Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: FastPWM MODSERIAL QEI biquadFilter mbed
Fork of state_program by
main.cpp
- Committer:
- JesseLohman
- Date:
- 2018-11-06
- Revision:
- 8:5896424eb539
- Parent:
- 7:1906d404cd1e
File content as of revision 8:5896424eb539:
#include "mbed.h"
#include "FastPWM.h"
#include "QEI.h"
#include "BiQuad.h"
#include <iostream>
#include <string>
enum States {WaitState, MotorCalState, EMGCalState, HomingState, MovingState, GrippingState, ScrewingState, FailureState};
States currentState = WaitState;
DigitalIn startButton(D0);
InterruptIn failureButton(D1);
DigitalIn gripperButton(D2);
DigitalIn directionSwitch(D3);
DigitalIn gripperMotorButton(D14);
Serial pc(USBTX, USBRX);
DigitalOut led1(LED1); // Red led
DigitalOut led2(LED2); // Green led
DigitalOut led3(LED3); // Blue led
QEI encoder1(D10, D11, NC, 8400, QEI::X4_ENCODING);
QEI encoder2(D12, D13, NC, 8400, QEI::X4_ENCODING);
AnalogIn emg0(A0);
AnalogIn emg1(A1);
AnalogIn emg2(A2);
AnalogIn emg3(A3);
bool stateChanged = true;
Ticker mainTicker;
Timer stateTimer;
Ticker calTimer; //Ticker that waits (to prepare the person)
Ticker EMGsampler; //Ticker that samples the EMG
const double sampleTime = 0.001;
const double PI = 3.141592653589793238463;
const double L1 = 0.328;
const double L2 = 0.218;
double T1[3][3] {
{0, -1, 0},
{1, 0, 0,},
{0, 0, 0,}
};
double T20[3][3] {
{0, -1, 0},
{1, 0, -L1,},
{0, 0, 0,}
};
double H200[3][3] {
{1, 0, L1+L2},
{0, 1, 0,},
{0, 0, 1,}
};
double Pe2 [3][1] {
{0},
{0},
{1}
};
double u1; // Motor output of the long link
double u2; // Motor of the short link
double u3; // Motor of the gripper
double u4; // Motor of the screwer
FastPWM pwmpin1(D5); // Motor pwm
DigitalOut directionpin1(D4); // Motor direction
FastPWM pwmpin2 (D6);
DigitalOut directionpin2 (D7);
FastPWM pwmpin3(A4);
DigitalOut directionpin3(D8);
FastPWM pwmpin4(A5);
DigitalOut directionpin4(D9);
double setPointX = 0.3;
double setPointY = 0.28;
double qRef1;
double qRef2;
double qMeas1;
double qMeas2;
double C[5][5];
double Kp1 = 10;
double Ki1 = 0;
double Kd1 = 2;
double Kp2 = 10;
double Ki2 = 0;
double Kd2 = 2;
const int samplepack = 250; // Amount of data points before one cycle completes
volatile int counter = 0; // Counts the amount of readings this cycle
volatile double total[4] = {0,0,0,0}; // Total difference between data points and the calibration value this cycle (x+, x-, y+, y-)
double refvaluebic = 10; // Minimum total value for the motor to move (biceps)
double refvaluecalf = 50; // Minimum total value for the motor to move (calfs)
double incr = 0.00002; // Increment
bool moving[4] = {0,0,0,0}; //x+, x-, y+, y-
volatile int waitingcounter = 0; //How many iterations of waiting have been done
int countermax = 20; //counter until when should be waited
volatile int processnow = 0; //Point in the calibration process
volatile double armresttot = 0;
volatile double armflextot = 0;
volatile double legresttot = 0;
volatile double legflextot = 0;
const int samplecal = 2500; //Amount of data points to consider in the calibration
double ratio = samplecal/samplepack;
volatile double tot = 0; //Total measured EMG of the current type.
