Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
targets/TARGET_NUVOTON/TARGET_M451/USBHAL_M453.cpp
- Committer:
- Kojto
- Date:
- 2017-07-27
- Revision:
- 72:53949e6131f6
File content as of revision 72:53949e6131f6:
/* mbed Microcontroller Library
* Copyright (c) 2015-2016 Nuvoton
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined(TARGET_NUMAKER_PFM_M453)
#include "USBHAL.h"
#include "M451Series.h"
#include "pinmap.h"
/**
* EP: mbed USBD defined endpoint, e.g. EP0OUT/IN, EP1OUT/IN, EP2OUT/IN.
* EPX: BSP defined endpoint, e.g. CEP, EPA, EPB, EPC.
*/
USBHAL * USBHAL::instance;
/* Global variables for Control Pipe */
extern uint8_t g_usbd_SetupPacket[]; /*!< Setup packet buffer */
static volatile uint32_t s_ep_compl = 0;
static volatile uint32_t s_ep_buf_ind = 8;
static volatile uint8_t s_usb_addr = 0;
static volatile uint8_t s_ep_data_bit[NUMBER_OF_PHYSICAL_ENDPOINTS] = {1};
static volatile uint8_t s_ep_mxp[NUMBER_OF_PHYSICAL_ENDPOINTS] = {0};
extern volatile uint8_t *g_usbd_CtrlInPointer;
extern volatile uint32_t g_usbd_CtrlInSize;
extern volatile uint8_t *g_usbd_CtrlOutPointer;
extern volatile uint32_t g_usbd_CtrlOutSize;
extern volatile uint32_t g_usbd_CtrlOutSizeLimit;
extern volatile uint32_t g_usbd_UsbConfig;
extern volatile uint32_t g_usbd_CtrlMaxPktSize;
extern volatile uint32_t g_usbd_UsbAltInterface;
volatile uint32_t g_usbd_CepTransferLen = 0;
volatile uint32_t frame_cnt = 0;
USBHAL::USBHAL(void)
{
SYS_UnlockReg();
s_ep_buf_ind = 8;
memset(epCallback, 0x00, sizeof (epCallback));
epCallback[0] = &USBHAL::EP1_OUT_callback;
epCallback[1] = &USBHAL::EP2_IN_callback;
epCallback[2] = &USBHAL::EP3_OUT_callback;
epCallback[3] = &USBHAL::EP4_IN_callback;
epCallback[4] = &USBHAL::EP5_OUT_callback;
epCallback[5] = &USBHAL::EP6_IN_callback;
instance = this;
/* Enable USBD module clock */
CLK_EnableModuleClock(USBD_MODULE);
CLK_SetModuleClock(USBD_MODULE, 0, CLK_CLKDIV0_USB(3));
/* Enable USB LDO33 */
SYS->USBPHY = SYS_USBPHY_LDO33EN_Msk;
/* Initial USB engine */
USBD->ATTR = 0x7D0;
/* Set SE0 (disconnect) */
USBD_SET_SE0();
//NVIC_SetVector(OTG_FS_IRQn, (uint32_t) &_usbisr);
NVIC_SetVector(USBD_IRQn, (uint32_t) &_usbisr);
NVIC_EnableIRQ(USBD_IRQn);
}
USBHAL::~USBHAL(void)
{
NVIC_DisableIRQ(USBD_IRQn);
USBD_SET_SE0();
USBD_DISABLE_PHY();
}
void USBHAL::connect(void)
{
USBD->STBUFSEG = 0;
frame_cnt = 0;
/* EP0 ==> control IN endpoint, address 0 */
USBD_CONFIG_EP(EP0, USBD_CFG_CSTALL | USBD_CFG_EPMODE_IN | 0);
/* Buffer range for EP0 */
USBD_SET_EP_BUF_ADDR(EP0, s_ep_buf_ind);
/* EP1 ==> control OUT endpoint, address 0 */
USBD_CONFIG_EP(EP1, USBD_CFG_CSTALL | USBD_CFG_EPMODE_OUT | 0);
/* Buffer range for EP1 */
USBD_SET_EP_BUF_ADDR(EP1, s_ep_buf_ind);
s_ep_buf_ind += MAX_PACKET_SIZE_EP0;
/* Disable software-disconnect function */
USBD_CLR_SE0();
/* Clear USB-related interrupts before enable interrupt */
USBD_CLR_INT_FLAG(USBD_INT_BUS | USBD_INT_USB | USBD_INT_FLDET | USBD_INT_WAKEUP);
/* Enable USB-related interrupts. */
USBD_ENABLE_INT(USBD_INT_BUS | USBD_INT_USB | USBD_INT_FLDET | USBD_INT_WAKEUP);
}
void USBHAL::disconnect(void)
{
/* Set SE0 (disconnect) */
USBD_SET_SE0();
}
void USBHAL::configureDevice(void)
{
/**
* In USBDevice.cpp > USBDevice::requestSetConfiguration, configureDevice() is called after realiseEndpoint() (in USBCallback_setConfiguration()).
