Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of Timer by
Odometry/Odometry.cpp
- Committer:
- sype
- Date:
- 2015-11-24
- Revision:
- 2:abdf8c6823a1
- Parent:
- 0:ad9600df4a70
- Child:
- 3:62e9d715de65
File content as of revision 2:abdf8c6823a1:
#include "Odometry.h"
// M1 = Moteur droit, M2 = Moteur gauche
Odometry::Odometry(double diameter_right, double diameter_left, double v, RoboClaw &rc) : roboclaw(rc)
{
m_v = v;
m_distPerTick_left = diameter_left*PI/37400;
m_distPerTick_right = diameter_right*PI/37400;
erreur_ang = 0.1;
m_pulses_right = 0;
m_pulses_left = 0;
wait_ms(100);
}
void Odometry::setPos(double x, double y, double theta)
{
this->x = x;
this->y = y;
this->theta = theta;
}
void Odometry::setX(double x)
{
this->x = x;
}
void Odometry::setY(double y)
{
this->y = y;
}
void Odometry::setTheta(double theta)
{
this->theta = theta;
}
void Odometry::update_odo(void)
{
long delta_right = roboclaw.ReadEncM1(ADR) - m_pulses_right;
m_pulses_right = roboclaw.ReadEncM1(ADR);
long delta_left = roboclaw.ReadEncM2(ADR) - m_pulses_left;
m_pulses_left = roboclaw.ReadEncM2(ADR);
double deltaS = (m_distPerTick_left*delta_left + m_distPerTick_right*delta_right) / 2.0f;
double deltaTheta = (m_distPerTick_right*delta_right - m_distPerTick_left*delta_left)*C / m_v;
double radius = deltaS/deltaTheta;
double xO = x - radius*sin(theta);
double yO = y + radius*cos(theta);
theta += deltaTheta;
x = xO + radius*sin(theta);
y = yO - radius*cos(theta);
while(theta > PI) theta -= 2*PI;
while(theta <= -PI) theta += 2*PI;
}
void Odometry::GotoXYT(double x_goal, double y_goal, double theta_goal)
{
double theta_ = atan2(y_goal-y, x_goal-x);
float distance = sqrt(carre(x_goal-x)+carre(y_goal-y));
GotoThet(theta_);
}
void Odometry::GotoThet(double theta_)
{
double distance_ticks_left;
double distance_ticks_right;
double erreur_theta = theta_-getTheta();
while(erreur_theta > PI) erreur_theta -= 2*PI;
while(erreur_theta <= -PI) erreur_theta += 2*PI;
if(erreur_theta >= 0)
{
distance_ticks_left = -(erreur_theta*m_v/2)/m_distPerTick_left;
distance_ticks_right = (erreur_theta*m_v/2)/m_distPerTick_right;
}
else
{
distance_ticks_left = (erreur_theta*m_v/2)/m_distPerTick_left;
distance_ticks_right = -(erreur_theta*m_v/2)/m_distPerTick_right;
}
pc.printf("T_%3.2f\t T%3.2f\t ET%3.2f\n\r",theta_*180/PI, getTheta()*180/PI, erreur_theta*180/PI);
roboclaw.SpeedAccelDeccelPositionM1M2(ADR, 150000, 150000, 150000, (long)distance_ticks_right, 150000, 150000, 150000, (long)distance_ticks_left, 1);
while(isArrivedRot(erreur_theta))pc.printf("Theta : %3.2f\n\r",getTheta()*180/PI);;
pc.printf("Arrived");
}
void Odometry::GotoB(double distance)
{
double distance_ticks_left = distance/m_distPerTick_left;
double distance_ticks_right = distance/m_distPerTick_right;
roboclaw.SpeedAccelDeccelPositionM1M2(ADR, 150000, 200000, 150000, (long)distance_ticks_right, 150000, 200000, 150000, (long)distance_ticks_left, 1);
}
bool Odometry::isArrivedRot(double theta_)
{
if((abs_d(getTheta())<=abs_d(theta_)+erreur_ang)|(abs_d(getTheta())>=abs_d(theta_)-erreur_ang)) return true;
else return false;
}
