Garage Door Monitor and Opener

Dependencies:   X_NUCLEO_COMMON ST_INTERFACES

Introduction

This system implements a simple garage door opener and environmental monitor. The hardware connects to the internet using Wi-Fi then on to the Pelion Device Management Platform which provides device monitoring and secure firmware updates over the air (FOTA). Pelion Device Management provides a flexible set of REST APIs which we will use to communicate to a web application running on an EC-2 instance in AWS. The web application will serve a web page where we can monitor and control our garage..

This project is intended to work on the DISCO-L475VG-IOT01A from ST Microelectronics It implements a simple actuator to drive a relay to simulate pushing the "open" button on older style garage doors which do not use a rolling code interface.

The system is designed to be mounted over the door so that the on board time of flight sensor can be used to detect if the door is open or closed.

The system also monitors temperature, humidity and barometric pressure.

https://os.mbed.com/media/uploads/JimCarver/garageopener.jpg

Hardware Requirements:

DISCO-L475G-IOT01A https://os.mbed.com/platforms/ST-Discovery-L475E-IOT01A/

Seeed Studio Grove Relay module https://www.seeedstudio.com/Grove-Relay.html

Seeed Studio Grove cable, I used this one: https://www.seeedstudio.com/Grove-4-pin-Male-Jumper-to-Grove-4-pin-Conversion-Cable-5-PCs-per-Pack.html

Connect to the PMOD connector like this:

https://os.mbed.com/media/uploads/JimCarver/opener.jpg

This shows how I installed so that the time of flight sensor can detect when the door is open

https://os.mbed.com/media/uploads/JimCarver/opener1.jpg https://os.mbed.com/media/uploads/JimCarver/opener2.jpg

To use the project:

You will also need a Pelion developers account.

I suggest you first use the Pelion quick state to become familiar with Pelion Device Management. https://os.mbed.com/guides/connect-device-to-pelion/1/?board=ST-Discovery-L475E-IOT01A

Web Interface

For my web interface I am running node-red under Ubuntu in an EC2 instance on AWS. This can run for 12 month within the constraints of their free tier. Here is a tutorial: https://nodered.org/docs/getting-started/aws

You will also need to install several node-red add ons:

sudo npm install -g node-red-dashboard

sudo npm install -g node-red-contrib-mbed-cloud

sudo npm istall -g node-red-contrib-moment

After starting node-red import the contents of GarageFlow.txt from the project, pin the flow into the page.

To enable your web app to access your Pelion account you need an API key.

First you will neet to use your Pelion account to create an API key.

https://os.mbed.com/media/uploads/JimCarver/api_portal.jpg

Now we need to apply that API key to your Node-Red flow.

https://os.mbed.com/media/uploads/JimCarver/api_node-red.jpg

sensors/LIS3MDL/lis3mdl_class.cpp

Committer:
JimCarver
Date:
2019-12-05
Revision:
37:ec1124e5ec1f
Parent:
18:a15bfe7aaebd

File content as of revision 37:ec1124e5ec1f:

/**
 ******************************************************************************
 * @file    lis3mdl_class.cpp
 * @author  AST / EST
 * @version V0.0.1
 * @date    14-April-2015
 * @brief   Implementation file for the LIS3MDL driver class
 ******************************************************************************
 * @attention
 *
 * <h2><center>&copy; COPYRIGHT(c) 2015 STMicroelectronics</center></h2>
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *   1. Redistributions of source code must retain the above copyright notice,
 *      this list of conditions and the following disclaimer.
 *   2. Redistributions in binary form must reproduce the above copyright notice,
 *      this list of conditions and the following disclaimer in the documentation
 *      and/or other materials provided with the distribution.
 *   3. Neither the name of STMicroelectronics nor the names of its contributors
 *      may be used to endorse or promote products derived from this software
 *      without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 ******************************************************************************
*/

/* Includes ------------------------------------------------------------------*/
#include "lis3mdl_class.h"
#include "lis3mdl.h"

/* Methods -------------------------------------------------------------------*/
/* betzw - based on:
           X-CUBE-MEMS1/trunk/Drivers/BSP/Components/lis3mdl/lis3mdl.c: revision #400,
           X-CUBE-MEMS1/trunk: revision #416
*/