* So we have the following USB buffer management policy:
* 1. Allocate for CEP on connect().
* 2. Allocate for EPX in realiseEndpoint().
* 3. Deallocate all except for CEP in unconfigureDevice().
*/
}
void USBHAL::unconfigureDevice(void)
{
s_ep_buf_ind = 8;
}
void USBHAL::setAddress(uint8_t address)
{
// NOTE: Delay address setting; otherwise, USB controller won't ack.
s_usb_addr = address;
}
void USBHAL::remoteWakeup(void)
{
#if 0
USBD->OPER |= USBD_OPER_RESUMEEN_Msk;
#endif
}
bool USBHAL::realiseEndpoint(uint8_t endpoint, uint32_t maxPacket, uint32_t options)
{
uint32_t ep_type = 0;
uint32_t ep_hw_index = NU_EP2EPH(endpoint);
uint32_t ep_logic_index = NU_EP2EPL(endpoint);
uint32_t ep_dir = (NU_EP_DIR(endpoint) == NU_EP_DIR_IN) ? USBD_CFG_EPMODE_IN : USBD_CFG_EPMODE_OUT;
if (ep_logic_index == 3 || ep_logic_index == 4)
ep_type = USBD_CFG_TYPE_ISO;
USBD_CONFIG_EP(ep_hw_index, ep_dir | ep_type | ep_logic_index);
/* Buffer range */
USBD_SET_EP_BUF_ADDR(ep_hw_index, s_ep_buf_ind);
if (ep_dir == USBD_CFG_EPMODE_OUT)
USBD_SET_PAYLOAD_LEN(ep_hw_index, maxPacket);
s_ep_mxp[ep_logic_index] = maxPacket;
s_ep_buf_ind += maxPacket;
return true;
}
void USBHAL::EP0setup(uint8_t *buffer)
{
uint32_t sz;
endpointReadResult(EP0OUT, buffer, &sz);
}
void USBHAL::EP0read(void)
{
}
void USBHAL::EP0readStage(void)
{
// N/A
USBD_PrepareCtrlOut(0,0);
}
uint32_t USBHAL::EP0getReadResult(uint8_t *buffer)
{
uint32_t i;
uint8_t *buf = (uint8_t *)(USBD_BUF_BASE + USBD_GET_EP_BUF_ADDR(EP1));
uint32_t ceprxcnt = USBD_GET_PAYLOAD_LEN(EP1);
for (i = 0; i < ceprxcnt; i ++)
buffer[i] = buf[i];
USBD_SET_PAYLOAD_LEN(EP1, MAX_PACKET_SIZE_EP0);
return ceprxcnt;
}
void USBHAL::EP0write(uint8_t *buffer, uint32_t size)
{
if (buffer && size)
{
if (s_ep_data_bit[0] & 1)
USBD_SET_DATA1(EP0);
else
USBD_SET_DATA0(EP0);
s_ep_data_bit[0]++;
USBD_MemCopy((uint8_t *)USBD_BUF_BASE + USBD_GET_EP_BUF_ADDR(EP0), buffer, size);
USBD_SET_PAYLOAD_LEN(EP0, size);
if (size < MAX_PACKET_SIZE_EP0)
s_ep_data_bit[0] = 1;
}
else
{
if (g_usbd_SetupPacket[0] & 0x80) //Device to Host
{
// Status stage
// USBD_PrepareCtrlOut(0,0);
} else
{
USBD_SET_DATA1(EP0);
USBD_SET_PAYLOAD_LEN(EP0, 0);
}
}
}
void USBHAL::EP0getWriteResult(void)
{
// N/A
}
void USBHAL::EP0stall(void)
{
stallEndpoint(EP0OUT);
}
