Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of Timer by
Odometry/Odometry.cpp
- Committer:
- sype
- Date:
- 2016-01-05
- Revision:
- 12:d5e21f71c2a9
- Parent:
- 10:ae3178aa94e9
- Child:
- 30:58bfac39e701
File content as of revision 12:d5e21f71c2a9:
#include "Odometry.h"
// M1 = Moteur droit, M2 = Moteur gauche
Odometry::Odometry(double diameter_right, double diameter_left, double v, uint16_t quadrature, RoboClaw &rc) : roboclaw(rc)
{
m_v = v;
m_distPerTick_left = diameter_left*PI/quadrature;
m_distPerTick_right = diameter_right*PI/quadrature;
roboclaw.ForwardM1(ADR, 0);
roboclaw.ForwardM2(ADR, 0);
roboclaw.ResetEnc(ADR);
// Erreur autorisée sur le déplacement en angle
erreur_ang = 0.01;
m_pulses_right = 0;
m_pulses_left = 0;
pos_prog = 0;
wait_ms(100);
}
void Odometry::setPos(double x, double y, double theta)
{
this->x = x;
this->y = y;
this->theta = theta;
}
void Odometry::getEnc()
{
pc.printf("EncM1 : %d\tEncM2 : %d\n\r", roboclaw.ReadEncM1(ADR), roboclaw.ReadEncM2(ADR));
}
void Odometry::setX(double x)
{
this->x = x;
}
void Odometry::setY(double y)
{
this->y = y;
}
void Odometry::setTheta(double theta)
{
this->theta = theta;
}
void Odometry::update_odo(void)
{
int32_t delta_right = roboclaw.ReadEncM1(ADR) - m_pulses_right;
m_pulses_right = roboclaw.ReadEncM1(ADR);
int32_t delta_left = roboclaw.ReadEncM2(ADR) - m_pulses_left;
m_pulses_left = roboclaw.ReadEncM2(ADR);
double deltaS = (m_distPerTick_left*delta_left + m_distPerTick_right*delta_right)*C / 2.0f;
double deltaTheta = (m_distPerTick_left*delta_left - m_distPerTick_right*delta_right)*C / m_v;
/*double R = deltaS/deltaTheta;
double xO = x - R*sin(theta);
double yO = y + R*cos(theta);
theta += deltaTheta;
if(deltaTheta == 0) {
x = x + deltaS*cos(theta);
y = y + deltaS*sin(theta);
}
else {
x = xO + R*sin(theta);
y = yO - R*cos(theta);
}*/
double dx = deltaS*cos(theta);
double dy = deltaS*sin(theta);
x += dx;
y += dy;
theta += deltaTheta;
while(theta > PI) theta -= 2*PI;
while(theta <= -PI) theta += 2*PI;
}
void Odometry::GotoXY(double x_goal, double y_goal)
{
double theta_ = atan2(y_goal-y, x_goal-x);
double dist_ = sqrt(carre(x_goal-x)+carre(y_goal-y));
pc.printf("Dist : %3.2f\tTheta : %3.2f\n\r", dist_, theta_*180/PI);
GotoThet(theta_);
GotoDist(dist_);
}
void Odometry::GotoXYT(double x_goal, double y_goal, double theta_goal)
{
double theta_ = atan2(y_goal-y, x_goal-x);
double dist_ = sqrt(carre(x_goal-x)+carre(y_goal-y));
pc.printf("Dist : %3.2f\tTheta : %3.2f\n\r", dist_, theta_*180/PI);
GotoThet(theta_);
GotoDist(dist_);
GotoThet(theta_goal);
}
void Odometry::GotoThet(double theta_)
{
led = 0;
//pos_prog++;
//pc.printf("Theta : %3.2f\n\r", theta_*180/PI);
//arrived = false;
int32_t distance_ticks_left;
int32_t distance_ticks_right;
int32_t pos_initiale_right = m_pulses_right, pos_initiale_left = m_pulses_left;
// Le calcul d'erreur est bon (testé), tu peux le vérifier par dessin
double erreur_theta = theta_ - getTheta();
while(erreur_theta >= PI) erreur_theta -= 2*PI;
while(erreur_theta < -PI) erreur_theta += 2*PI;
pc.printf("ET : %3.2f\n\r", erreur_theta*180/PI);
if(erreur_theta < 0) {
distance_ticks_left = (int32_t) pos_initiale_left + (erreur_theta*m_v/2)/m_distPerTick_left;
distance_ticks_right = (int32_t) pos_initiale_right - (erreur_theta*m_v/2)/m_distPerTick_right;
} else {
distance_ticks_left = (int32_t) pos_initiale_left + (erreur_theta*m_v/2)/m_distPerTick_left;
distance_ticks_right = (int32_t) pos_initiale_right - (erreur_theta*m_v/2)/m_distPerTick_right;
}
//pc.printf("TV %3.2f\tTh %3.2f\tET %3.2f\n\r",theta_*180/PI,getTheta()*180/PI,erreur_theta*180/PI);
//pc.printf("X : %3.2f\tY : %3.2f\tTheta : %3.2f\n\r", getX(), getY(), getTheta()*180/PI);
//pc.printf("M1 %6d\tM2 %6d\n\r",distance_ticks_right, distance_ticks_left);
roboclaw.SpeedAccelDeccelPositionM1M2(ADR, accel_angle, vitesse_angle, deccel_angle, distance_ticks_right, accel_angle, vitesse_angle, deccel_angle, distance_ticks_left, 1);
//pc.printf("IniR:%6d\tDistR:%6d\tIniL:%6d\tDistL:%6d\n\r", pos_initiale_right, distance_ticks_right, pos_initiale_left, distance_ticks_left);
while((m_pulses_right != distance_ticks_right)&&(m_pulses_left != distance_ticks_left)); //pc.printf("%6d\t%6d\t%6d\t%6d\t%6d\n\r",m_pulses_right - pos_initiale_right, distance_ticks_right, m_pulses_left - pos_initiale_left, distance_ticks_left);
setTheta(theta_);
led = 1;
//arrived = true;
//pc.printf("arrivey %d\n\r",pos_prog);
}
void Odometry::GotoDist(double distance)
{
led = 0;
//pos_prog++;
//pc.printf("Dist : %3.2f\n\r", distance);
//arrived = false;
int32_t pos_initiale_right = m_pulses_right, pos_initiale_left = m_pulses_left;
int32_t distance_ticks_right = (int32_t) distance/m_distPerTick_right + pos_initiale_right;
int32_t distance_ticks_left = (int32_t) distance/m_distPerTick_left + pos_initiale_left;
roboclaw.SpeedAccelDeccelPositionM1M2(ADR, accel_dista, vitesse_dista, deccel_dista, distance_ticks_right, accel_dista, vitesse_dista, deccel_dista, distance_ticks_left, 1);
//pc.printf("IniR:%6d\tDistR:%6d\tIniL:%6d\tDistL:%6d\n\r", pos_initiale_right, distance_ticks_right, pos_initiale_left, distance_ticks_left);
while((m_pulses_right != distance_ticks_right)&&(m_pulses_left != distance_ticks_left)); //pc.printf("PR:%6d\tIR:%6d\tDR:%6d\tPL:%6d\tIL:%6d\tDL:%6d\n\r",m_pulses_right, pos_initiale_right, distance_ticks_right, m_pulses_left, pos_initiale_left, distance_ticks_left);
led = 1;
//pc.printf("arrivey %d\n\r",pos_prog);
//pc.printf("X : %3.2f\tY : %3.2f\tTheta : %3.2f\n\r", getX(), getY(), getTheta()*180/PI);
}