LIS3MDL::LIS3MDL(SPI *spi, PinName cs_pin, PinName int_pin, SPI_type_t spi_type) : 
                _dev_spi(spi), _cs_pin(cs_pin), _int_pin(int_pin), _spi_type(spi_type)
{
    assert (spi);
    if (cs_pin == NC) 
    {
        printf ("ERROR LIS3MDL CS MUST NOT BE NC\n\r");       
        _dev_spi = NULL;
        _dev_i2c=NULL;
        return;
    }       

    _cs_pin = 0;    
    _dev_i2c=NULL;    
    
    if (_spi_type == SPI3W) LIS3MDL_Set_SpiInterface ((void *)this, LIS3MDL_SPI_3_WIRE);
    else if (_spi_type == SPI4W) LIS3MDL_Set_SpiInterface ((void *)this, LIS3MDL_SPI_4_WIRE);
}  

LIS3MDL::LIS3MDL(DevI2C *i2c, uint8_t address, PinName int_pin) :
       _dev_i2c(i2c), _address(address), _cs_pin(NC), _int_pin(int_pin)  
{
    assert (i2c);
    _dev_spi = NULL;
}  


MAGNETO_StatusTypeDef LIS3MDL::LIS3MDL_Set_SpiInterface (void *handle, LIS3MDL_SPIMode_t spimode)
{
    uint8_t tmp=0x03;  //deft LIS3MDL_CTRL_REG3 value  

    tmp |= (uint8_t)spimode;
    if (LIS3MDL_IO_Write(&tmp, LIS3MDL_M_CTRL_REG3_M, 1) != MAGNETO_OK) return MAGNETO_ERROR;      
    return MAGNETO_OK;
}

/**
 * @brief  Set LIS3MDL Initialization
 * @param  LIS3MDL_Init the configuration setting for the LIS3MDL
 * @retval MAGNETO_OK in case of success, an error code otherwise
 */
MAGNETO_StatusTypeDef LIS3MDL::LIS3MDL_Init(MAGNETO_InitTypeDef *LIS3MDL_Init)
{
  uint8_t tmp1 = 0x00;
  MAGNETO_InitTypeDef *initStructure = LIS3MDL_Init;
  MAGNETO_InitTypeDef tempInit;  
  
  if (initStructure == NULL) {// default params   
    tempInit.M_FullScale = LIS3MDL_M_FS_4;
    tempInit.M_OperatingMode = LIS3MDL_M_MD_CONTINUOUS;
    tempInit.M_XYOperativeMode = LIS3MDL_M_OM_HP;
    tempInit.M_OutputDataRate = LIS3MDL_M_DO_80;
    initStructure = &tempInit;
  }
  
  
  /* Configure the low level interface ---------------------------------------*/
  if(LIS3MDL_IO_Init() != MAGNETO_OK)
  {
    return MAGNETO_ERROR;
  }
  
  /****** Magnetic sensor *******/
  
  if(LIS3MDL_IO_Read(&tmp1, LIS3MDL_M_CTRL_REG3_M, 1) != MAGNETO_OK)
  {
    return MAGNETO_ERROR;
  }
  
  /* Conversion mode selection */
  tmp1 &= ~(LIS3MDL_M_MD_MASK);
  tmp1 |= initStructure->M_OperatingMode;
  
  if(LIS3MDL_IO_Write(&tmp1, LIS3MDL_M_CTRL_REG3_M, 1) != MAGNETO_OK)
  {
    return MAGNETO_ERROR;
  }
  
  if(LIS3MDL_IO_Read(&tmp1, LIS3MDL_M_CTRL_REG1_M, 1) != MAGNETO_OK)
  {
    return MAGNETO_ERROR;
  }
  
  /* Output data rate selection */
  tmp1 &= ~(LIS3MDL_M_DO_MASK);
  tmp1 |= initStructure->M_OutputDataRate;
  
  /* X and Y axes Operative mode selection */
  tmp1 &= ~(LIS3MDL_M_OM_MASK);
  tmp1 |= initStructure->M_XYOperativeMode;
  
  if(LIS3MDL_IO_Write(&tmp1, LIS3MDL_M_CTRL_REG1_M, 1) != MAGNETO_OK)
  {
    return MAGNETO_ERROR;
  }
  
  if(LIS3MDL_IO_Read(&tmp1, LIS3MDL_M_CTRL_REG2_M, 1) != MAGNETO_OK)
  {
    return MAGNETO_ERROR;
  }
  
