Romain Ame
/
Stressed
coucou
Fork of Robot2016_2-0 by
Diff: Odometry/Odometry.cpp
- Revision:
- 2:abdf8c6823a1
- Parent:
- 0:ad9600df4a70
- Child:
- 3:62e9d715de65
--- a/Odometry/Odometry.cpp Mon Nov 16 11:34:08 2015 +0000 +++ b/Odometry/Odometry.cpp Tue Nov 24 15:02:01 2015 +0000 @@ -1,22 +1,17 @@ #include "Odometry.h" -Serial pc(USBTX, USBRX); - // M1 = Moteur droit, M2 = Moteur gauche -RoboClaw roboclaw(115200, PA_11, PA_12); - -Odometry::Odometry(double diameter_right, double diameter_left, double v) +Odometry::Odometry(double diameter_right, double diameter_left, double v, RoboClaw &rc) : roboclaw(rc) { - pc.baud(115200); - pc.printf("Hello world\n\r"); - roboclaw.ResetEnc(ADR); m_v = v; m_distPerTick_left = diameter_left*PI/37400; m_distPerTick_right = diameter_right*PI/37400; + erreur_ang = 0.1; m_pulses_right = 0; m_pulses_left = 0; + wait_ms(100); } void Odometry::setPos(double x, double y, double theta) @@ -49,15 +44,17 @@ m_pulses_left = roboclaw.ReadEncM2(ADR); double deltaS = (m_distPerTick_left*delta_left + m_distPerTick_right*delta_right) / 2.0f; - double deltaTheta = (m_distPerTick_right*delta_right - m_distPerTick_left*delta_left) / m_v; + double deltaTheta = (m_distPerTick_right*delta_right - m_distPerTick_left*delta_left)*C / m_v; - double dx = deltaS*cos(theta); - double dy = deltaS*sin(theta); + double radius = deltaS/deltaTheta; + double xO = x - radius*sin(theta); + double yO = y + radius*cos(theta); - x += dx; - y += dy; theta += deltaTheta; + x = xO + radius*sin(theta); + y = yO - radius*cos(theta); + while(theta > PI) theta -= 2*PI; while(theta <= -PI) theta += 2*PI; } @@ -65,9 +62,45 @@ void Odometry::GotoXYT(double x_goal, double y_goal, double theta_goal) { double theta_ = atan2(y_goal-y, x_goal-x); - double distance_ticks_left = (theta_*m_v/2)/m_distPerTick_left; - double distance_ticks_right = (theta_*m_v/2)/m_distPerTick_right; - pc.printf("Theta : %3.2f\tDL : %6.2f\tDR : %6.2f\n\r",theta_*180/PI,distance_ticks_left, distance_ticks_right); - //roboclaw.SpeedAccelDeccelPositionM1(ADR, 300000, 150000, 300000, distance_ticks_right, 1); - //roboclaw.SpeedAccelDeccelPositionM2(ADR, 300000, 150000, 300000, distance_ticks_left, 1); + float distance = sqrt(carre(x_goal-x)+carre(y_goal-y)); + GotoThet(theta_); } + +void Odometry::GotoThet(double theta_) +{ + double distance_ticks_left; + double distance_ticks_right; + double erreur_theta = theta_-getTheta(); + + while(erreur_theta > PI) erreur_theta -= 2*PI; + while(erreur_theta <= -PI) erreur_theta += 2*PI; + + if(erreur_theta >= 0) + { + distance_ticks_left = -(erreur_theta*m_v/2)/m_distPerTick_left; + distance_ticks_right = (erreur_theta*m_v/2)/m_distPerTick_right; + } + else + { + distance_ticks_left = (erreur_theta*m_v/2)/m_distPerTick_left; + distance_ticks_right = -(erreur_theta*m_v/2)/m_distPerTick_right; + } + + pc.printf("T_%3.2f\t T%3.2f\t ET%3.2f\n\r",theta_*180/PI, getTheta()*180/PI, erreur_theta*180/PI); + roboclaw.SpeedAccelDeccelPositionM1M2(ADR, 150000, 150000, 150000, (long)distance_ticks_right, 150000, 150000, 150000, (long)distance_ticks_left, 1); + while(isArrivedRot(erreur_theta))pc.printf("Theta : %3.2f\n\r",getTheta()*180/PI);; + pc.printf("Arrived"); +} + +void Odometry::GotoB(double distance) +{ + double distance_ticks_left = distance/m_distPerTick_left; + double distance_ticks_right = distance/m_distPerTick_right; + roboclaw.SpeedAccelDeccelPositionM1M2(ADR, 150000, 200000, 150000, (long)distance_ticks_right, 150000, 200000, 150000, (long)distance_ticks_left, 1); +} + +bool Odometry::isArrivedRot(double theta_) +{ + if((abs_d(getTheta())<=abs_d(theta_)+erreur_ang)|(abs_d(getTheta())>=abs_d(theta_)-erreur_ang)) return true; + else return false; +}