EP_STATUS USBHAL::endpointRead(uint8_t endpoint, uint32_t maximumSize)
{
return EP_PENDING;
}
EP_STATUS USBHAL::endpointReadResult(uint8_t endpoint, uint8_t * buffer, uint32_t *bytesRead) //spcheng
{
if (endpoint == EP0OUT)
{
USBD_MemCopy(g_usbd_SetupPacket, (uint8_t *)USBD_BUF_BASE, 8);
if (buffer) {
USBD_MemCopy(buffer, g_usbd_SetupPacket, 8);
}
USBD_SET_PAYLOAD_LEN(EP1, MAX_PACKET_SIZE_EP0);
}
else
{
uint32_t i;
uint8_t *buf = (uint8_t *)(USBD_BUF_BASE + USBD_GET_EP_BUF_ADDR(NU_EP2EPH(endpoint)));
uint32_t eprxcnt = USBD_GET_PAYLOAD_LEN(NU_EP2EPH(endpoint));
for (i = 0; i < eprxcnt; i ++)
buffer[i] = buf[i];
*bytesRead = eprxcnt;
USBD_SET_PAYLOAD_LEN(NU_EP2EPH(endpoint),s_ep_mxp[NU_EPH2EPL(NU_EP2EPL(endpoint))]);
}
return EP_COMPLETED;
}
uint32_t USBHAL::endpointReadcore(uint8_t endpoint, uint8_t *buffer)
{
return 0;
}
EP_STATUS USBHAL::endpointWrite(uint8_t endpoint, uint8_t *data, uint32_t size)
{
uint32_t ep_logic_index = NU_EP2EPL(endpoint);
if (ep_logic_index == 0)
return EP_INVALID;
else
{
uint8_t *buf;
uint32_t i=0;
uint32_t ep_hw_index = NU_EP2EPH(endpoint);
s_ep_compl |= (1 << ep_logic_index);
buf = (uint8_t *)(USBD_BUF_BASE + USBD_GET_EP_BUF_ADDR(ep_hw_index));
for (i=0;i<size;i++)
buf[i] = data[i];
/* Set transfer length and trigger IN transfer */
USBD_SET_PAYLOAD_LEN(ep_hw_index, size);
}
return EP_PENDING;
}
EP_STATUS USBHAL::endpointWriteResult(uint8_t endpoint)
{
if (!(s_ep_compl & (1 << NU_EP2EPL(endpoint))))
return EP_COMPLETED;
return EP_PENDING;
}
void USBHAL::stallEndpoint(uint8_t endpoint)
{
uint32_t ep_hw_index = NU_EP2EPH(endpoint);
if (ep_hw_index >= NUMBER_OF_PHYSICAL_ENDPOINTS)
return;
USBD_SetStall(NU_EPH2EPL(ep_hw_index));
}
void USBHAL::unstallEndpoint(uint8_t endpoint)
{
uint32_t ep_hw_index = NU_EP2EPH(endpoint);
if (ep_hw_index >= NUMBER_OF_PHYSICAL_ENDPOINTS)
return;
USBD_ClearStall(NU_EPH2EPL(ep_hw_index));
}
bool USBHAL::getEndpointStallState(uint8_t endpoint)
{
uint32_t ep_hw_index = NU_EP2EPH(endpoint);
if (ep_hw_index >= NUMBER_OF_PHYSICAL_ENDPOINTS)
return false;
return USBD_GetStall(NU_EPH2EPL(ep_hw_index)) ? 1 : 0;
}
void USBHAL::_usbisr(void)
{
MBED_ASSERT(instance);
instance->usbisr();
}
void USBHAL::usbisr(void)
{
uint32_t u32IntSts = USBD_GET_INT_FLAG();
uint32_t u32State = USBD_GET_BUS_STATE();