volatile double armcal; //Calibated value for arm measurements
volatile double legcal; //Calibrated value for leg measurements
BiQuad hpf(0.8635,-1.7269,0.8635,-1.9359,0.9394); //5 Hz High pass filter
BiQuad notch(0.9922,-1.6054,0.9922,-1.6054,0.9844); //50 Hz Notch filter
BiQuad lpf(0.9780,1.9561,0.9780,1.9556,0.9565); //250Hz Low pass filter
BiQuadChain bqc;
void switchToFailureState ()
{
failureButton.fall(NULL); // Detaches button, so it can only be activated once
led1 = 0;
led2 = 1;
led3 = 1;
pc.printf("SYSTEM FAILED\n");
currentState = FailureState;
stateChanged = true;
}
void measureEMG ()
{
if (currentState == MovingState) {
total[0] += abs(bqc.step(emg0.read()));
total[1] += abs(bqc.step(emg1.read()));
total[2] += abs(bqc.step(emg2.read()));
total[3] += abs(bqc.step(emg3.read()));
counter++;
if (counter >= samplepack) {
moving[0] = 0;
moving[1] = 0;
moving[2] = 0;
moving[3] = 0;
if (total[0] >= refvaluebic) {
moving[0] = 1;
}
if (total[1] >= refvaluebic) {
moving[1] = 1;
}
if (total[2] >= refvaluecalf) {
moving[2] = 1;
}
if (total[3] >= refvaluecalf) {
moving[3] = 1;
}
pc.printf("Totals of {x+,x-,y+,y-} are %f, %f, %f, %f \r\n",total[0],total[1],total[2],total[3]);
pc.printf("Coordinates: (%f,%f)\r\n", setPointX, setPointY);
counter = 0; // Reset for next cycle
for (int i=0; i<4; i++) { // Clear 'total' array
total[i] = 0;
}
}
if(moving[0]) {
setPointX += incr;
}
if (moving[1]) {
setPointX -= incr;
}
if (moving[2]) {
setPointY += incr;
}
if (moving[3]) {
setPointY -= incr;
}
}
}
double measureVelocity (int motor)
{
static double lastPulses = 0;
double currentPulses;
static double velocity = 0;
static int i = 0;
if (i == 10) { // Encoder is not accurate enough, so with 1000 Hz the velocity can only be 0, 1000, 2000 or 3000 pulses/s
switch (motor) { // Check which motor to measure
case 1:
currentPulses = encoder1.getPulses();
break;
case 2:
currentPulses = encoder2.getPulses();
break;
}
double deltaPulses = currentPulses - lastPulses;
velocity = deltaPulses / (sampleTime * 10); // Velocity in pulses/s
lastPulses = currentPulses;
i = 0;
} else {
i += 1;
}
return velocity;
}
void measurePosition() // Measure actual angle position with the encoder
{
double pulses1 = encoder2.getPulses(); // motor 1 is on M2 and ENC2 of biorobotics shield
double pulses2 = encoder1.getPulses(); // motor 2 is on M1 and ENC1 of biorobotics shield
// Calculate the angle relative to the '0' point + offset (we have 8400 pulses per revolution)
qMeas1 = (pulses1) * 2 * PI / 8400 +140.7 * PI / 180;
qMeas2 = (pulses2) * 2 * PI / 8400 -87 * PI / 180;
}
template<std::size_t N, std::size_t M, std::size_t P>
void mult(double A[N][M], double B[M][P])
{
for( int n =0; n < 5; n++) {
for(int p =0; p < 5; p++) {
C[n][p] =0;
}
}
for (int n = 0; n < N; n++) {
for (int p = 0; p < P; p++) {
double num = 0;
for (int m = 0; m < M; m++) {
num += A[n][m] * B[m][p];
}
C[n][p] = num;
}
}
}
void inverseKinematics ()
{
if (currentState == MovingState) { // Only in the MovingState should the qRef1, qRef2 change every sampleTime
double Pe_set[3][1] { // Defining setpoint location of end effector
{setPointX}, // Setting xcoord to setPointX
{setPointY}, // Setting ycoord to setPointY
{1}
};
// Calculating new H matrix
double T1e[3][3] {
{cos(qRef1), -sin(qRef1), 0},
{sin(qRef1), cos(qRef1), 0},
{0, 0, 1}
};
double T20e[3][3] {
{cos(qRef2), -sin(qRef2), L1-L1*cos(qRef2)},
{sin(qRef2), cos(qRef2), -L1*sin(qRef2)},
{0, 0, 1}
};
mult<3,3,3>(T1e,T20e); // Matrix multiplication
