Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed-dev-f303 FastPWM3
FOC/foc.cpp
- Committer:
- benkatz
- Date:
- 2017-04-07
- Revision:
- 24:58c2d7571207
- Parent:
- 23:2adf23ee0305
- Child:
- 25:f5741040c4bb
File content as of revision 24:58c2d7571207:
#include "user_config.h"
#include "foc.h"
//#include "FastMath.h"
//using namespace FastMath;
void abc( float theta, float d, float q, float *a, float *b, float *c){
///Phase current amplitude = lengh of dq vector///
///i.e. iq = 1, id = 0, peak phase current of 1///
*a = d*cosf(-theta) + q*sinf(-theta);
*b = d*cosf((2.0f*PI/3.0f)-theta) + q*sinf((2.0f*PI/3.0f)-theta);
*c = d*cosf((-2.0f*PI/3.0f)-theta) + q*sinf((-2.0f*PI/3.0f)-theta);
}
void dq0(float theta, float a, float b, float c, float *d, float *q){
///Phase current amplitude = lengh of dq vector///
///i.e. iq = 1, id = 0, peak phase current of 1///
*d = (2.0f/3.0f)*(a*cosf(-theta) + b*cosf((2.0f*PI/3.0f)-theta) + c*cosf((-2.0f*PI/3.0f)-theta));
*q = (2.0f/3.0f)*(a*sinf(-theta) + b*sinf((2.0f*PI/3.0f)-theta) + c*sinf((-2.0f*PI/3.0f)-theta));
}
void svm(float v_bus, float u, float v, float w, float *dtc_u, float *dtc_v, float *dtc_w){
///u,v,w amplitude = v_bus for full modulation depth///
float v_offset = (fminf3(u, v, w) + fmaxf3(u, v, w))/2.0f;
*dtc_u = fminf(fmaxf(((u - v_offset)*0.5f/v_bus + ((DTC_MAX-DTC_MIN)/2)), DTC_MIN), DTC_MAX);
*dtc_v = fminf(fmaxf(((v - v_offset)*0.5f/v_bus + ((DTC_MAX-DTC_MIN)/2)), DTC_MIN), DTC_MAX);
*dtc_w = fminf(fmaxf(((w - v_offset)*0.5f/v_bus + ((DTC_MAX-DTC_MIN)/2)), DTC_MIN), DTC_MAX);
}
void zero_current(int *offset_1, int *offset_2){
int adc1_offset = 0;
int adc2_offset = 0;
int n = 1024;
for (int i = 0; i<n; i++){
ADC1->CR2 |= 0x40000000;
wait(.001);
adc2_offset += ADC2->DR;
adc1_offset += ADC1->DR;
}
*offset_1 = adc1_offset/n;
*offset_2 = adc2_offset/n;
}
void reset_foc(ControllerStruct *controller){
controller->q_int = 0;
controller->d_int = 0;
}
void commutate(ControllerStruct *controller, GPIOStruct *gpio, float theta){
controller->loop_count ++;
if(PHASE_ORDER){
controller->i_b = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset); //Calculate phase currents from ADC readings
controller->i_c = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset);
}
else{
controller->i_b = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset); //Calculate phase currents from ADC readings
controller->i_c = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset);
}
controller->i_a = -controller->i_b - controller->i_c;
dq0(controller->theta_elec, controller->i_a, controller->i_b, controller->i_c, &controller->i_d, &controller->i_q); //dq0 transform on currents
///Cogging Compensation Lookup///
//int ind = theta * (128.0f/(2.0f*PI));
//float cogging_current = controller->cogging[ind];
//float cogging_current = 1.0f*cos(6*theta);
///Controller///
float i_d_error = controller->i_d_ref - controller->i_d;
float i_q_error = controller->i_q_ref - controller->i_q;// + cogging_current;
float v_d_ff = 2.0f*(2*controller->i_d_ref*R_PHASE); //feed-forward voltage
float v_q_ff = 2.0f*(2*controller->i_q_ref*R_PHASE + controller->dtheta_elec*WB*0.8165f);
controller->d_int += i_d_error;
controller->q_int += i_q_error;
//v_d_ff = 0;
//v_q_ff = 0;
limit_norm(&controller->d_int, &controller->q_int, V_BUS/(K_Q*KI_Q));
//controller->d_int = fminf(fmaxf(controller->d_int, -D_INT_LIM), D_INT_LIM);
//controller->q_int = fminf(fmaxf(controller->q_int, -Q_INT_LIM), Q_INT_LIM);
controller->v_d = K_D*i_d_error + K_D*KI_D*controller->d_int;// + v_d_ff;
controller->v_q = K_Q*i_q_error + K_Q*KI_Q*controller->q_int;// + v_q_ff;
//controller->v_d = v_d_ff;
//controller->v_q = v_q_ff;
limit_norm(&controller->v_d, &controller->v_q, controller->v_bus);
abc(controller->theta_elec, controller->v_d, controller->v_q, &controller->v_u, &controller->v_v, &controller->v_w); //inverse dq0 transform on voltages
svm(controller->v_bus, controller->v_u, controller->v_v, controller->v_w, &controller->dtc_u, &controller->dtc_v, &controller->dtc_w); //space vector modulation
//gpio->pwm_u->write(1.0f-controller->dtc_u); //write duty cycles
//gpio->pwm_v->write(1.0f-controller->dtc_v);
//gpio->pwm_w->write(1.0f-controller->dtc_w);
if(PHASE_ORDER){
TIM1->CCR3 = 0x708*(1.0f-controller->dtc_u);
TIM1->CCR2 = 0x708*(1.0f-controller->dtc_v);
TIM1->CCR1 = 0x708*(1.0f-controller->dtc_w);
}
else{
TIM1->CCR3 = 0x708*(1.0f-controller->dtc_u);
TIM1->CCR1 = 0x708*(1.0f-controller->dtc_v);
TIM1->CCR2 = 0x708*(1.0f-controller->dtc_w);
}
//gpio->pwm_u->write(1.0f - .05f); //write duty cycles
//gpio->pwm_v->write(1.0f - .05f);
//gpio->pwm_w->write(1.0f - .1f);
//TIM1->CCR1 = 0x708*(1.0f-controller->dtc_u);
//TIM1->CCR2 = 0x708*(1.0f-controller->dtc_v);
//TIM1->CCR3 = 0x708*(1.0f-controller->dtc_w);
controller->theta_elec = theta; //For some reason putting this at the front breaks thins
if(controller->loop_count >400){
//controller->i_q_ref = -controller->i_q_ref;
controller->loop_count = 0;
//printf("%d %f\n\r", ind, cogging_current);
//printf("%f\n\r", controller->theta_elec);
//pc.printf("%f %f %f\n\r", controller->i_a, controller->i_b, controller->i_c);
//pc.printf("%f %f\n\r", controller->i_d, controller->i_q);
//pc.printf("%d %d\n\r", controller->adc1_raw, controller->adc2_raw);
}
}
/*
void zero_encoder(ControllerStruct *controller, GPIOStruct *gpio, ){
}
*/