//------------------------------------------------------------------
if (u32IntSts & USBD_INTSTS_VBDETIF_Msk)
{
// Floating detect
USBD_CLR_INT_FLAG(USBD_INTSTS_VBDETIF_Msk);
if (USBD_IS_ATTACHED())
{
/* USB Plug In */
USBD_ENABLE_USB();
}
else
{
/* USB Un-plug */
USBD_DISABLE_USB();
}
}
//------------------------------------------------------------------
if (u32IntSts & USBD_INTSTS_BUSIF_Msk)
{
/* Clear event flag */
USBD_CLR_INT_FLAG(USBD_INTSTS_BUSIF_Msk);
if (u32State & USBD_ATTR_USBRST_Msk)
{
/* Bus reset */
USBD_ENABLE_USB();
USBD_SwReset();
}
if (u32State & USBD_ATTR_SUSPEND_Msk)
{
/* Enable USB but disable PHY */
USBD_DISABLE_PHY();
}
if (u32State & USBD_ATTR_RESUME_Msk)
{
/* Enable USB and enable PHY */
USBD_ENABLE_USB();
}
}
if (u32IntSts & USBD_INTSTS_USBIF_Msk)
{
// USB event
if (u32IntSts & USBD_INTSTS_SETUP_Msk)
{
// Setup packet
/* Clear event flag */
USBD_CLR_INT_FLAG(USBD_INTSTS_SETUP_Msk);
/* Clear the data IN/OUT ready flag of control end-points */
USBD_STOP_TRANSACTION(EP0);
USBD_STOP_TRANSACTION(EP1);
EP0setupCallback();
}
// EP events
if (u32IntSts & USBD_INTSTS_EP0)
{
/* Clear event flag */
USBD_CLR_INT_FLAG(USBD_INTSTS_EP0);
// control IN
EP0in();
// In ACK for Set address
if ((g_usbd_SetupPacket[0] == REQ_STANDARD) && (g_usbd_SetupPacket[1] == USBD_SET_ADDRESS))
{
if ((USBD_GET_ADDR() != s_usb_addr) && (USBD_GET_ADDR() == 0))
{
USBD_SET_ADDR(s_usb_addr);
}
}
}
if (u32IntSts & USBD_INTSTS_EP1)
{
/* Clear event flag */
USBD_CLR_INT_FLAG(USBD_INTSTS_EP1);
// control OUT
EP0out();
}
uint32_t gintsts_epx = (u32IntSts >> 18) & 0x3F;
uint32_t ep_hw_index = 2;
while (gintsts_epx) {
if (gintsts_epx & 0x01)
{
uint32_t ep_status = (USBD_GET_EP_FLAG() >> (ep_hw_index * 3 + 8)) & 0x7;
/* Clear event flag */
USBD_CLR_INT_FLAG(1 << (ep_hw_index + 16));
if (ep_status == 0x02 || ep_status == 0x06 || (ep_status == 0x07 && NU_EPH2EPL(ep_hw_index) == 3)) //RX
{
if (ep_status == 0x07)
SOF(frame_cnt++);
if ((instance->*(epCallback[ep_hw_index-2]))())
{
}
USBD_SET_PAYLOAD_LEN(ep_hw_index,s_ep_mxp[NU_EPH2EPL(ep_hw_index)]);
}
else if (ep_status == 0x00 || ep_status == 0x07) //TX
{
s_ep_compl &= ~(1 << (NU_EPH2EPL(ep_hw_index)));
if ((instance->*(epCallback[ep_hw_index-2]))())
{
}
}
}
gintsts_epx = gintsts_epx >> 1;
ep_hw_index++;
}
}
}
#endif