double H201[3][3] {
{C[0][0],C[0][1],C[0][2]},
{C[1][0],C[1][1],C[1][2]},
{C[2][0],C[2][1],C[2][2]}
};
mult<3,3,3>(H201,H200); // Matrix multiplication
double H20 [3][3] {
{C[0][0],C[0][1],C[0][2]},
{C[1][0],C[1][1],C[1][2]},
{C[2][0],C[2][1],C[2][2]}
};
mult<3,3,1>(H20,Pe2); // Matrix multiplication
double Pe0[3][1] {
{C[0][0]},
{C[1][0]},
{C[2][0]}
};
double pe0x = Pe0[0][0]; // Seperating coordinates of end effector location
double pe0y = Pe0[1][0];
// Determing the jacobian
double T_1[3][1] {
{1},
{T1[0][2]},
{T1[1][2]}
};
double T_2[3][1] {
{1},
{L1*sin(qRef1)},
{-L1*cos(qRef1)}
};
double J[3][2] {
{T_1[0][0], T_2[0][0]},
{T_1[1][0], T_2[1][0]},
{T_1[2][0], T_2[2][0]}
};
// Determing 'Pulling" force to setpoint
double kspring= 0.1; // Virtual stifness of the force
double Fs[3][1] { // Force vector from end effector to setpoint
{kspring*Pe_set[0][0] - kspring*Pe0[0][0]},
{kspring*Pe_set[1][0] - kspring*Pe0[1][0]},
{kspring*Pe_set[2][0] - kspring*Pe0[2][0]}
};
double Fx = kspring*setPointX - kspring*pe0x;
double Fy = kspring*setPointY - kspring*pe0y;
double W0t[3][1] {
{pe0x*Fy - pe0y*Fx},
{Fx},
{Fy}
};
double Jt[2][3] { // Transposing jacobian matrix
{J[0][0], J[1][0], J[2][0]},
{T_2[0][0], T_2[1][0], T_2[2][0]}
};
mult<2,3,1>(Jt,W0t);
double tau_st1 = C[0][0];
double tau_st2 = C[1][0];
// Calculating joint behaviour
double b1 =1;
double b2 =1;
// Joint friction coefficent
double w_s1 = tau_st1/b1; // Angular velocity
double w_s2 = tau_st2/b2; // Angular velocity
// Checking angle boundaries
qRef1 = qRef1 +w_s1*1; // Calculating new angle of qRef1 in time step sampleTime
if (qRef1 > 2*PI/3) {
qRef1 = 2*PI/3;
} else if (qRef1 < PI/6) {
qRef1= PI/6;
}
qRef2 = qRef2 + w_s2*1; // Calculating new angle of qRef2 in time step sampleTime
if (qRef2 > -PI/4) {
qRef2 = -PI/4;
} else if (qRef2 < -PI/2) {
qRef2= -PI/2;
}
}
}
void PID_controller() // Put the error trough PID control to make output 'u'
{
if (currentState >= HomingState && currentState < FailureState) {
// Should only work when we move the robot to a defined position
double error1 = qRef1 - qMeas1;
double error2 = qRef2 - qMeas2;
static double errorIntegral1 = 0;
static double errorIntegral2 = 0;
static double errorPrev1 = error1;
static double errorPrev2 = error2;
static BiQuad LowPassFilter(0.0640, 0.1279, 0.0640, -1.1683, 0.4241);
// Proportional part:
double u_k1 = Kp1 * error1;
double u_k2 = Kp2 * error2;
//Integral part:
errorIntegral1 = errorIntegral1 + error1 * sampleTime;
double u_i1 = Ki1 * errorIntegral1;
errorIntegral2 = errorIntegral2 + error2 * sampleTime;
double u_i2 = Ki2 * errorIntegral2;
// Derivative part
double errorDerivative1 = (error1 - errorPrev1)/sampleTime;
double filteredErrorDerivative1 = LowPassFilter.step(errorDerivative1);
double u_d1 = Kd1 * filteredErrorDerivative1;
errorPrev1 = error1;
double errorDerivative2 = (error2 - errorPrev2)/sampleTime;
double filteredErrorDerivative2 = LowPassFilter.step(errorDerivative2);
double u_d2 = Kd2 * filteredErrorDerivative2;
errorPrev2 = error2;
// Sum all parts
u1 = u_k1 + u_i1 + u_d1;
u2 = u_k2 + u_i2 + u_d2;
}
}
void controlMotor () // Control direction and speed
{
directionpin1 = u1 > 0.0f; // Either true or false
pwmpin1 = fabs(u1);
directionpin2 = u2 > 0.0f; // Either true or false
pwmpin2 = fabs(u2);
directionpin3 = u3 > 0.0f; // Either true or false
pwmpin3 = fabs(u3);
directionpin4 = u4 > 0.0f; // Either true or false
pwmpin4 = fabs(u4);
}
void EMGwaiting(){ //Flashes LED