  /* Full scale selection */
  tmp1 &= ~(LIS3MDL_M_FS_MASK);
  tmp1 |= initStructure->M_FullScale;
  
  if(LIS3MDL_IO_Write(&tmp1, LIS3MDL_M_CTRL_REG2_M, 1) != MAGNETO_OK)
  {
    return MAGNETO_ERROR;
  }
  
  /* Configure interrupt lines */
  LIS3MDL_IO_ITConfig();
  
  return MAGNETO_OK;
  
  /******************************/
}


/**
 * @brief  Read ID of LIS3MDL Magnetic sensor
 * @param  m_id the pointer where the ID of the device is stored
 * @retval MAGNETO_OK in case of success, an error code otherwise
 */
MAGNETO_StatusTypeDef LIS3MDL::LIS3MDL_Read_M_ID(uint8_t *m_id)
{
  if(!m_id)
  {
    return MAGNETO_ERROR;
  }
  
  return LIS3MDL_IO_Read(m_id, LIS3MDL_M_WHO_AM_I_ADDR, 1);
}


/**
 * @brief  Read raw data from LIS3MDL Magnetic sensor output register
 * @param  pData the pointer where the magnetometer raw data are stored
 * @retval MAGNETO_OK in case of success, an error code otherwise
 */
MAGNETO_StatusTypeDef LIS3MDL::LIS3MDL_M_GetAxesRaw(int16_t *pData)
{
  uint8_t tempReg[2] = {0, 0};
  
  if(LIS3MDL_IO_Read(&tempReg[0], (LIS3MDL_M_OUT_X_L_M | LIS3MDL_I2C_MULTIPLEBYTE_CMD),
                     2) != MAGNETO_OK)
  {
    return MAGNETO_ERROR;
  }
  
  pData[0] = ((((int16_t)tempReg[1]) << 8) + (int16_t)tempReg[0]);
  
  if(LIS3MDL_IO_Read(&tempReg[0], (LIS3MDL_M_OUT_Y_L_M | LIS3MDL_I2C_MULTIPLEBYTE_CMD),
                     2) != MAGNETO_OK)
  {
    return MAGNETO_ERROR;
  }
  
  pData[1] = ((((int16_t)tempReg[1]) << 8) + (int16_t)tempReg[0]);
  
  if(LIS3MDL_IO_Read(&tempReg[0], (LIS3MDL_M_OUT_Z_L_M | LIS3MDL_I2C_MULTIPLEBYTE_CMD),
                     2) != MAGNETO_OK)
  {
    return MAGNETO_ERROR;
  }
  
  pData[2] = ((((int16_t)tempReg[1]) << 8) + (int16_t)tempReg[0]);
  
  return MAGNETO_OK;
}


/**
 * @brief Read data from LIS3MDL Magnetic sensor and calculate Magnetic in mgauss
 * @param pData the pointer where the magnetometer data are stored
 * @retval MAGNETO_OK in case of success, an error code otherwise
 */
MAGNETO_StatusTypeDef LIS3MDL::LIS3MDL_M_GetAxes(int32_t *pData)
{
  uint8_t tempReg = 0x00;
  int16_t pDataRaw[3];
  float sensitivity = 0;
  
  if(LIS3MDL_M_GetAxesRaw(pDataRaw) != MAGNETO_OK)
  {
    return MAGNETO_ERROR;
  }
  
  if(LIS3MDL_IO_Read(&tempReg, LIS3MDL_M_CTRL_REG2_M, 1) != MAGNETO_OK)
  {
    return MAGNETO_ERROR;
  }
  
  tempReg &= LIS3MDL_M_FS_MASK;
  
  switch(tempReg)
  {
    case LIS3MDL_M_FS_4:
      sensitivity = 0.14;
      break;
    case LIS3MDL_M_FS_8:
      sensitivity = 0.29;
      break;
    case LIS3MDL_M_FS_12:
      sensitivity = 0.43;
      break;
    case LIS3MDL_M_FS_16:
      sensitivity = 0.58;
      break;
  }
  
  pData[0] = (int32_t)(pDataRaw[0] * sensitivity);
  pData[1] = (int32_t)(pDataRaw[1] * sensitivity);
  pData[2] = (int32_t)(pDataRaw[2] * sensitivity);
  
  return MAGNETO_OK;
}

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/