Romain Ame
/
Stressed
coucou
Fork of Robot2016_2-0 by
Odometry/Odometry.cpp
- Committer:
- sype
- Date:
- 2015-11-24
- Revision:
- 3:62e9d715de65
- Parent:
- 2:abdf8c6823a1
- Child:
- 4:3e6e78d6d3d9
File content as of revision 3:62e9d715de65:
#include "Odometry.h" // M1 = Moteur droit, M2 = Moteur gauche Odometry::Odometry(double diameter_right, double diameter_left, double v, RoboClaw &rc) : roboclaw(rc) { m_v = v; m_distPerTick_left = diameter_left*PI/37400; m_distPerTick_right = diameter_right*PI/37400; roboclaw.ForwardM1(ADR, 0); roboclaw.ForwardM2(ADR, 0); erreur_ang = 0.01; m_pulses_right = 0; m_pulses_left = 0; wait_ms(100); } void Odometry::setPos(double x, double y, double theta) { this->x = x; this->y = y; this->theta = theta; } void Odometry::setX(double x) { this->x = x; } void Odometry::setY(double y) { this->y = y; } void Odometry::setTheta(double theta) { this->theta = theta; } void Odometry::update_odo(void) { int32_t delta_right = roboclaw.ReadEncM1(ADR) - m_pulses_right; m_pulses_right = roboclaw.ReadEncM1(ADR); int32_t delta_left = roboclaw.ReadEncM2(ADR) - m_pulses_left; m_pulses_left = roboclaw.ReadEncM2(ADR); double deltaS = (m_distPerTick_left*delta_left + m_distPerTick_right*delta_right) / 2.0f; double deltaTheta = (m_distPerTick_right*delta_right - m_distPerTick_left*delta_left)*C / m_v; double radius = deltaS/deltaTheta; double xO = x - radius*sin(theta); double yO = y + radius*cos(theta); theta += deltaTheta; x = xO + radius*sin(theta); y = yO - radius*cos(theta); while(theta > PI) theta -= 2*PI; while(theta <= -PI) theta += 2*PI; } void Odometry::GotoXYT(double x_goal, double y_goal, double theta_goal) { double theta_ = atan2(y_goal-y, x_goal-x); double dist_ = sqrt(carre(x_goal-x)+carre(y_goal-y)); GotoThet(theta_); GotoDist(dist_); } void Odometry::GotoThet(double theta_) { double distance_ticks_left; double distance_ticks_right; double erreur_theta = theta_ - getTheta(); bool arrived = false; while(erreur_theta >= PI) erreur_theta -= 2*PI; while(erreur_theta <= -PI) erreur_theta += 2*PI; if(erreur_theta <= 0) { distance_ticks_left = -(erreur_theta*m_v/2)/m_distPerTick_left; distance_ticks_right = (erreur_theta*m_v/2)/m_distPerTick_right; } else { distance_ticks_left = (erreur_theta*m_v/2)/m_distPerTick_left; distance_ticks_right = -(erreur_theta*m_v/2)/m_distPerTick_right; } pc.printf("TV %3.2f\tTh %3.2f\tET %3.2f\n\r",theta_*180/PI,getTheta()*180/PI,erreur_theta*180/PI); roboclaw.SpeedAccelDeccelPositionM1M2(ADR, 150000, 150000, 100000, (int32_t)distance_ticks_right, 150000, 150000, 100000, (int32_t)distance_ticks_left, 1); } void Odometry::GotoDist(double distance) { double temp1 = roboclaw.ReadEncM1(ADR), temp2 = roboclaw.ReadEncM2(ADR); double distance_ticks_left = distance/m_distPerTick_left - temp2; double distance_ticks_right = distance/m_distPerTick_right - temp1; roboclaw.SpeedAccelDeccelPositionM1M2(ADR, 150000, 200000, 150000, (int32_t)distance_ticks_right, 150000, 200000, 150000, (int32_t)distance_ticks_left, 1); } bool Odometry::isArrivedRot(double theta_) { if(abs_d(getTheta()) <= abs_d(theta_+erreur_ang)) return true; else if(abs_d(getTheta()) >= abs_d(theta_-erreur_ang)) return true; else return false; }