Romain Ame
/
Stressed
coucou
Fork of Robot2016_2-0 by
Odometry/Odometry.cpp
- Committer:
- sype
- Date:
- 2016-04-28
- Revision:
- 49:5e2f7323f280
- Parent:
- 46:be4eebf40568
- Parent:
- 47:5658af4e5149
- Child:
- 69:1b257fb65281
File content as of revision 49:5e2f7323f280:
#include "Odometry.h" // M1 = Moteur droit, M2 = Moteur gauche Odometry::Odometry(double diameter_right, double diameter_left, double v, uint16_t quadrature, RoboClaw &rc) : roboclaw(rc) { m_v = v; m_distPerTick_left = diameter_left*PI/quadrature; m_distPerTick_right = diameter_right*PI/quadrature; roboclaw.ForwardM1(0); roboclaw.ForwardM2(0); roboclaw.ResetEnc(); // Erreur autorisée sur le déplacement en angle erreur_ang = 0.01; m_pulses_right = 0; m_pulses_left = 0; pos_prog = 0; wait_ms(100); } void Odometry::setPos(double x, double y, double theta) { this->x = x; this->y = y; this->theta = theta; } void Odometry::getEnc() { logger.printf("EncM1 : %d\tEncM2 : %d\n\r", roboclaw.ReadEncM1(), roboclaw.ReadEncM2()); } void Odometry::setX(double x) { this->x = x; } void Odometry::setY(double y) { this->y = y; } void Odometry::setTheta(double theta) { this->theta = theta; } void Odometry::update_odo(void) { int32_t roboclawENCM1 = roboclaw.ReadEncM1(); int32_t roboclawENCM2 = roboclaw.ReadEncM2(); int32_t delta_right = roboclawENCM1 - m_pulses_right; m_pulses_right = roboclawENCM1; int32_t delta_left = roboclawENCM2 - m_pulses_left; m_pulses_left = roboclawENCM2; double deltaS = (m_distPerTick_left*delta_left + m_distPerTick_right*delta_right)*C / 2.0f; double deltaTheta = (m_distPerTick_left*delta_left - m_distPerTick_right*delta_right)*C / m_v; /*double R = deltaS/deltaTheta; double xO = x - R*sin(theta); double yO = y + R*cos(theta); theta += deltaTheta; if(deltaTheta == 0) { x = x + deltaS*cos(theta); y = y + deltaS*sin(theta); } else { x = xO + R*sin(theta); y = yO - R*cos(theta); }*/ double dx = deltaS*cos(theta+deltaTheta/2); double dy = deltaS*sin(theta+deltaTheta/2); x += dx; y += dy; theta += deltaTheta; while(theta > PI) theta -= 2*PI; while(theta <= -PI) theta += 2*PI; } void Odometry::GotoXY(double x_goal, double y_goal) { double theta_ = atan2(y_goal-y, x_goal-x); double dist_ = sqrt(carre(x_goal-x)+carre(y_goal-y)); logger.printf("Dist : %3.2f\tTheta : %3.2f\n\r", dist_, theta_*180/PI); GotoThet(theta_); GotoDist(dist_); } void Odometry::GotoXYT(double x_goal, double y_goal, double theta_goal) { double theta_ = atan2(y_goal-y, x_goal-x); double dist_ = sqrt(carre(x_goal-x)+carre(y_goal-y)); logger.printf("Dist : %3.2f\tTheta : %3.2f\n\r", dist_, theta_*180/PI); GotoThet(theta_); GotoDist(dist_); GotoThet(theta_goal); } void Odometry::GotoThet(double theta_) { //pos_prog++; //logger.printf("Theta : %3.2f\n\r", theta_*180/PI); //arrived = false; int32_t distance_ticks_left; int32_t distance_ticks_right; int32_t pos_initiale_right = m_pulses_right, pos_initiale_left = m_pulses_left; // Le calcul d'erreur est bon (testé), tu peux le vérifier par dessin double erreur_theta = theta_ - getTheta(); while(erreur_theta >= PI) erreur_theta -= 2*PI; while(erreur_theta < -PI) erreur_theta += 2*PI; logger.printf("ET : %3.2f\n\r", erreur_theta*180/PI); if(erreur_theta < 0) { distance_ticks_left = (int32_t) pos_initiale_left + (erreur_theta*m_v/2)/m_distPerTick_left; distance_ticks_right = (int32_t) pos_initiale_right - (erreur_theta*m_v/2)/m_distPerTick_right; } else { distance_ticks_left = (int32_t) pos_initiale_left + (erreur_theta*m_v/2)/m_distPerTick_left; distance_ticks_right = (int32_t) pos_initiale_right - (erreur_theta*m_v/2)/m_distPerTick_right; } //logger.printf("TV %3.2f\tTh %3.2f\tET %3.2f\n\r",theta_*180/PI,getTheta()*180/PI,erreur_theta*180/PI); //logger.printf("X : %3.2f\tY : %3.2f\tTheta : %3.2f\n\r", getX(), getY(), getTheta()*180/PI); //logger.printf("M1 %6d\tM2 %6d\n\r",distance_ticks_right, distance_ticks_left); roboclaw.SpeedAccelDeccelPositionM1M2(accel_angle, vitesse_angle, deccel_angle, distance_ticks_right, accel_angle, vitesse_angle, deccel_angle, distance_ticks_left, 1); //logger.printf("IniR:%6d\tDistR:%6d\tIniL:%6d\tDistL:%6d\n\r", pos_initiale_right, distance_ticks_right, pos_initiale_left, distance_ticks_left); while((m_pulses_right != distance_ticks_right)&&(m_pulses_left != distance_ticks_left)) logger.printf ("[Thet] %d\t%d\n\r", m_pulses_right - distance_ticks_right, m_pulses_left - distance_ticks_left); //logger.printf("%6d\t%6d\t%6d\t%6d\t%6d\n\r",m_pulses_right - pos_initiale_right, distance_ticks_right, m_pulses_left - pos_initiale_left, distance_ticks_left); wait(0.4); setTheta(theta_); //arrived = true; //logger.printf("arrivey %d\n\r",pos_prog); } void Odometry::GotoDist(double distance) { //pos_prog++; //logger.printf("Dist : %3.2f\n\r", distance); //arrived = false; int32_t pos_initiale_right = m_pulses_right, pos_initiale_left = m_pulses_left; int32_t distance_ticks_right = (int32_t) distance/m_distPerTick_right + pos_initiale_right; int32_t distance_ticks_left = (int32_t) distance/m_distPerTick_left + pos_initiale_left; roboclaw.SpeedAccelDeccelPositionM1M2(accel_dista, vitesse_dista, deccel_dista, distance_ticks_right, accel_dista, vitesse_dista, deccel_dista, distance_ticks_left, 1); //logger.printf("IniR:%6d\tDistR:%6d\tIniL:%6d\tDistL:%6d\n\r", pos_initiale_right, distance_ticks_right, pos_initiale_left, distance_ticks_left); while((m_pulses_right != distance_ticks_right)&&(m_pulses_left != distance_ticks_left)); //logger.printf("PR:%6d\tIR:%6d\tDR:%6d\tPL:%6d\tIL:%6d\tDL:%6d\n\r",m_pulses_right, pos_initiale_right, distance_ticks_right, m_pulses_left, pos_initiale_left, distance_ticks_left); wait(0.4); //logger.printf("arrivey %d\n\r",pos_prog); //logger.printf("X : %3.2f\tY : %3.2f\tTheta : %3.2f\n\r", getX(), getY(), getTheta()*180/PI); } void Odometry::TestEntraxe(int i) { int32_t distance_ticks_left; int32_t distance_ticks_right; int32_t pos_initiale_right = m_pulses_right, pos_initiale_left = m_pulses_left; double erreur_theta = 2*PI*i - getTheta(); if(erreur_theta < 0) { distance_ticks_left = (int32_t) pos_initiale_left + (erreur_theta*m_v/2)/m_distPerTick_left; distance_ticks_right = (int32_t) pos_initiale_right - (erreur_theta*m_v/2)/m_distPerTick_right; } else { distance_ticks_left = (int32_t) pos_initiale_left + (erreur_theta*m_v/2)/m_distPerTick_left; distance_ticks_right = (int32_t) pos_initiale_right - (erreur_theta*m_v/2)/m_distPerTick_right; } roboclaw.SpeedAccelDeccelPositionM1M2(accel_angle, vitesse_angle, deccel_angle, distance_ticks_right, accel_angle, vitesse_angle, deccel_angle, distance_ticks_left, 1); while((m_pulses_right != distance_ticks_right)&&(m_pulses_left != distance_ticks_left)) logger.printf ("[Dist] %d\t%d\n\r", m_pulses_right - distance_ticks_right, m_pulses_left - distance_ticks_left); wait(0.4); } void Odometry::Forward(float i) { int32_t pos_initiale_right = m_pulses_right, pos_initiale_left = m_pulses_left; int32_t distance_ticks_right = (int32_t) i/m_distPerTick_right + pos_initiale_right; int32_t distance_ticks_left = (int32_t) i/m_distPerTick_left + pos_initiale_left; roboclaw.SpeedAccelDeccelPositionM1M2(accel_dista, vitesse_dista, deccel_dista, distance_ticks_right, accel_dista, vitesse_dista, deccel_dista, distance_ticks_left, 1); //logger.printf("IniR:%6d\tDistR:%6d\tIniL:%6d\tDistL:%6d\n\r", pos_initiale_right, distance_ticks_right, pos_initiale_left, distance_ticks_left); while((m_pulses_right != distance_ticks_right)&&(m_pulses_left != distance_ticks_left)); //logger.printf("PR:%6d\tIR:%6d\tDR:%6d\tPL:%6d\tIL:%6d\tDL:%6d\n\r",m_pulses_right, pos_initiale_right, distance_ticks_right, m_pulses_left, pos_initiale_left, distance_ticks_left); wait(0.4); }