Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of Project by
main.cpp
- Committer:
- IanTheMBEDMaster
- Date:
- 2013-04-13
- Revision:
- 24:f4f933d9194b
- Parent:
- 23:806c9b8af77c
File content as of revision 24:f4f933d9194b:
// Robot Control Code // Tom Elliott and Ian Colwell /* TODO on a sunny day - reduce the amount of global variables - try increasing bluetooth buad rate */ #include "mbed.h" #include "rtos.h" extern "C" void mbed_reset(); // --- Constants #define Dummy 0 //#define PWMPeriod 0.0005 // orignally 0.001 (gave a high pitched whine) const float PWMPeriod = 0.00005; // Control Update = 50ms (time should be 609/610) (if we want to change this we also have to change the way feedback speed is calculated) //#define ControlUpdate 0.05 const float ControlUpdate = 0.04; #define EncoderTime 610 // --- Function prototypes void PiControllerISR(void); void WdtFaultISR(void); void ExtCollisionISR(void); void PiControlThread(void const *argument); void ExtCollisionThread(void const *argument); void Watchdog(void const *n); void InitializeSystem(); void InitializeEncoder(); void InitializePWM(); void PwmSetOut(float d, float T); void GetSpeeds(); void SetLeftMotorSpeed(float u); void SetRightMotorSpeed(float u); void DisplayMenu(); void Ramp(float speed, unsigned int time, unsigned short motor); void IRChecker(); void BTInit(); // Global variables float u1 = 0; float u2 = 0; float cSetL = 0; float cSetR = 0; float userSetL = 0; float userSetR = 0; int startup = 0; float aeL = 0; float aeR = 0; float RecV[200]; // Record Feedback Speed float RecU[200]; // Record Motor Input float RecX[200]; // Record Integrator Output float RecE[200]; // Record Error int RecCount = 0; // Record Counter unsigned short action; float DF = 0; float DR = 0; float TSpeedL = 0; float TSpeedR = 0; float Turn = 0.1; float aeW = 0; float eW = 0; float uW = 0; float prevuW = 0; float Nominal = 35; float Kpos = 0.01; float Kor = 0.01; float KpW = 0.3; float KiW = 0.0; int autoSpeed = -1; Mutex Var_Lock; // global variables to eventually be removed short dPositionLeft, dTimeLeft, dPositionRight, dTimeRight; float fbSpeedL, fbSpeedR; float eL = 0; float eR = 0; // --- Processes and threads int32_t SignalPi, SignalWdt, SignalExtCollision; osThreadId PiControl,WdtFault,ExtCollision; osThreadDef(PiControlThread, osPriorityNormal, DEFAULT_STACK_SIZE); osThreadDef(ExtCollisionThread, osPriorityNormal, DEFAULT_STACK_SIZE); osTimerDef(Wdtimer, Watchdog); /* PIN-OUT MOSI Quad Enc 5|-| MISO Quad Enc 6|-| SCK Quad Enc 7|-| SPI Start Quad E 8|-| SPI Reset Quad E 9|-| Emergency Stop 10|-| Bluetooth tx 13|-|28 Bluetooth rx 14|-|27 15|-|26 Brake, Left Motor, M1 16|-|25 Dir, Left Motor, M1 17|-|24 PWM, Left Motor, M1 18|-|23 Brake, Right Motor, M2 Front IR 19|-|22 Dir, Right Motor, M2 Rear IR 20|-|21 PWM, Right Motor, M2 */ // --- IO Port Configuration DigitalOut led1(LED1); DigitalOut led2(LED2); DigitalOut led3(LED3); DigitalOut led4(LED4); DigitalOut dirR(p22); DigitalOut brakeR(p23); PwmOut PwmR(p21); DigitalOut dirL(p25); DigitalOut brakeL(p26); PwmOut PwmL(p24); Serial BtS(p13, p14); // (tx, rx) for PC serial channel Serial pc(USBTX, USBRX); // (tx, rx) for Parani/Promi Bluetooth serial channel SPI DE0(p5, p6, p7); // (mosi, miso, sclk) DE0 is the SPI channel with the DE0 FPGA DigitalOut SpiReset(p9); // Reset for all devices within the slave SPI peripheral in the DE0 FPGA DigitalOut SpiStart(p8); // Places SPI interace on the DE0 FPGA into control mode //InterruptIn EmerStop(p10); // External interrupt pin AnalogIn IRFront(p19); // Front IR Ranger Input AnalogIn IRRear(p20); // Rear IR Ranger Input Ticker PeriodicInt; DigitalIn EmergencyStop(p10); // ******** Main