input_done==true){ hcounto=4200*((sqrt(pow((Pex-Pox),2)+pow((Pey-Poy),2)))/omtrekklosje); hcountb=4200*((sqrt(pow((Pex-Pbx),2)+pow((Pey-Pby),2)))/omtrekklosje); hcountr=4200*((sqrt(pow((Pex-Prx),2)+pow((Pey-Pry),2)))/omtrekklosje); pc.printf("ik reset hcounts"); Input_done=false; } } int main() { pc.baud(115200); wait(1.0f); tiller(); getbqChain(); threshold_timerR.attach(&Threshold_samplingBR, 0.002); threshold_timerL.attach(&Threshold_samplingBL, 0.002); setcurrentposition(); while(true){ sample_timer.attach(&EMG_sample, 0.002); //button2.fall(zakker); zakken_threshold(); wait(2.5f); // om te zorgen dat je niet direct na de calibratie input moet geven en om te zorgen dat de zakker de tijd heeft voor nieuwe input vragen tellerX(); tellerY(); calculator(); controlmotor1.attach(&MotorController1, 0.01); controlmotor2.attach(&MotorController2, 0.01); controlmotor3.attach(&MotorController3, 0.01); wait(4.0f); // om te zorgen dat je niet meteen tijdens t zakken nieuwe input moet geven } }