Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of PsiSwarm-flockingAddedBluetooth by
PsiSwarm/motors.cpp
- Committer:
- jah128
- Date:
- 2015-10-22
- Revision:
- 8:00558287a4ef
- Parent:
- 6:ff3c66f7372b
- Child:
- 9:085e090e1ec1
File content as of revision 8:00558287a4ef:
/* University of York Robotics Laboratory PsiSwarm Library: Motor Functions Source File * * File: motors.cpp * * (C) Dept. Electronics & Computer Science, University of York * James Hilder, Alan Millard, Homero Elizondo, Jon Timmis * * PsiSwarm Library Version: 0.3 * * October 2015 * */ #include "psiswarm.h" Timeout time_based_action_timeout; void set_left_motor_speed(float speed) { motor_left_speed = speed; motor_left_brake = 0; IF_update_motors(); } void set_right_motor_speed(float speed) { motor_right_speed = speed; motor_right_brake = 0; IF_update_motors(); } void brake_left_motor() { motor_left_speed = 0; motor_left_brake = 1; IF_update_motors(); } void brake_right_motor() { motor_right_speed = 0; motor_right_brake = 1; IF_update_motors(); } void brake() { motor_left_speed = 0; motor_right_speed = 0; motor_left_brake = 1; motor_right_brake = 1; IF_update_motors(); } void stop() { motor_left_speed = 0; motor_right_speed = 0; motor_left_brake = 0; motor_right_brake = 0; IF_update_motors(); } void forward(float speed) { motor_left_speed = speed; motor_right_speed = speed; motor_left_brake = 0; motor_right_brake = 0; IF_update_motors(); } void backward(float speed) { motor_left_speed = -speed; motor_right_speed = -speed; motor_left_brake = 0; motor_right_brake = 0; IF_update_motors(); } void turn(float speed) { //A positive turn is clockwise motor_left_speed = speed; motor_right_speed = -speed; motor_left_brake = 0; motor_right_brake = 0; IF_update_motors(); } void time_based_turn(float speed, int microseconds) { } void time_based_turn_degrees(float speed, float degrees) { if(speed < 0 || speed > 1 || degrees == 0) { debug("Invalid values to time based turn: speed=%f degrees=$f\n",speed,degrees); } else { char invert = 0; if(degrees < 0) {degrees=-degrees; invert = 1;} //Main calculation for turn time float turn_time = degrees / ((290 * speed)); //Add a hard offset of 4ms to account for start\stop time if(degrees > 4) { turn_time += 0.004; } else turn_time += 0.002; // Add offset for slow speed if(speed<0.31) { float mul_fact = 0.31 - speed; if(mul_fact < 0) mul_fact = 0; mul_fact /= 2; mul_fact += 1; turn_time *= mul_fact; } // Add offset for short turns if(degrees < 360) { float short_offset_multiplier = 1.0 + (0.9 / degrees); turn_time *= short_offset_multiplier; } //pc.printf("Speed: %f Turn time: %f\n",speed,turn_time); if(invert) speed=-speed; turn(speed); time_based_action_timeout.attach(&IF_end_time_based_action,turn_time); } } void IF_end_time_based_action() { brake(); } void IF_update_motors() { if(motor_left_speed > 1.0) { motor_left_speed = 1.0; //Throw exception... } if(motor_right_speed > 1.0) { motor_right_speed = 1.0; //Throw exception... } if(motor_left_speed < -1.0) { motor_left_speed = -1.0; //Throw exception... } if(motor_right_speed < -1.0) { motor_right_speed = -1.0; //Throw exception... } if(motor_left_brake) { motor_left_f.write(1); motor_left_r.write(1); if(motor_left_speed!=0) { motor_left_speed = 0; //Throw exception... } } else { if(motor_left_speed >= 0) { motor_left_f.write(0); motor_left_r.write(IF_calibrated_speed(motor_left_speed)); } else { motor_left_r.write(0); motor_left_f.write(IF_calibrated_speed(-motor_left_speed)); } } if(motor_right_brake) { motor_right_f.write(1); motor_right_r.write(1); if(motor_right_speed!=0) { motor_right_speed = 0; //Throw exception... } } else { if(motor_right_speed >= 0) { motor_right_f.write(0); motor_right_r.write(IF_calibrated_speed(motor_right_speed)); } else { motor_right_r.write(0); motor_right_f.write(IF_calibrated_speed(-motor_right_speed)); } } } float IF_calibrated_speed(float speed) { if(speed == 0) return 0; //Converts an input value to take account of the stall speed of the motor; aims to produce a more linear speed float adjusted = speed; if(OFFSET_MOTORS) { adjusted*=0.8f; adjusted+=0.2; } return adjusted; } void IF_init_motors() { // Motor PWM outputs work optimally at 25kHz frequency motor_left_f.period_us(40); motor_right_f.period_us(40); motor_left_r.period_us(40); motor_right_r.period_us(40); motor_left_speed = 0; motor_right_speed = 0; motor_left_brake = 0; motor_right_brake = 0; IF_update_motors(); }