led3 = !led3;
waitingcounter++;
}
void EMGsampling(){ //Ticker function of EMG
switch(processnow){
case 0:
case 1:
tot += abs(bqc.step(emg0.read()));
break;
case 2:
case 3:
tot += abs(bqc.step(emg2.read()));
break;
}
counter++;
if (counter >= samplecal){
tot = tot/ratio;
switch(processnow){
case 0:
armresttot = tot;
pc.printf("<Result> Average area of arm signal in rest: %f.\r\n",armresttot);
break;
case 1:
armflextot = tot;
pc.printf("<Result>Average area of arm signal while flexing: %f.\r\n",armflextot);
armcal = (armflextot + armresttot)/2.0;
pc.printf("<Result> Calibration value for arms determined at %f.\r\n",armcal);
break;
case 2:
legresttot = tot;
pc.printf("<Result> Average area of leg signal in rest: %f.\r\n",legresttot);
break;
case 3:
legflextot = tot;
pc.printf("<Result> Average area of leg signal while flexing: %f.\r\n",legflextot);
legcal = (legflextot + legresttot)/2;
pc.printf("<Result> Calibration value for legs determined at %f.\r\n",legcal);
break;
}
processnow++;
tot = 0;
counter = 0;
}
}
void stateMachine ()
{
switch (currentState) {
case WaitState:
if (stateChanged == true) {
// Everything that needs to be done when this state is entered the first time
led1 = 0; // Green
led2 = 1;
led3 = 1;
u1 = 0; // Turn off all motors
u2 = 0;
u3 = 0;
u4 = 0;
stateChanged = false;
}
if (startButton.read() == false) { // When button is pressed, value is false
// Everything that needs to be done when leaving this state
led1 = 1;
currentState = MotorCalState;
stateChanged = true;
}
break;
case MotorCalState:
if (stateChanged == true) {
led2 = 0; // Red
u1 = 0.3; // Motor is set to 'low' value
u2 = -0.3;
stateTimer.reset();
stateTimer.start();
stateChanged = false;
}
// The robot can only go to the next state after 3s, when the motor velocities are close to 0 and the start button is pressed
if (stateTimer >= 3.0f && fabs(measureVelocity(1)) < 100 && fabs(measureVelocity(2)) < 100 && startButton.read() == false) {
led2 = 1;
encoder1.reset(); // Reset encoder for the 0 position
encoder2.reset();
currentState = EMGCalState;
stateChanged = true;
u1 = 0; // Turn off motors
u2 = 0;
}
break;
case EMGCalState:
if (stateChanged == true) {
led3 = 0; // Blue
stateChanged = false;
pc.printf("<----------Now entering EMG calibration state ---------->\r\n");
pc.printf("<Waiting> Get ready for calibration of resting arms.\r\n");
calTimer.attach(&EMGwaiting,0.5); //Wait
while (waitingcounter < countermax) {}
waitingcounter = 0;
calTimer.detach();
pc.printf("<Measuring> Measuring arm signal at rest. Hold still.\r\n");
EMGsampler.attach(&EMGsampling,sampleTime); //Measure arms rest
while (processnow == 0) {}
EMGsampler.detach();
pc.printf("<Waiting> Get ready for calibration of flexing arms.\r\n");
calTimer.attach(&EMGwaiting,0.5); // Wait
while (waitingcounter < countermax) {}
waitingcounter = 0;
calTimer.detach();
pc.printf("<Measuring> Measuring arm signal while flexing.\r\n");
EMGsampler.attach(&EMGsampling,sampleTime); //Measure arms flexing
while (processnow == 1) {}
EMGsampler.detach();
pc.printf("<Waiting> Get ready for calibration of resting legs.\r\n");
calTimer.attach(&EMGwaiting,0.5); //Wait
while (waitingcounter < countermax) {}
waitingcounter = 0;
calTimer.detach();
pc.printf("<Measuring> Measuring leg signal at rest. Hold still.\r\n");
EMGsampler.attach(&EMGsampling,sampleTime); //Measure legs rest
while (processnow == 2) {}
EMGsampler.detach();
pc.printf("<Waiting> Get ready for calibration of flexing legs.\r\n");