Thread ******** int main() { char c; InitializeSystem(); BtS.printf("\r\n --- Robot Initialization Complete --- \r\n"); pc.printf("\r\n --- Robot Initialization Complete --- \r\n"); DisplayMenu(); //BtS.printf("\n\n\rTap w-a-s-d keys for differential speed control: "); while(1) { if(BtS.readable()) { c = BtS.getc(); // quit if (c == 'q') { action = 0; // erase errors aeW = 0; eW = 0; aeL = 0; aeR = 0; Ramp(0, 800, 0); DisplayMenu(); continue; } if (action == 0) { // choose a menu selection switch(c) { case 'd': action = 1; BtS.printf("\n\rTap w-a-s-d keys for differential speed control\r\nPress 'q' to quit \r\n"); break; case 'w': BtS.printf("\n\r Welcome to Wall Following, use w-s to control robot speed"); BtS.printf("\n\r Use a-d to increase/decrease turning radius"); BtS.printf("\n\r Use < and > to increase/decrease wall distance"); userSetL = 0.2; userSetR = 0.2; TSpeedL = 0.2; TSpeedR = 0.2; action = 2; break; case '0': action = 3; break; case 'r': action = 4; userSetL = 0.2; userSetR = 0.2; break; default: BtS.printf("\n\r Command not recognized \n\r"); action = 0; break; } continue; } if (action == 1) { // keyboard input to drive robot using wasd switch(c) { case('w'): userSetL = userSetL + 0.1; userSetR = userSetR + 0.1; break; case('s'): userSetL = userSetL - 0.1; userSetR = userSetR - 0.1; break; case('a'): userSetL = userSetL - 0.04; userSetR = userSetR + 0.04; break; case('d'): userSetL = userSetL + 0.04; userSetR = userSetR - 0.04; break; case('e'): Ramp(0.5, 500, 0); break; case('r'): Ramp(0, 500, 0); break; } if (userSetL > 0.5) { userSetL = 0.5; } if (userSetL < -0.5) { userSetL = -0.5; } if (userSetR > 0.5) { userSetR = 0.5; } if (userSetR < -0.5) { userSetR = -0.5; } continue; } if (action == 2) { // keyboard input to wall following switch(c) { case('w'): TSpeedL = TSpeedL + 0.05; TSpeedR = TSpeedR + 0.05; break; case('s'): TSpeedL = TSpeedL - 0.05; TSpeedR = TSpeedR - 0.05; break; case('a'): Turn = Turn + 0.01; break; case('d'): Turn = Turn - 0.01; break; case(','): Nominal = Nominal - 2.5; break; case('.'): Nominal = Nominal + 2.5; break; case('g'): autoSpeed = autoSpeed * -1; break; case('n'): BtS.printf("\n\r Current constants: Ki %.3f:, Kp: %.3f, Kor: %.3f, Kpos: %.3f \n\r Select the constant you wish to change:", KiW, KpW, Kor, Kpos); char k; float newConst; while (1) { if (BtS.readable()) { k = BtS.getc(); if (k == '1') { BtS.scanf("%f", &newConst); KiW = newConst; break; } if (k == '2') { BtS.scanf("%f", &newConst); KpW = newConst; break; } if (k == '3') { BtS.scanf("%f", &newConst); Kor = newConst; break; } if (k == '4') { BtS.scanf("%f", &newConst); Kpos = newConst; break; } printf("\n\r Pick a constant ya goof \n\r"); } } } } if (action == 3) { // keyboard input to debug mode float newSpeed; BtS.printf("\n\r Enter a motor speed (with sign as direction:\n\r"); BtS.scanf("%f", &newSpeed); BtS.printf("%f", newSpeed); Ramp(newSpeed, 20, 0); //userSetR = userSetL; } if (action == 2 && c == 'r') { if (RecCount == 200) { BtS.printf("\n\n\rRecV RecU RecX RecE \n\r"); int i = 0; for (i = 0; i < 200; i++) { BtS.printf("%f, %f, %f, %f \n\r", RecV[i], RecU[i], RecX[i], RecE[i]); } } } }// close if(BtS.readable()) if (action == 2) { // Wall Following //Var_Lock.lock(); BtS.printf("IR F: %f cm R: %f cm \n\r", DF, DR); BtS.printf("Wall Error: %f \n\r", eW); BtS.printf("Acc Error: %f \n\r", aeW); BtS.printf("Diff. Setpoint: %f \n\r", uW); BtS.printf("Setpoint L: %f R: %f \n\n\r", userSetL, userSetR); //Var_Lock.unlock(); Thread::wait(1000); } if (action == 3) { // Debug Mode float IRF, IRR; IRF = IRFront.read(); IRR = IRRear.read(); Var_Lock.lock(); BtS.printf("Pos. L: %d R: %d \n\r", dPositionLeft, dPositionRight); BtS.printf("Time