calTimer.attach(&EMGwaiting,0.5); // Wait
while (waitingcounter < countermax) {}
waitingcounter = 0;
calTimer.detach();
pc.printf("<Measuring> Measuring leg signal while flexing.\r\n");
EMGsampler.attach(&EMGsampling,sampleTime); //Measure legs flexing
while (processnow == 3) {}
EMGsampler.detach();
pc.printf("<Result> EMG calibrations complete.\r\n");
}
if (stateTimer >= 3.0f) {
led3 = 1;
currentState = HomingState;
stateChanged = true;
}
break;
case HomingState:
if (stateChanged == true) {
led1 = 0; // Yellow
led2 = 0;
// qRef1 and qRef2 are set, so the motors will move to that position
qRef1 = 60 * PI / 180;
qRef2 = -90 * PI / 180;
stateChanged = false;
}
if (startButton.read() == false) { //TODO: Also add position condition
led1 = 1;
led2 = 1;
currentState = MovingState;
stateChanged = true;
}
break;
case MovingState:
if (stateChanged == true) {
led1 = 0; // White
led2 = 0;
led3 = 0;
stateChanged = false;
}
if (gripperButton.read() == false) {
led1 = 1;
led2 = 1;
led3 = 1;
currentState = GrippingState;
stateChanged = true;
}
break;
case GrippingState:
if (stateChanged == true) {
led2 = 0; // Light blue
led3 = 0;
stateTimer.reset();
stateTimer.start();
stateChanged = false;
}
if (gripperMotorButton.read() == false) {
// Gripper motor is activated
u3 = 0.4;
if (directionSwitch == true) {
// Close gripper, so positive direction
} else {
// Open gripper
u3 = u3 * -1;
}
} else { // If the button isn't pressed, turn off motor
u3 = 0;
}
// Due to the lack of buttons, we use a delay, so that when we don't immediately go to the next state when we enter this state
if (gripperButton.read() == false && stateTimer >= 2.0f) {
led2 = 1;
led3 = 1;
u3 = 0;
currentState = ScrewingState;
stateChanged = true;
}
if (startButton.read() == false) {
led2 = 1;
led3 = 1;
u3 = 0;
currentState = MovingState;
stateChanged = true;
}
break;
case ScrewingState:
if (stateChanged == true) {
// Entry action: all the things you do once in this state;
led1 = 0; // Pink
led3 = 0;
stateChanged = false;
}
if (gripperMotorButton.read() == false) {
u4 = 0.3; // Screwing motor is activated
u3 = -0.35; // Gripper motor is activated with a slightly higher output to make sure the gripper doesn't open
if (directionSwitch == true) {
// Screw
} else {
// Unscrew
u4 = u4 * -1;
u3 = u3 * -1;
}
} else { // If the button isn't pressed, turn off motors
u4 = 0;
u3 = 0;
}
if (startButton.read() == false) {
led1 = 1;
led3 = 1;
u3 = 0; // Turn off motors
u4 = 0;
currentState = MovingState;
stateChanged = true;
}
break;
case FailureState:
if (stateChanged == true) {
// Entry action: all the things you do once in this state
u1 = 0; // Turn off all motors
u2 = 0;
u3 = 0;
u4 = 0;
stateChanged = false;
}
static double blinkTimer2 = 0;
if (blinkTimer2 >= 0.5) { // The red LED is flashing at 1 Hz
led1 = !led1;
blinkTimer2 = 0;
}
blinkTimer2 += sampleTime;
break;
}
}
void measureAll ()
{
measurePosition();
measureEMG();
inverseKinematics();
}
void mainLoop () // All the major functions are looped every 0.001s
{
measureAll();
stateMachine();
PID_controller();
controlMotor();
}
int main()
{
startButton.mode(PullUp); // Makes the button active
failureButton.mode(PullUp);
gripperButton.mode(PullUp);
directionSwitch.mode(PullUp);
gripperMotorButton.mode(PullUp);
pc.baud(115200);
bqc.add(&hpf).add(¬ch).add(&lpf); // Add bqfilters to bqc
mainTicker.attach(mainLoop, sampleTime);
failureButton.fall(&switchToFailureState); // When button is pressed FailureState is activated
while (true) {
}
}