L: %d R: %d \n\r", dTimeLeft, dTimeRight); BtS.printf("fbs L: %f R: %f \n\r", fbSpeedL, fbSpeedR); BtS.printf("e L: %f R: %f \r\n", eL, eR); BtS.printf("Ae L: %f R: %f \n\r", aeL, aeR); BtS.printf("cSP L: %f R: %f \n\r", cSetL, cSetR); BtS.printf("IR F: %f R: %f \n\r", IRF, IRR); Var_Lock.unlock(); Thread::wait(2000); } } } // ******** Control Thread ******** void PiControlThread(void const *argument) { float maxError = 1.0f; float maxAcc = 10.0f; while (1) { // check for emergency stop if (EmergencyStop == 1) { userSetL = 0; userSetR = 0; SetLeftMotorSpeed(userSetL); SetRightMotorSpeed(userSetR); BtS.printf("\n\rEmergency Stop!!\n\r"); Thread::wait(2000); } osSignalWait(SignalPi, osWaitForever); led2= !led2; // Alive status float prevu1, prevu2; // Kp = 0.1, Ki = 0.5 const float Kp = 0.5f; const float Ki = 0.8f; if (action == 2) { IRChecker(); } prevu1 = u1; prevu2 = u2; // read encoder and calculate speed of both motors GetSpeeds(); // calculate error eL = userSetL - fbSpeedL; eR = userSetR - fbSpeedR; /* // prevent overflow / bound the error if (eL > 1) { eL = 1; } if (eL < -1); { eL = -1; } if (eR > maxError) { eR = maxError; } if (eR < -maxError); { eR = -maxError; } */ // accumulated error (integration) if (prevu1 < 1 && prevu1 > -1) { aeL += eL; } if (prevu2 < 1 && prevu2 > -1) { aeR += eR; } /* // bound the accumulatd error if (aeL > maxAcc) { aeL = maxAcc; } if (aeL < -maxAcc) { aeL = -maxAcc; } if (aeR > maxAcc) { aeR = maxAcc; } if (aeR < -maxAcc) { aeR = -maxAcc; } */ u1 = Kp*eL + Ki*aeL; u2 = Kp*eR + Ki*aeR; SetLeftMotorSpeed(u1); SetRightMotorSpeed(u2); } } // ******** Collision Thread ******** void ExtCollisionThread(void const *argument) { while (1) { osSignalWait(SignalExtCollision, osWaitForever); userSetL = 0; userSetR = 0; SetLeftMotorSpeed(userSetL); SetRightMotorSpeed(userSetR); mbed_reset(); } } // ******** Watchdog Interrupt Handler ******** void Watchdog(void const *n) { led3=1; BtS.printf("\n\r Watchdog Timeout! Oh Shit!\n\r"); } // ******** Period Timer Interrupt Handler ******** void PiControllerISR(void) { osSignalSet(PiControl,0x1); } // ******** Collision Interrupt Handler ******** void ExtCollisionISR(void) { osSignalSet(ExtCollision,0x1); } // --- Initialization Functions void InitializeSystem() { led3=0; led4=0; //EmerStop.rise(&ExtCollisionISR); // Atach the address of the interrupt handler to the rising edge of Bumper // Start execution of the Threads PiControl = osThreadCreate(osThread(PiControlThread), NULL); ExtCollision = osThreadCreate(osThread(ExtCollisionThread), NULL); osTimerId OneShot = osTimerCreate(osTimer(Wdtimer), osTimerOnce, (void *)0); PeriodicInt.attach(&PiControllerISR, ControlUpdate); // Specify address of the TimerISR (Ticker) function and the interval between interrupts InitializePWM(); InitializeEncoder(); BTInit(); } void InitializePWM() { PwmL.period(PWMPeriod); PwmR.period(PWMPeriod); } void InitializeEncoder() { // Initialization – to be executed once (normally) DE0.format(16,0); // SPI format: 16-bit words, mode 0 protocol. DE0.frequency(1000000); SpiStart = 0; SpiReset = 1; wait_us(10); SpiReset = 0; DE0.write(0x8004); // SPI slave control word to read (only) 4-word transactions // starting at base address 0 within the peripheral. } void BTInit() { BtS.printf("AT+BTCANCEL\r\n"); BtS.printf("AT+BTSCAN\r\n"); // also send to the pc so we know whats going on pc.printf("AT+BTCANCEL\r\n"); pc.printf("AT+BTSCAN\r\n"); } // --- Other Functions void SetLeftMotorSpeed(float u) { float T; float d; float onTime; float maxMotorSpeed = 0.5; // bound the input if (u > maxMotorSpeed) { u = maxMotorSpeed; } if (u < -maxMotorSpeed) { u = -maxMotorSpeed; } // calculate duty cycle timing T = PWMPeriod; d = abs(u); onTime = d * T; PwmL.pulsewidth(onTime); if (u > 0) { dirL = 1; } else { dirL = 0; } } void SetRightMotorSpeed(float u) { float T; float d; float onTime; float maxMotorSpeed = 0.5; // bound the input if (u > maxMotorSpeed) { u = maxMotorSpeed; } if (u < -maxMotorSpeed) { u = -maxMotorSpeed; } // calculate duty cycle timing T = PWMPeriod; d = abs(u); onTime = d * T; PwmR.pulsewidth(onTime); if (u > 0) { dirR = 1; } else { dirR = 0; } } void GetSpeeds() { // when using a interrupt period of 50ms: 1480 float leftMaxPos = 1184.0f; float rightMaxPos = 1184.0f; // Restart the SPI module each time SpiStart = 1; wait_us(5); SpiStart = 0; DE0.write(0x8004); // read in 4 16-bit words Var_Lock.lock(); dPositionLeft = DE0.write(Dummy); // Read QEI-0 position register dTimeLeft = DE0.write(Dummy); // Read QE-0 time interval register dPositionRight = DE0.write(Dummy); // Read QEI-1 position register dTimeRight = DE0.write(Dummy); // Read QEI-1 time interval register Var_Lock.unlock(); // calcspeed fbSpeedL = ((float)dPositionLeft)/leftMaxPos; fbSpeedR = ((float)dPositionRight)/rightMaxPos; // bound the feedback speed if (fbSpeedL > 1) { fbSpeedL = 1; } if (fbSpeedL < -1) { fbSpeedL = -1; } if (fbSpeedR > 1) { fbSpeedR = 1; } if (fbSpeedR < -1) { fbSpeedR = -1; } } void IRChecker() { float IRF, IRR, IRF1, IRR1, IRF2, IRR2, prevDF, prevDR; float speedSet; float aF = 22.6321; // 34.2911 float bF = -0.1721; // -0.2608 float aR = 22.6021; // 34.2456 float bR = -0.0376; // -0.0569 // Read Sensors IRF1 = 3.3*IRFront.read(); IRR1 = 3.3*IRRear.read(); IRF2 = 3.3*IRFront.read(); IRR2 = 3.3*IRRear.read(); // average IRF = (IRF1 + IRF2)/2; IRR = (IRR1 + IRR2)/2; prevDF = DF; prevDR = DR; // Calculate distance based on voltage DF = aF/(IRF+bF); DR = aR/(IRR+bR); prevuW = uW; // check for invalid data if (DF < 0) { DF = 80; } if (DR < 0) { DR = 80; } if (DF > 80) { DF = 80; } if (DR > 80) { DR = 80; } if (DF < 10) { DF = 10; } if (DR < 10) { DR = 10; } // calculate errors eW = Kpos*(Nominal - (DF + DR)/2) + Kor*(DR - DF); // accumulate error if (prevuW < Turn && prevuW > -Turn) { aeW = aeW + eW; } uW = KpW*eW + KiW*aeW; if (uW > Turn) { uW = Turn; } else if (uW < -Turn) { uW = -Turn; } // set speed using auto speed control if (autoSpeed == 1) { speedSet = (1 - (abs(eW)*5))*TSpeedL; if (speedSet < 0.05) { speedSet = 0.05; } userSetL = speedSet + uW; userSetR = speedSet - uW; } else { // set differential speeds userSetL = TSpeedL + uW; userSetR = TSpeedR - uW; } // data recording code if (action == 2) { if (RecCount < 200) { RecX[RecCount] = eW; RecU[RecCount] = uW; RecV[RecCount] = DF; RecE[RecCount] = DR; RecCount++; } } } void DisplayMenu() { BtS.printf("\r\n\nPress the corresponding key to do something:\r\n"); BtS.printf("| Key | Action\n\r"); BtS.printf("|-----|----------------------------\n\r"); BtS.printf("| d | Drive the robot using wasd keys\n\r"); BtS.printf("| w | Robot performs wall following\n\r"); BtS.printf("| 0 | Debug mode\n\r"); BtS.printf("| r | Record Data \n\r"); BtS.printf("| q | Quit current action, stop the robot, and return to this menu\n\r\n"); } void Ramp(float speed, unsigned int time, unsigned short motor) { const unsigned short steps = 20; float changeL = (speed - userSetL)/steps; float changeR = (speed - userSetR)/steps; unsigned short i; // calculate wait time (we wont worry too much about rounding errors) unsigned int waitTime = time/steps; for (i = 0; i < steps; i++) { //Thread::wait(200); Thread::wait(waitTime); if (motor == 0) { // change both speeds userSetL += changeL; userSetR += changeR; continue; } if (motor == 1) { userSetL += changeL; continue; } if (motor == 2) { userSetR += changeR; } } }